Spring JavaMailSender - best way to use session - spring

What's the best way to reuse sessions in Spring JavaMailSender?
In a scenario where a consumer reads messages from a queue and trigger emails based on the messages, the emails will be send one after the other. If a new session is created everytime, isn't that an overhead? If JavaMailSender is a singleton bean, does it use the same session always? What's the best solution here?
I saw samples of JNDI sessions being set in to JavaMailSender bean configuration. We don't have support for JNDI, so that's not an option.

If you use the standard JavaMailSender for the MailSendingMessageHandler, so you just reuse the Session!
// Check transport connection first...
if (transport == null || !transport.isConnected()) {
...
try {
transport = connectTransport();
}
...
Transport transport = getTransport(getSession());
transport.connect(getHost(), getPort(), username, password);
return transport;
...
public synchronized Session getSession() {
if (this.session == null) {
this.session = Session.getInstance(this.javaMailProperties);
}
return this.session;
}
Not sure from where you heard that a new session is created for each message...

Related

Spring Batch Parallel processing with JMS

I implemented a spring batch project that reads from a weblogic Jms queue (Custom Item Reader not message driven), then pass the Jms message data to an item writer (chunk = 1) where i call some APIs and write in DataBase.
However, i am trying to implement parallel Jms processing, reading in parallel Jms messages and passing them to the writer without waiting for the previous processes to complete.
I’ve used a DefaultMessageListenerContainer in a previous project and it offers a parallel consuming of jms messages, but in this project i have to use the spring batch framework.
I tried using the easiest solution (multi-threaded step) but it
didn’t work , JmsException : "invalid blocking receive when another
receive is in progress" which means probably that my reader is
statefull.
I thought about using remote partitioning but then i have to read all
messages and put the data into step execution contexts before calling
the slave steps, which isn't really efficient if dealing with a large
number of messages.
I looked a little bit into remote chunking, i understand that it passes data via queue channels, but i can't seem to find the utility in reading from a Jms and putting messages in a local queue for slave workers.
How can I approach this?
My code:
#Bean
Step step1() {
return steps.get("step1").<Message, DetectionIncoherenceLiqJmsOut>chunk(1)
.reader(reader()).processor(processor()).writer(writer())
.listener(stepListener()).build();
}
#Bean
Job job(#Qualifier("step1") Step step1) {
return jobs.get("job").start(step1).build();
}
Jms Code :
#Override
public void initQueueConnection() throws NamingException, JMSException {
Hashtable<String, String> properties = new Hashtable<String, String>();
properties.put(Context.INITIAL_CONTEXT_FACTORY, env.getProperty(WebLogicConstant.JNDI_FACTORY));
properties.put(Context.PROVIDER_URL, env.getProperty(WebLogicConstant.JMS_WEBLOGIC_URL_RECEIVE));
InitialContext vInitialContext = new InitialContext(properties);
QueueConnectionFactory vQueueConnectionFactory = (QueueConnectionFactory) vInitialContext
.lookup(env.getProperty(WebLogicConstant.JMS_FACTORY_RECEIVE));
vQueueConnection = vQueueConnectionFactory.createQueueConnection();
vQueueConnection.start();
vQueueSession = vQueueConnection.createQueueSession(false, 0);
Queue vQueue = (Queue) vInitialContext.lookup(env.getProperty(WebLogicConstant.JMS_QUEUE_RECEIVE));
consumer = vQueueSession.createConsumer(vQueue, "JMSCorrelationID IS NOT NULL");
}
#Override
public Message receiveMessages() throws NamingException, JMSException {
return consumer.receive(20000);
}
Item reader :
#Override
public Message read() throws Exception {
return jmsServiceReceiver.receiveMessages();
}
Thanks ! i'll appreciate the help :)
There's a BatchMessageListenerContainer in the spring-batch-infrastructure-tests sub project.
https://github.com/spring-projects/spring-batch/blob/d8fc58338d3b059b67b5f777adc132d2564d7402/spring-batch-infrastructure-tests/src/main/java/org/springframework/batch/container/jms/BatchMessageListenerContainer.java
Message listener container adapted for intercepting the message reception with advice provided through configuration.
To enable batching of messages in a single transaction, use the TransactionInterceptor and the RepeatOperationsInterceptor in the advice chain (with or without a transaction manager set in the base class). Instead of receiving a single message and processing it, the container will then use a RepeatOperations to receive multiple messages in the same thread. Use with a RepeatOperations and a transaction interceptor. If the transaction interceptor uses XA then use an XA connection factory, or else the TransactionAwareConnectionFactoryProxy to synchronize the JMS session with the ongoing transaction (opening up the possibility of duplicate messages after a failure). In the latter case you will not need to provide a transaction manager in the base class - it only gets on the way and prevents the JMS session from synchronizing with the database transaction.
Perhaps you could adapt it for your use case.
I was able to do so with a multithreaded step :
// Jobs et Steps
#Bean
Step stepDetectionIncoherencesLiq(#Autowired StepBuilderFactory steps) {
int threadSize = Integer.parseInt(env.getProperty(PropertyConstant.THREAD_POOL_SIZE));
return steps.get("stepDetectionIncoherencesLiq").<Message, DetectionIncoherenceLiqJmsOut>chunk(1)
.reader(reader()).processor(processor()).writer(writer())
.readerIsTransactionalQueue()
.faultTolerant()
.taskExecutor(taskExecutor())
.throttleLimit(threadSize)
.listener(stepListener())
.build();
}
And a jmsItemReader with jmsTemplate instead of creating session and connections explicitly, it manages connections so i dont have the jms exception anymore:( JmsException : "invalid blocking receive when another receive is in progress" )
#Bean
public JmsItemReader<Message> reader() {
JmsItemReader<Message> itemReader = new JmsItemReader<>();
itemReader.setItemType(Message.class);
itemReader.setJmsTemplate(jmsTemplate());
return itemReader;
}

Spring Boot with CXF Client Race Condition/Connection Timeout

I have a CXF client configured in my Spring Boot app like so:
#Bean
public ConsumerSupportService consumerSupportService() {
JaxWsProxyFactoryBean jaxWsProxyFactoryBean = new JaxWsProxyFactoryBean();
jaxWsProxyFactoryBean.setServiceClass(ConsumerSupportService.class);
jaxWsProxyFactoryBean.setAddress("https://www.someservice.com/service?wsdl");
jaxWsProxyFactoryBean.setBindingId(SOAPBinding.SOAP12HTTP_BINDING);
WSAddressingFeature wsAddressingFeature = new WSAddressingFeature();
wsAddressingFeature.setAddressingRequired(true);
jaxWsProxyFactoryBean.getFeatures().add(wsAddressingFeature);
ConsumerSupportService service = (ConsumerSupportService) jaxWsProxyFactoryBean.create();
Client client = ClientProxy.getClient(service);
AddressingProperties addressingProperties = new AddressingProperties();
AttributedURIType to = new AttributedURIType();
to.setValue(applicationProperties.getWex().getServices().getConsumersupport().getTo());
addressingProperties.setTo(to);
AttributedURIType action = new AttributedURIType();
action.setValue("http://serviceaction/SearchConsumer");
addressingProperties.setAction(action);
client.getRequestContext().put("javax.xml.ws.addressing.context", addressingProperties);
setClientTimeout(client);
return service;
}
private void setClientTimeout(Client client) {
HTTPConduit conduit = (HTTPConduit) client.getConduit();
HTTPClientPolicy policy = new HTTPClientPolicy();
policy.setConnectionTimeout(applicationProperties.getWex().getServices().getClient().getConnectionTimeout());
policy.setReceiveTimeout(applicationProperties.getWex().getServices().getClient().getReceiveTimeout());
conduit.setClient(policy);
}
This same service bean is accessed by two different threads in the same application sequence. If I execute this particular sequence 10 times in a row, I will get a connection timeout from the service call at least 3 times. What I'm seeing is:
Caused by: java.io.IOException: Timed out waiting for response to operation {http://theservice.com}SearchConsumer.
at org.apache.cxf.endpoint.ClientImpl.waitResponse(ClientImpl.java:685) ~[cxf-core-3.2.0.jar:3.2.0]
at org.apache.cxf.endpoint.ClientImpl.processResult(ClientImpl.java:608) ~[cxf-core-3.2.0.jar:3.2.0]
If I change the sequence such that one of the threads does not call this service, then the error goes away. So, it seems like there's some sort of a race condition happening here. If I look at the logs in our proxy manager for this service, I can see that both of the service calls do return a response very quickly, but the second service call seems to get stuck somewhere in the code and never actually lets go of the connection until the timeout value is reached. I've been trying to track down the cause of this for quite a while, but have been unsuccessful.
I've read some mixed opinions as to whether or not CXF client proxies are thread-safe, but I was under the impression that they were. If this actually not the case, and I should be creating a new client proxy for each invocation, or use a pool of proxies?
Turns out that it is an issue with the proxy not being thread-safe. What I wound up doing was leveraging a solution kind of like one posted at the bottom of this post: Is this JAX-WS client call thread safe? - I created a pool for the proxies and I use that to access proxies from multiple threads in a thread-safe manner. This seems to work out pretty well.
public class JaxWSServiceProxyPool<T> extends GenericObjectPool<T> {
JaxWSServiceProxyPool(Supplier<T> factory, GenericObjectPoolConfig poolConfig) {
super(new BasePooledObjectFactory<T>() {
#Override
public T create() throws Exception {
return factory.get();
}
#Override
public PooledObject<T> wrap(T t) {
return new DefaultPooledObject<>(t);
}
}, poolConfig != null ? poolConfig : new GenericObjectPoolConfig());
}
}
I then created a simple "registry" class to keep references to various pools.
#Component
public class JaxWSServiceProxyPoolRegistry {
private static final Map<Class, JaxWSServiceProxyPool> registry = new HashMap<>();
public synchronized <T> void register(Class<T> serviceTypeClass, Supplier<T> factory, GenericObjectPoolConfig poolConfig) {
Assert.notNull(serviceTypeClass);
Assert.notNull(factory);
if (!registry.containsKey(serviceTypeClass)) {
registry.put(serviceTypeClass, new JaxWSServiceProxyPool<>(factory, poolConfig));
}
}
public <T> void register(Class<T> serviceTypeClass, Supplier<T> factory) {
register(serviceTypeClass, factory, null);
}
#SuppressWarnings("unchecked")
public <T> JaxWSServiceProxyPool<T> getServiceProxyPool(Class<T> serviceTypeClass) {
Assert.notNull(serviceTypeClass);
return registry.get(serviceTypeClass);
}
}
To use it, I did:
JaxWSServiceProxyPoolRegistry jaxWSServiceProxyPoolRegistry = new JaxWSServiceProxyPoolRegistry();
jaxWSServiceProxyPoolRegistry.register(ConsumerSupportService.class,
this::buildConsumerSupportServiceClient,
getConsumerSupportServicePoolConfig());
Where buildConsumerSupportServiceClient uses a JaxWsProxyFactoryBean to build up the client.
To retrieve an instance from the pool I inject my registry class and then do:
JaxWSServiceProxyPool<ConsumerSupportService> consumerSupportServiceJaxWSServiceProxyPool = jaxWSServiceProxyPoolRegistry.getServiceProxyPool(ConsumerSupportService.class);
And then borrow/return the object from/to the pool as necessary.
This seems to work well so far. I've executed some fairly heavy load tests against it and it's held up.

spring boot activemq consumer connection pool

Spring Boot ActiveMQ consumer connection pool is needed to configure? I have only one consumer in spring boot application (as a micro service), producers are in another application. I am little confused by the below: (extracted from http://activemq.apache.org/spring-support.html)
Note: while the PooledConnectionFactory does allow the creation of a collection of active consumers, it does not 'pool' consumers. Pooling makes sense for connections, sessions and producers, which can be seldom-used resources, are expensive to create and can remain idle a minimal cost. Consumers, on the other hand, are usually just created at startup and left going, handling incoming messages as they come. When a consumer is complete, it's preferred to shut down it down rather than leave it idle and return it to a pool for later reuse: this is because, even if the consumer is idle, ActiveMQ will keep delivering messages to the consumer's prefetch buffer, where they'll get held up until the consumer is active again.
At the same page, I can see this: You can use the activemq-pool org.apache.activemq.pool.PooledConnectionFactory for efficient pooling of the connections and sessions for your collection of consumers, or you can use the Spring JMS org.springframework.jms.connection.CachingConnectionFactory to achieve the same effect
I tried CachingConnectionFactory (which can take ActiveMQConnectionFactory) where it has only few setter to hold cacheConsumers(boolean), cacheProducers(boolean), nothing related to pool the connection. I know that 1 connection can give you multiple session, then per session you have multiple consumer/producer. But my question is for Consumer how do we pool as the above statement is saying leave it to default. So I did this by just one method:#Bean
public JmsListenerContainerFactory myFactory(ConnectionFactory connectionFactory, DefaultJmsListenerContainerFactoryConfigurer configurer) {
DefaultJmsListenerContainerFactory factory = new DefaultJmsListenerContainerFactory();
// This provides all boot's default to this factory, including the message converter
factory.setConcurrency("3-10");
configurer.configure(factory, connectionFactory);
// You could still override some of Boot's default if necessary.
return factory;
}</em><br>
Dynamic scaling this link also suggests this, but I could not find concrete solution. Did someone came across this kind of situation, please give your suggestion. Thanks for reading this post and any help greatly appreciated.
Additional details for Production: This consumer will receive ~500 message per sec. Using Spring Boot version 1.5.8.RELEASE, ActiveMQ 5.5 is my JMS
There is an package called org.apache.activemq.jms.pool in activemq which provides PooledConsumer. Below is the code for that. Please check and see if it works for you. I know its not the spring way but you can easily manage to customise your poll method.
PooledConnectionFactory pooledConFactory = null;
PooledConnection pooledConnection = null;
PooledSession pooledSession = null;
PooledMessageConsumer pooledConsumer = null;
Message message = null;
try
{
// Get the connection object from PooledConnectionFactory
pooledConFactory = ( PooledConnectionFactory ) this.jmsTemplateMap.getConnectionFactory();
pooledConnection = ( PooledConnection ) pooledConFactory.createConnection();
pooledConnection.start();
// Create the PooledSession from pooledConnection object
pooledSession = ( PooledSession ) pooledConnection.createSession( false, 1 );
// Create the PooledMessageConsumer from session with given ack mode and destination
pooledConsumer = ( PooledMessageConsumer ) pooledSession.
createConsumer( this.jmsTemplateMap.getDefaultDestination(), <messageFilter if any>);
while ( true )
{
message = pooledConsumer.receiveNoWait();
if ( message != null)
break;
}
}
catch ( JMSException ex )
{
LOGGER.error("JMS Exception occured, closing the session", ex );
}
return message;

How to set a Message Handler programmatically in Spring Cloud AWS SQS?

maybe someone has an idea to my following problem:
I am currently on a project, where i want to use the AWS SQS with Spring Cloud integration. For the receiver part i want to provide a API, where a user can register a "message handler" on a queue, which is an interface and will contain the user's business logic, e.g.
MyAwsSqsReceiver receiver = new MyAwsSqsReceiver();
receiver.register("a-queue-name", new MessageHandler(){
#Override
public void handle(String message){
//... business logic for the received message
}
});
I found examples, e.g.
https://codemason.me/2016/03/12/amazon-aws-sqs-with-spring-cloud/
and read the docu
http://cloud.spring.io/spring-cloud-aws/spring-cloud-aws.html#_sqs_support
But the only thing i found there to "connect" a functionality for processing a incoming message is a annotation on a method, e.g. #SqsListener or #MessageMapping.
These annotations are fixed to a certain queue-name, though. So now i am at a loss, how to dynamically "connect" my provided "MessageHandler" (from my API) to the incoming message for the specified queuename.
In the Config the example there is a SimpleMessageListenerContainer, which gets a QueueMessageHandler set, but this QueueMessageHandler does not seem
to be the right place to set my handler or to override its methods and provide my own subclass of QueueMessageHandler.
I already did something like this with the Spring Amqp integration and RabbitMq and thought, that it would be also similar here with AWS SQS.
Does anyone have an idea, how to accomplish this?
thx + bye,
Ximon
EDIT:
I found, that Spring JMS could actually do that, e.g. www.javacodegeeks.com/2016/02/aws-sqs-spring-jms-integration.html. Does anybody know, what consequences using JMS protocol has here, good or bad?
I am facing the same issue.
I am trying to go in an unusual way where I set up an Aws client bean at build time and then instead of using sqslistener annotation to consume from the specific queue I use the scheduled annotation which I can programmatically pool (each 10 secs in my case) from which queue I want to consume.
I did the example that iterates over queues defined in properties and then consumes from each one.
Client Bean:
#Bean
#Primary
public AmazonSQSAsync awsSqsClient() {
return AmazonSQSAsyncClientBuilder
.standard()
.withRegion(Regions.EU_WEST_1.getName())
.build();
}
Consumer:
// injected in the constructor
private final AmazonSQSAsync awsSqsClient;
#Scheduled(fixedDelay = 10000)
public void pool() {
properties.getSqsQueues()
.forEach(queue -> {
val receiveMessageRequest = new ReceiveMessageRequest(queue)
.withWaitTimeSeconds(10)
.withMaxNumberOfMessages(10);
// reading the messages
val result = awsSqsClient.receiveMessage(receiveMessageRequest);
val sqsMessages = result.getMessages();
log.info("Received Message on queue {}: message = {}", queue, sqsMessages.toString());
// deleting the messages
sqsMessages.forEach(message -> {
val deleteMessageRequest = new DeleteMessageRequest(queue, message.getReceiptHandle());
awsSqsClient.deleteMessage(deleteMessageRequest);
});
});
}
Just to clarify, in my case, I need multiple queues, one for each tenant, with the queue URL for each one passed in a property file. Of course, in your case, you could get the queue names from another source, maybe a ThreadLocal which has the queues you have created in runtime.
If you wish, you can also try the JMS approach where you create message consumers and add a listener to each one you wish (See the doc Aws Jms documentation).
When we do Spring and SQS we use the spring-cloud-starter-aws-messaging.
Then just create a Listener class
#Component
public class MyListener {
#SQSListener(value="myqueue")
public void listen(MyMessageType message) {
//process the message
}
}

Which TransactionManger is to use to rollback an event send to an channel

If I want to use Spring Intergration and if I want to do a rollback of a message, that I have sent before, which kind of TransactionManger is to use. I did not want to use jms active-mq or such things, only sending an event to a queue:
class DatingServiceImpl {
#Autowired
final RendezvousChannel rendezvousChannel
#Autowired
final GirlsRepository girlsRepository
#Transactional()
public final date(final String name ) {
rendezvousChannel.send(String.format("Hello %s", name ), 100);
if( girlsRepository.forName(name).hotScore < 8 ) {
throw new IllegalStateException("No I put it over");
}
}
}
You should use a JmsTransactionManager provided by:
org.springframework.jms.connection.JmsTransactionManager.
The API can be seen here.
...I did not want to use jms active-mq or such things...
There is no such transaction manager - the framework itself is not transactional; to get transactions, the channel has to be backed by some transactional resource such as JMS or JDBC.

Resources