Placing archers on wall - algorithm

I have a matrix (with 0 and 1), representing a castle wall and its surroundings.
My task is to place n archers on the wall in a way, that they covers as much surroundings as they can. There are two rules:
1: Every archer has range 1 - that means, he can shoot only on adjoining tiles (each tile has 8-neighbours), which aren't wall (friendly fire is banned in this army!).
2: If so happens, that multiple archers can shoot at same tile, that tile only counts as one.
I am struggling to find effective solution for this - partially because I don't know, if there exist any in polynomial time. Is there any?
I guess first step is to use BFS algorithm to rate every tile on matrix, but I don't know how to effectivelly solve it with second rule. The brute force solution is quite simple - rate every position and then try all of them, which would be very very uneffective - I think O(|possible placements|^n), which isn't nice.
Simple example:
The grey-colored tiles represents the wall. Numbers inside a tiles are representing coverage of archer placed on that tile. Just to be sure, I added orange ones, which are representing coverage of archer standing on tile b2. And the last information - correct solution for this is b2 and b6, with coverage of 14. It cannot be b2 and b4, because they covers only 11 tiles.

I don't see how the problem can be solved in guaranteed polynomial time, but you can express the problem as an integer linear program, which can be solved using an ILP solver such as GLPK.
Let c[i] be 0-1 integer variables, one for each square of surrounding. These will represent whether this square is covered by at least one archer.
Let a[i] be 0-1 integer variables, one for each square of castle wall. These will represent whether an archer stands on this square.
There must be at most n archers: sum(a[i] for i in castle walls) <= n
The c[i] must be zero if there's no adjacent archer: sum(a[j] for j castle wall adjacent to i) >= c[i]
The optimization target is to maximize sum(c[i]).
For example, suppose this is the map (where . is surrounding, and # castle wall), and want to place two archers.
....
.###
....
Then we have this ILP problem, where all the variables are 0-1 integer variables.
maximize (
c[0,0] + c[0,1] + c[0,2] + c[0,3]
+ c[1,0]
+ c[2,0] + c[2,1] + c[2,2] + c[2,3])
such that:
a[1,1] + a[1,2] + a[1,3] <= 2
c[0,0] <= a[1,1]
c[0,1] <= a[1,1] + a[1,2]
c[0,2] <= a[1,1] + a[1,2] + a[1,3]
c[0,3] <= a[1,2] + a[1,3]
c[1,0] <= a[1,1]
c[2,0] <= a[1,1]
c[2,1] <= a[1,1] + a[1,2]
c[2,2] <= a[1,1] + a[1,2] + a[1,3]
c[2,3] <= a[1,2] + a[1,3]

Related

What is an efficient "modified" goldmine problem algorithm?

We are given an M x N map (basically a 2D array) of values (can be negative), and you gotta find the path that makes the most money.
The trick is that the "drill" that you're using is three units large.
So to drill a hole in a certain place (blue), you gotta make sure the three above it (red) are drilled as well;
and it's exponential up, meaning if you wanna dig a deeper hole, then you gotta dig the three above, and the three above those ones, etc
So far I have an inefficient, semi-brute force (kinda) algorithm that's O(n^2) so as soon as sample size goes up (for a 900 x 1200 sample for example), the algorithm can't be done (we have a 3 minutes limit).
I'm suspecting maybe dynamic programming could be a way, but I'm not sure at all how to implement that.
Let me know if anything else comes to mind.
We've worked with Python by the way.
Thank you guys in advance.
You can calculate all the values in O(n * m) instead of O((n * m)^2).
Let's say we have input matrix A and want to calculate the result for each position resulting in matrix B.
The first row of B is just the same as A.
The second row of B we get by summing the 3 values above (or 2 on the edges).
For all the following rows (r = row, c = column):
c not on the edge: B[r][c] = B[r - 1][c - 1] + B[r - 1][c + 1] + A[r - 1][c] - B[r - 2][c].
c on the left edge: B[r][0] = B[r - 1][1] + A[r - 1][0]
c on the right edge: B[r][len - 1] = B[r - 1][len - 2] + A[r - 1][len - 1]
If you color the matrix and the values you sum, you can easily see what we are doing. Basically we sum left and right neighbour above to get the value, but we miss the value in the middle and the value of the result two rows above is calculated twice, so we subtract it.

Bresenham’s Circle Algorithm

https://www.geeksforgeeks.org/bresenhams-circle-drawing-algorithm/
I was looking at Bresenham's algorithm which I'm trying to use to make a MS paint style application. I've implemented it into python and it works. However, I was not sure HOW this worked. I understood all of the algorithm except for the decision parameter. Specifically why it has to be d = 3 – (2 * r) , d = d + (4*x) + 6 or d = d + 4 * (x – y) + 10. Is anyone familiar with the algorithm or understands the math behind how these were derived? I understood the theory behind the algorithm for lines, but I'm having a hard time understanding the circle drawing.
If you just drew pixel (x,y), then the next pixel to be drawn is either (x+1,y) or (x+1,y-1)
The actual condition used determine which one to choose is appoximately which one is closest to the ideal circle. Specifically (x+1,y-1) is chosen if (x+1)² + y² - r² > r² - (x+1)² - (y-1)²
Collecting like terms, simplifies to 2(x+1)² + y² + (y-1)² - 2r² > 0
Expanding gives 2x² + 2y² - 2r² + 4x - 2y + 3 > 0
That expression on the left is d. Initially, x=0 and y=r, so most of those terms are zero or cancel out and we have d = 3 - 2y = 3 - 2r
The other expressions you ask about indicate how d changes after you pick the next pixel.
http://www.wolframalpha.com/input/?i=simplify+(2(x%2B2)%C2%B2+%2B+(y-1)%C2%B2+%2B+(y-2)%C2%B2+-+2r%C2%B2)+-+(2(x%2B1)%C2%B2+%2B+y%C2%B2+%2B+(y-1)%C2%B2+-+2r%C2%B2)
http://www.wolframalpha.com/input/?i=simplify+(2(x%2B2)%C2%B2+%2B+y%C2%B2+%2B+(y-1)%C2%B2+-+2r%C2%B2)+-+(2(x%2B1)%C2%B2+%2B+y%C2%B2+%2B+(y-1)%C2%B2+-+2r%C2%B2)

Particle Dynamics

I am modelling a particle in 3D space.
{0} The particle starts at time t0 from a known position P0 with a velocity V0. The velocity is computed using its known previous position of P-1 at t-1.
{1} The particle is targeted to go to P1 at t1 with a known velocity of V1.
{..} The particle moves as fast as it can, without jerks (C1 continuous) bound by a set of constraints that clamp the acceleration along x, y and z independently. The maximum acceleration/deceleration along x, y and z are known and are Xa, Ya, and Za. The max rate of change of acceleration along x, y and z are defined by Xr, Yr, and Zr.
{n} After an unknown number of time steps it reaches Pn at some time (say tn) with a velocity of Vn.
{n+1} It moves to Pn+1 at tn+1.
The problem I have is to compute the minimum time for the transition from P0 to Pn and to generate the intermediate positions and velocity directions thereof. A secondary goal is to accelerate smoothly instead of applying acceleration that results in jerks.
Current Approach:
find the dimension {x, y or z} that will take the longest to align from start P0 to end Pn. This will be the critical dimension and will determine the total time. This is fairly straightforward and I can write something to this effect.
interpolate smoothly without jitters from P0 to Pn in all dimensions such that the velocity at Pn is as expected. I am not sure, how to approach this.
Any inputs/physics engines that already do this will be useful. It is a commercial project and I cannot put dependencies on large 3rd party libraries with restrictive licenses.
Note: Particle at P0 and Pn have little or no acceleration.
If I understand correctly, you have a point (P0, V0), with V0 = P0 - P-1, and a point (Pn, Vn), with Vn = Pn - Pn-1, and you want to find the fewest intermediate points by adjusting the acceleration at each time step.
Let's define the acceleration at ti: Ai = Vi - Vi-1, with abs(Ai) <= mA. Here, since the problem is axis-independant, abs is the member-wise absolute instead of the norm (or vector magnitude), and mA is the maximum acceleration vector, positive in each dimension. Let's also consider that Pn > P0 (member-wise).
From that, we get Vi = Vi-1 + Ai and so Pi = Pi-1 + Vi-1 + Ai.
If you need to go from some point to another in the fastest way possible, the obvious thing to do, whatever the initial velocity, is accelerate as much as possible until you reach the goal. However, since your problem is discrete and you have a terminal velocity Vn, using that method will probably lead too far and with a different terminal velocity.
However, you can do the same thing in reverse, starting from the end point. And if you start simultaneously from both points, you will make two paths crossing each other in each dimension (not necessarily crossing in 3D, but, in each dimension, the relative direction of both paths changes at some "crossing" point).
Let's take a one-dimensional example. (P0, V0) = (0, -2) and (Pn, Vn) = (35, -1), and mA = 1.
The first path, with Ai = mA, goes like this:
(0, -2) -> (-1, -1) -> (-1, 0) -> (0, 1) -> (2, 2) ->
(5, 3) -> (9, 4) -> (14, 5) -> (20, 6) -> (27, 7) -> ...
The second path, with Ai = -mA but in reverse, goes like this:
(35, -1) <- (36, 0) <- (36, 1) <- (35, 2) <- (33, 3) <-
(30, 4) <- (26, 5) <- (21, 6) <- (15, 7) <- ...
You can see the paths cross with the same velocity somewhere between 20 and 21. That gives you the fastest acceleration and deceleration parts of the path you need, but the two parts aren't connected. However, it's easy to connect them by finding the closest points of same velocity; let's call these points Pq and Pr. Here, Pq = (20, 6) and Pr = (21, 6). Since that velocity is calculated between current and previous points, take the point before Pq (Pq-1, or (14, 5) in the example) and the point Pr, and try connecting them.
If Pq >= Pr >= Pq - 2mA, then you can connect them directly by taking Pq-1 unchanged, and Pr with Vr = Pr - Pq-1.
Else, take Pq-2 and Pr-1 (where Vr-1 = Vr - mA, because it's in reverse) and try connecting those by adding intermediate points. Since these points have a velocity difference of mA, you can search only for intermediate points with the same velocity Vs such that Vq-2 <= Vs <= Vr-1.
If you still can't find a solution, then take Pq-3 and Pr-2 and repeat the process with more intermediate points.
In the example I took, Pq < Pr, so we have to try with Pq-2 = (9, 4) and Pr-1 = (26, 5). We can connect those with a sequence of 3 points, for example (9, 4) -> (13, 4) -> (17, 4) -> (21, 4) -> (26, 5).
In any case, this method will give you the smallest amount of intermediate points, meaning the fastest path between P0 and Pn.
If you then want to reduce jerk, then you can forget the points calculated previously and do an interpolation with the number of points you now know to be minimal.
After playing around with some ideas, I came up with another solution, more accurate and probably faster, if done correctly, than that of my previous answer. It is however quite complicated and requires quite a bit of maths, although not very complex maths. Moreover, this is a work in progress: I am still investigating some areas. Nonetheless, from what I've tried, it does already produce very good results.
The problem
Definitions and goal
Throughout this answer, p[n] refers to the position of the nth point, v[n] to its velocity, a[n] to its acceleration, and j[n] to its jerk (the derivative of acceleration). The velocity of the nth point depends only on its position and that of the previous point. Similarly for acceleration and jerk, but with the points velocity and acceleration, respectively.
We have a start point and an end point, respectively p[0] and p[n], both with associated velocities v[0] and v[n]. The goal is to place n-1 points in between, with an arbitrary n, such that, along the X, Y, and Z axes, the absolute values of acceleration and jerk at any of these points (and at p[n]) are below some limits, respectively aMaxX, aMaxY, and aMaxZ for acceleration, and jMaxX, jMaxY, and jMaxZ for jerk.
What we want to find is the values of p[i] for all i ∈ [1; n-1]. Because p[i] = p[i-1] + v[i], this is the same as finding v[i]. By the same reasoning, with v[i] = v[i-1] + a[i] and a[i] = a[i-1] + j[i], it is also the same as finding a[i] or j[i].
a[0] and a[n+1] are assumed to be zero.
Observations and simplifications
Because the problem's constraints are independant of the dimension, we can solve for each of the three dimensions separately, as long as the number of points obtained in each case is the same. Therefore, I am only going to solve the one-dimensional version of the problem, using aMax and jMax, irrespective of the axis.
*[WIP]* Determine the worst case to solve first, then solve the other ones, knowing the number of points.
The actual positions of the two given points are irrelevant, what matters is the relative distance between them, which we can define as P = p[n] - p[0]. Let's also define the ranges R = [1; n] and R* = [1; n+1].
Because of the discrete nature of the problem, we can obtain the following equations. Note that ∑{i∈R}(x[i]) is the sum of all x[i] for i∈R.
Ⓐ ∑{i∈R}(v[i]) = P
Ⓑ ∑{i∈R}(a[i]) = v[n] - v[0]
Ⓧ ∑{i∈R*}(j[i]) = 0
Ⓧ comes from the assumption that a[0] = a[n+1] = 0.
From Ⓐ and v[i] = v[i-1] + a[i], i∈R, we can deduce:
Ⓒ ∑{i∈R}((n+1-i)*a[i]) = P - n*v[0]
By the same logic, from Ⓑ, Ⓒ, and a[i] = a[i-1] + j[i], i∈R, we can deduce:
Ⓨ ∑{i∈R}((n+1-i)*j[i]) = v[n] - v[0]
Ⓩ ∑{i∈R}(T[n+1-i]*j[i]) = P - n*v[0]
Here, T[n] is the nth triangular number, defined by T[n] = n*(n+1)/2.
The equations Ⓧ, Ⓨ, and Ⓩ are the relevant ones for the next parts.
The approach
In order to minimize n, we can start with a small value of n (1, 2?) and find a solution. Then, if max{i∈R}(abs(a[i])) > aMax or max{i∈R}(abs(j[i])) > jMax, we can increment n and repeat the process.
*[WIP]* Find a lower bound for n to avoid unnecessary calculations from small values of n. Or estimate the correct value of n and pinpoint it by testing solutions.
Finding a solution requires finding the values of j[i] for all i∈R*. I have yet to find an optimal form for j[i], but defining j*[i], r[i] and s[i] such that
j[i] = j*[i] + r[i]v[0] + s[i]v[n]
works quite well.
*[WIP]* Find a better form for j[i]
By doing that, we transform our n-1 unknowns (j[i], i∈R, note that j[n+1] = -∑{i∈R}(j[i])) into 3(n-1) easier to find unknowns. Here are a few things we can deduce right now from Ⓧ, Ⓨ, and Ⓩ.
∑{i∈R*}(r[i]) = 0
∑{i∈R*}(s[i]) = 0
∑{i∈R}((n+1-i)*r[i]) = -1
∑{i∈R}((n+1-i)*s[i]) = 1
∑{i∈R}(T(n+1-i)*r[i]) = -n
∑{i∈R}(T(n+1-i)*s[i]) = 0
As a reminder, here are Ⓧ, Ⓨ, and Ⓩ.
Ⓧ ∑{i∈R*}(j[i]) + j[n+1] = 0
Ⓨ ∑{i∈R}((n+1-i)*j[i]) = v[n] - v[0]
Ⓩ ∑{i∈R}(T[n+1-i]*j[i]) = P - n*v[0]
The goal now is to find adequate special cases to help us determine these unknowns.
The special cases
v[0] = v[n] = 0
By playing with values of jerk, I observed that taking all of j[i], i∈R* as part of a parabola yields excellent results for minimizing both jerk and acceleration. Although it isn't the best possible fit, I haven't found better yet.
The intuition behind values of jerk coming from a parabola is that, if the values of position are to follow a polynomial, then its degree must be at least 5, and can be 5. This is easier to understand if you think about the values of velocity following a 4th degree polynomial. The constraints that v[0] and v[n] are set, a[0] = a[n+1] = 0, and that its integral over [0; n] must equal P, this polynomial must have a degree of at least 4. This holds for both continuous and dicrete cases. Finally, it seems that taking the smallest degree leads to a smoother jerk as well as making it easier to calculate.
Here is an example of a continuous case where the position is in purple, the velocity in blue, the acceleration in yellow and the jerk in red.
In case you want to play with this, here is how to define the position curve in terms of n, p[0], p[n], v[0], and v[n] (the other ones are simply derivatives).
a = (-3(v[n]+v[0]) + 6(p[n]-p[0])) / n^5
b = (n(7v[n]+8v[0]) - 15(p[n]-p[0])) / n^4
c = (-n(4v[n]+6v[0]) + 10(p[n]-p[0])) / n^3
p[x] = ax^5 + bx^4 + cx^3 + v[0]x + p[0]
If v[0] = v[n] = 0, then j[i] = j*[i], i∈R*. That means that the values j*[i] follow a quadratic polynomial. So we want to find α, β, and γ such that Ⓟ holds.
Ⓟ j*[i] = αi^2 + βi + γ, i∈R*
From Ⓧ, Ⓨ, and Ⓩ follow these equations.
α*∑{i∈R*}(i^2) + β*∑{i∈R*}(i) + c*∑{i∈R*}(1) = 0
α*∑{i∈R}((n+1-i)*i^2) + β*∑{i∈R}((n+1-i)*i) + c*∑{i∈R}(n+1-i) = 0
α*∑{i∈R}(T(n+1-i)*i^2) + β*∑{i∈R}(T(n+1-i)*i) + c*∑{i∈R}(T(n+1-i)) = P
Solving this system gives α, β, and γ, which can be used with Ⓟ to calculate j*[i], i∈R*. Note that j*[i] = j*[n+2-i], so only the upper half of the calculations need to be done.
v[0] = v[n] = 1/n
If v[0] = v[n] = 1/n, then j[i] = 0, i∈R*. This means that Ⓠ holds.
Ⓠ r[i] + s[i] = -n*j[i], i∈R*
v[0] = 0, j[i∈L] = J, j[h] = 0, j[i∈U] = -J
L and U are respectively the lower and upper halves of R*, and h is the value in between, if n+1 is odd. In other words:
if n is odd:
L = [1; (n+1)/2]
U = [(n+3)/2; n+1]
if n is even:
L = [1; n/2]
h = n/2+1
U = [n/2+2; n]
This special case corresponds to the maximum overall acceleration between p[0] and p[n] while minimizing abs(j[i]), i∈R*. Here, Ⓩ gives us the following equation.
∑{i∈R}(T[n+1-i]*j[i]) = P
∑{i∈L}(T[n+1-i])*j[1] + ∑{i∈U}(T[n+1-i])*j[n+1] = P
j[1] = P / [ ∑{i∈L}(T[n+1-i]) - ∑{i∈U}(T[n+1-i]) ]
This gives j[1], and so every j[i], i∈R*. We can then calculate v[n] using Ⓨ.
Putting the pieces together
Each special case gives us, for some values of v[0], v[n] and P, a relation of the form
αj*[i] + βr[i] + γs[i] = δ.
By treating three special cases (assuming they are not similar, meaning the do not give the same relation), we have a system of three equations that, once solved, gives the values of j*[i], r[i] and s[i] for all i∈R*.
As a result, we can calculate, for each value of n, values of j[i] depending on v[0], v[n] and P. They can be precalculated, which means testing them for any value of n can be very fast. Thereby, we can very quicklyt find a good estimate for the fewest amount of points needed in the trajectory, as well as a good approximation of the best trajectory possible, as long as we have precalculated values up to a sufficiently large value of n.
Answer
I suggest you to take following function :
X(n) = Xstart + Vxstart n+ (-6xstart+3Vxstart+6xend-3Vxend+c/2) n^2 + (8xstart+3Vxstart-8xend+5Vxend-c) n^3 + (-3Xstart-Vxstart+3xend-2Vxend+c/2) n^4
(for each coordinate X,Y,Z)
Here are some graphs of what this gives, I took c=3 for each samples:
For xstart=1, vstart=1, xend=3, vstart=-2, this gives :
X(n)= 1 + n + 16 n^2 -25 n^3 + 10 n^4
For xstart = -4, vstart =-4, xend = 4, vend = 0, this gives :
(-4 -4n +61n^2 -78n^3 + 29yn^4)
where c is a number from 0.1 to 5, it is up to you to decide, the higher c will be, the faster the function will go to that point (but it might have to turn back if c > 4). (See graphs below).
The polynomial comes from following calculation : where a=x0,b=v0,c=xe,d=v2,e=the magic constant
Explanation
Based on Nelfeal's answer, my idea was to try to solve the given problem with polynomials.
We can change the problem as to define a new Axis which goes in the P[last]-P[0], to have the problem reduced to dimension 1.
We can think about the problem in continuous mathematics instead of discrete mathematics (eg use functions instead of sequences), and go back to the discrete world which is just a special case of the continuous.
We can change the unit for time and space so that the time is 1 and the distance is 1, so that the problem is simplified to
Find a function 𝒇 which satisfies the following :
𝒇(0) = 0 and 𝒇(1) = 1
𝒇'(0) = 0 and 𝒇'(1) = 0
For x∈ℝ |𝒇''(x)| < c, where c is the max speed
We have
P(X) = ∑{i∈ℕ} Ai Xi
P'(X) = ∑{i∈ℕ} (i+1) Ai+1 Xi
P''(X) = ∑{i∈ℕ} (i+2)(i+1) Ai+2 Xi
We need :
P(0) = 0
P(1) = 1
P'(0) = 0
P'(1) = 0
-c <= P''(x) <= c
Thus it means :
a0 = 0 (from 1.)
a1 = 0 (from 3.)
P(1) = ∑{i∈ℕ} Ai = 1
P'(1) = ∑{i∈ℕ} (i+1) Ai = 0
P''(x) = ∑{i∈ℕ} (i+2)(i+1) Ai Xi in [-c,c]
The third equation is the most complex one, and can be simplified by saying that P(1) = c.
We will have c vary to see what changes.
After inverting a 3x3 matrix, we get following result :
P(x) = (c/2+6) x^2 - (c+8) x^3 + (c/2+3) x^4
For c=0.15, this gives :
For c=1, this gives:
For c=4, we see a bounce back :
If we take c from 0.1 to 6, we get following 3d graph :
Note that we have solved this for polynomals of degree 4, but you might do the same things to higher degrees (up to 10 if you want to) to get more possibilities in your functions.

LP Feasible Region

Hello guys I have a question to Linear Programming.
Draw the feasible region for the following linear program:
min
sx + ty
st.
2x + y <= 7
-6x + 5y >= -5
-x + 4y <= 18
y <= 4
(The problem should not be changed to a feasibilty problem, i.e., s=t=0 is not allowed.)
So what I did so far I calculated the extremepoints they are:
(0,4)
(1.5, 4)
(2.5, 2)
(0.83, 0)
(0, 0)
Give appropitate values for s and t that the linear program has
exactly one solution
I understand if I have one solution when I chose s = t = 1
multiple optimal solutions, where each one is bounded (i.e. none of its components has arbitrarily large magnitude).
?
multiple optimal solutions, unbounded
my guess was s = 1 and t = 0, these are the points (0, 4) and (0, 0)
and the whole line between them and there are infinite many points on
that line
no optimal solution
?
I think the feasible region should extend further to the bottom left beyond the x and y axes, since you do not have a constraint in the form x>0 or y>0.
1) see 4), probably better is s=t=-1
2) e.g., s=-2, t=-1, then each point between 2. and 3. has the same minimum value. So the solution is bounded by the points 2. and 3. Also s=1 ant t=0 as mentioned by you is a bounded solution.
3) e.g., s=1, t=-4, then each point on the function -x + 4y = 18 (for y <= 4) is part of the minimum
4) I am not sure about this one but probably s=t=1, then the minimum is reached when x=y = - \infinity thus there is no minimum.

Weights Optimization in matlab

I have to do optimization in supervised learning to get my weights.
I have to learn the values (w1,w2,w3,w4) such that whenever my vector A = [a1 a2 a3 a4] is 1 the sum w1*a1 + w2*a2 + w3*a3 + w4*a4 becomes greater than 0.5 and when its -1 ( labels ) then it becomes less than 0.5.
Can somebody tell me how I can approach this problem in Matlab ? One way that I know is to do it using evolutionary algorithms, taking a random value vector and then changing to pick the best n values.
Is there any other way that this can be approached ?
You can do it using linprog.
Let A be a matrix of size n by 4 consisting of all n training 4-vecotrs you have. You should also have a vector y with n elements (each either plus or minus 1), representing the label of each training 4-vecvtor.
Using A and y we can write a linear program (look at the doc for the names of the parameters I'm using). Now, you do not have an objective function, so you can simply set f to be f = zeros(4,1);.
The only thing you have is an inequality constraint (< a_i , w > - .5) * y_i >= 0 (where <.,.> is a dot-product between 4-vector a_i and weight vector w).
If my calculations are correct, this constraint can be written as
cmat = bsxfun( #times, A, y );
Overall you get
w = linprog( zeros(4,1), -cmat, .5*y );

Resources