How do I use the median of 3 rules to find the pivot point? - data-structures

Suppose I have a list of numbers like this:
2 23 19 3 5 28 31 67 44 35 6 33 19 45
How do I find the pivot point using the median of 3 method?
I thought it involves adding the first and last numbers,and then dividing it by 2, but apparently that's wrong.

Related

Scilab sort by second column

I have some data:
P = [3 10 25 32 43 1 3
6 12 35 39 49 4 9
2 9 23 36 47 2 9
...
7 20 35 42 44 3 7
15 18 19 41 42 4 6
10 18 32 35 46 3 10];
Data is always between 1 and 50.
I am selecting left 5 columns and 2 right columns:
L=P(:,1:5);
R=P(:,6:7);
I am counting occurrences:
a=tabul(L);
b=tabul(R);
In this moment, in a I am getting:
50. 3.
49. 4.
48. 3.
which tells me, that value 50 occurs 3 times, 49 occurs 4 times and so on.
What I need now is sort matrix a by second column but the first column should be arranged with the second column values. So it would look like this:
49. 4.
50. 3.
48. 3.
How can I sort matrix a this way (later I will sort b the same way)?
I was trying something like:
[a,idx]=gsort(a(:,2),"g","d");
a=a(idx,:);
but this not does what I need.
It does not work because you are overwriting a in the gsort call although you just need the index here. The following does what you want:
[dummy,idx]=gsort(a(:,2),"g","d");
a=a(idx,:);

How does the "successive passes in opposite direction" improvement work for bubble sort?

According to Data Structures Using C by Tenenbaum, one of the improvements of bubble sort is to have successive passes go in opposite direction so that the small elements move quickly to the front which will reduce the required number of passes [pg 336].
I worked out two examples, one which supports this statement and other which is against this one.
Supports: 25 48 37 12 57 86 33 92
iterations using usual Bubble sort :
25 48 37 12 57 86 33 92
25 37 12 48 57 33 86 92
25 12 37 48 33 57 86 92
12 25 37 33 48 57 86 92
12 25 33 37 48 57 86 92
iterations using improvement:
25 48 37 12 57 86 33 92
25 37 12 48 57 33 86 92
12 25 37 33 48 57 86 92
12 25 33 37 48 57 86 92
against: 3 4 1 2 5
iterations using usual Bubble sort:
3 4 1 2 5
3 1 2 4 5
1 2 3 4 5
iterations using improvement:
3 4 1 2 5
3 1 2 4 5
1 3 2 4 5
1 2 3 4 5
So is the statement incorrect that this improvement will always help? Or I am doing something wrong here ?
The example you gave above shows that this algorithm isn't a strict improvement over a standard bubble sort.
The advantage of this approach (sometimes called "cocktail sort," by the way) is that in cases where there are a lot of small elements at the end of the array, it rapidly pulls them to the front compared against normal bubble sort. For example, consider this array:
2 3 4 5 6 7 8 9 10 11 12 ... 10,000,000 1
With a normal bubble sort, it would take 9,999,999 passes over this array to sort it because the element 1, which is way out of place, only gets swapped one step forward on each iteration. On the other hand, with a cocktail sort, this would take just two passes - one initial pass and then a reverse pass.
While the above example is definitely contrived, in a randomly-shuffled array, there are likely going to be some smaller elements toward the end of the array and the number of passes of bubblesort is going to have to be large to move them back. Going in both directions helps speed this up.
That said, bubblesort is a pretty poor choice of a sorting algorithm, so hopefully this is just a theoretical discussion. :-)

Sum Pyramid with backtracking

I'm trying to solve this problem and I'm new to backtracking algorithms,
The problem is about making a pyramid like this so that a number sitting on two numbers is the sum of them. Every number in the pyramid has to be different and less than 100. Like this:
88
39 49
15 24 25
4 11 13 12
1 3 8 5 7
Any pointers on how to do this using backtracking?
Not necessarily backtracking but the property you are asking for is interestingly very similar to the Pascal Triangle property.
The Pascal Triangle (http://en.wikipedia.org/wiki/Pascal's_triangle), which is used for efficient computation of binomial coefficient among other things, is a pyramid where a number is equal to the sum of the two numbers above it with the top being 1.
As you can see you are asking the opposite property where a number is the sum of the numbers below it.
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
For instance in the Pascal Triangle above, if you wanted the top of your pyramid to be 56, your pyramid will be a reconstruction bottom up of the Pascal Triangle starting from 56 and that will give something like:
56
21 35
6 15 20
1 5 10 10
Again that's not a backtracking solution and this might not give you a good enough solution for every single N though I thought this was an interesting approximation that was worth noting.

How can I define a verb in J that applies a different verb alternately to each atom in a list?

Imagine I've defined the following name in J:
m =: >: i. 2 4 5
This looks like the following:
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30
31 32 33 34 35
36 37 38 39 40
I want to create a monadic verb of rank 1 that applies to each list in this list of lists. It will double (+:) or add 1 (>:) to each alternate item in the list. If we were to apply this verb to the first row, we'd get 2 3 6 5 10.
It's fairly easy to get a list of booleans which alternate with each item, e.g., 0 1 $~{:$ m gives us 0 1 0 1 0. I thought, aha! I'll use something like +:`>: #. followed by some expression, but I could never quite get it to work.
Any suggestions?
UPDATE
The following appears to work, but perhaps it can be refactored into something more elegant by a J pro.
poop =: monad define
(($ y) $ 0 1 $~{:$ y) ((]+:)`(]>:) #. [)"0 y
)
I would use the oblique verb, with rank 1 (/."1)- so it applies to successive elements of each list in turn.
You can pass a gerund into /. and it applies them in order, extending cyclically.
+:`>: /."1 m
2
3
6
5
10
12
8
16
10
20
22
13
26
15
30
32
18
36
20
40
42
23
46
25
50
52
28
56
30
60
62
33
66
35
70
72
38
76
40
80
I spent a long time and I looked at it, and I believe that I know why ,# works to recover the shape of the argument.
The shape of the arguments to the parenthesized phrase is the shape of the argument passed to it on the right, even though the rank is altered by the " conjugate (well, that is what trace called it, I thought it was an adverb). If , were monadic, it would be a ravel, and the result would be a vector or at least of a lower rank than the input, based on adverbs to ravel. That is what happens if you take the conjunction out - you get a vector.
So what I believe is happening is that the conjunction is making , act like a dyadic , which is called an append. The append alters what it is appending to what it is appending to. It is appending to nothing but that thing still has a shape, and so it ends up altering the intermediate vector back to the shape of the input.
Now I'm probably wrong. But $,"0#(+:>:/.)"1 >: i. 2 4 5 -> 2 4 5 1 1` which I thought sort of proved my case.
(,#(+:`>:/.)"1 a) works, but note that ((* 2 1 $~ $)#(+ 0 1 $~ $)"1 a) would also have worked (and is about 20 times faster, on large arrays, in my brief tests).

Finding a set of permutations, with a constraint

I have a set of N^2 numbers and N bins. Each bin is supposed to have N numbers from the set assigned to it. The problem I am facing is finding a set of distributions that map the numbers to the bins, satisfying the constraint, that each pair of numbers can share the same bin only once.
A distribution can nicely be represented by an NxN matrix, in which each row represents a bin. Then the problem is finding a set of permutations of the matrix' elements, in which each pair of numbers shares the same row only once. It's irrelevant which row it is, only that two numbers were both assigned to the same one.
Example set of 3 permutations satisfying the constraint for N=8:
0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63
0 8 16 24 32 40 48 56
1 9 17 25 33 41 49 57
2 10 18 26 34 42 50 58
3 11 19 27 35 43 51 59
4 12 20 28 36 44 52 60
5 13 21 29 37 45 53 61
6 14 22 30 38 46 54 62
7 15 23 31 39 47 55 63
0 9 18 27 36 45 54 63
1 10 19 28 37 46 55 56
2 11 20 29 38 47 48 57
3 12 21 30 39 40 49 58
4 13 22 31 32 41 50 59
5 14 23 24 33 42 51 60
6 15 16 25 34 43 52 61
7 8 17 26 35 44 53 62
A permutation that doesn't belong in the above set:
0 10 20 30 32 42 52 62
1 11 21 31 33 43 53 63
2 12 22 24 34 44 54 56
3 13 23 25 35 45 55 57
4 14 16 26 36 46 48 58
5 15 17 27 37 47 49 59
6 8 18 28 38 40 50 60
7 9 19 29 39 41 51 61
Because of multiple collisions with the second permutation, since, for example they're both pairing the numbers 0 and 32 in one row.
Enumerating three is easy, it consists of 1 arbitrary permutation, its transposition and a matrix where the rows are made of the previous matrix' diagonals.
I can't find a way to produce a set consisting of more though. It seems to be either a very complex problem, or a simple problem with an unobvious solution. Either way I'd be thankful if somebody had any ideas how to solve it in reasonable time for the N=8 case, or identified the proper, academic name of the problem, so I could google for it.
In case you were wondering what is it useful for, I'm looking for a scheduling algorithm for a crossbar switch with 8 buffers, which serves traffic to 64 destinations. This part of the scheduling algorithm is input traffic agnostic, and switches cyclically between a number of hardwired destination-buffer mappings. The goal is to have each pair of destination addresses compete for the same buffer only once in the cycling period, and to maximize that period's length. In other words, so that each pair of addresses was competing for the same buffer as seldom as possible.
EDIT:
Here's some code I have.
CODE
It's greedy, it usually terminates after finding the third permutation. But there should exist a set of at least N permutations satisfying the problem.
The alternative would require that choosing permutation I involved looking for permutations (I+1..N), to check if permutation I is part of the solution consisting of the maximal number of permutations. That'd require enumerating all permutations to check at each step, which is prohibitively expensive.
What you want is a combinatorial block design. Using the nomenclature on the linked page, you want designs of size (n^2, n, 1) for maximum k. This will give you n(n+1) permutations, using your nomenclature. This is the maximum theoretically possible by a counting argument (see the explanation in the article for the derivation of b from v, k, and lambda). Such designs exist for n = p^k for some prime p and integer k, using an affine plane. It is conjectured that the only affine planes that exist are of this size. Therefore, if you can select n, maybe this answer will suffice.
However, if instead of the maximum theoretically possible number of permutations, you just want to find a large number (the most you can for a given n^2), I am not sure what the study of these objects is called.
Make a 64 x 64 x 8 array: bool forbidden[i][j][k] which indicates whether the pair (i,j) has appeared in row k. Each time you use the pair (i, j) in the row k, you will set the associated value in this array to one. Note that you will only use the half of this array for which i < j.
To construct a new permutation, start by trying the member 0, and verify that at least seven of forbidden[0][j][0] that are unset. If there are not seven left, increment and try again. Repeat to fill out the rest of the row. Repeat this whole process to fill the entire NxN permutation.
There are probably optimizations you should be able to come up with as you implement this, but this should do pretty well.
Possibly you could reformulate your problem into graph theory. For example, you start with the complete graph with N×N vertices. At each step, you partition the graph into N N-cliques, and then remove all edges used.
For this N=8 case, K64 has 64×63/2 = 2016 edges, and sixty-four lots of K8 have 1792 edges, so your problem may not be impossible :-)
Right, the greedy style doesn't work because you run out of numbers.
It's easy to see that there can't be more than 63 permutations before you violate the constraint. On the 64th, you'll have to pair at least one of the numbers with another its already been paired with. The pigeonhole principle.
In fact, if you use the table of forbidden pairs I suggested earlier, you find that there are a maximum of only N+1 = 9 permutations possible before you run out. The table has N^2 x (N^2-1)/2 = 2016 non-redundant constraints, and each new permutation will create N x (N choose 2) = 28 new pairings. So all the pairings will be used up after 2016/28 = 9 permutations. It seems like realizing that there are so few permutations is the key to solving the problem.
You can generate a list of N permutations numbered n = 0 ... N-1 as
A_ij = (i * N + j + j * n * N) mod N^2
which generates a new permutation by shifting the columns in each permutation. The top row of the nth permutation are the diagonals of the n-1th permutation. EDIT: Oops... this only appears to work when N is prime.
This misses one last permutation, which you can get by transposing the matrix:
A_ij = j * N + i

Resources