Architecture; coupling search system with nosql database - elasticsearch

Choosing a nosql DB like Cassandra, Couchbase, Mango etc is endless debate. All of their nice perks, and we could debate about which one is better, but at the end their main use case stay to set and get data.
Even if they all have indexing, views, or search features, the requests are not made to be intensively made on one cluster.
Their is ways to bypass some of these problems, more or less cleanly, but fundamentally this not for what this database have been made.
In other hand, we have system like Elastic Search, which are really bad at doing get/set, but great at indexing your data.
So a naive solution would be, I am going to save my data into a NoSql db, and indexing it into ES (or similar system).
Now, supporting several system at the same time definitely has its issues, maintenance problem, increase of point of failurs, complexity of the code ...
So my question is, people who tried such a solution in production, would you advise to go that way or it is mistake in your opinion?

Related

What algorithms could i implement to improve the general design and performance of a database?

I'm working on a project for university. Do you guys know what kind of algorithms i could implement that would help with the proper design and general performance of a database? Until now i came up with an algorithm that can help the user pick candidate keys and also an algorithm for normalization up to 3NF. Do you have any other ideas or suggestions? Thanks.
This is like asking how you can figure out how to make a car be more efficient. It's such a broad question that it's essentially unanswerable. There are so many moving parts to a car, and each one has its own problems. You really need to understand what each component is doing. In the case of databases, you need to understand the data before you try and fix it. And if you want a good answer, you have to ask the right questions.
A good question should include context on what you are working with, and what you are trying to do. And when it comes to data manipulation, the details are extremely important. How is your data represented? What kind of infrastructure are you working with? What purpose does the data serve, and what processes use this data? If you are working with floating point numbers, are your processes tolerant of small rounding errors? Would your organization even let you make changes to how the data is stored?
In general, adding algorithms to improve data performance is probably largely unnecessary. Databases are designed out of the box to be simple and efficient. If there were a known method to increase efficiency in general without any drawbacks, there's no reason why the designers of the system wouldn't have implemented it already.
I am just putting an answer because I have no way to tell this in the comment section. You need to understand a basic principle in database design and data model construction. What your database is for ? That is the main question, and believe it or not, sometimes people with experience make the same mistake.
As you were saying, 3NF could be good for OLTP systems, but it would be horrendous for Data Warehouse or Reporting Databases where the queries are huge and they work on big batch operations. In those systems denormalization offers always better results.
Once you know what you're database is for, then you can start to apply some "Best Practices" , but even here there is a lot of room for interpretation, and even worse, same principles could be good in one place but very bad in another. I am just going to provide you an example of my real experience
8 years ago I started a project and we have to design a database for a financial application. After some analysis, we decided to use a start model, or dimension-fact model. We decided to create indexes ( including bitmap ) for some tables, even though we were rebuild them during batch to avoid performance degradation.
Funny thing is that after some months, I realised that the indexes were useless, as the users were running queries that were accessing the whole data, mostly analytics and aggregation. Consequence: I drop all indexes.
Is it a good thing to do ? No, it is not, but in my scenario it was the best thing and the performance increased a lot, both in batch and also in user experience.
Summary, like an old friend of mine that that was working in Oracle Support used to tell me: "Performance is an art my friend, not a science"
There are too many database algorithms to list, but below is a structured way of thinking about classes of algorithms that affect database performance.
Algorithm analysis is a helpful way of categorizing and thinking about many database performance problems. While most performance problems are solved with best practices and trial-and-error, we'll never truly understand why one solution is better than another without understanding the algorithms behind them. Below is a list of functions that describe the algorithmic complexity of different database operations, ordered from fastest to slowest.
O(1/N) – Batching to reduce overhead for bulk collect, sequences, fetching rows
O(1) - Hashing for hash partitioning, hash clusters, hash joins
O(LOG(N)) – Index access for b-trees
1/((1-P)+P/N) – Amdahl's Law and its implications for parallelizing large data warehouse workloads
O(N) - Full table scans, hash joins (in theory)
O(N*LOG(N)) – Full table scan versus repeated index reads, sorting, global versus local indexes, gathering statistics (distinct approximations and partition birthday problems)
O(N^2) – Cross joins, nested loops, parsing
O(N!) – Join order
O(∞) – The optimizer (satisficing and avoiding the halting problem)
One suggestion - based on the way you phrased your questions and comments, you're thinking of a database as merely a place to store data. But the most interesting parts of a database happen when you think of them as joining machines. There's not much to optimize about data sitting around, the real work happens when data is combined.
The above list is based on Chapter 16 of my book, Pro Oracle SQL Development. You can read an early version of the entire chapter for free here. While the chapter mostly stands alone, it requires an advanced understanding of Oracle. But each of the topics could be the basis for a lifetime of academic study, so you only need to pick one.

How couchdb 1.6 inherently take advantage of Map reduce when it is Single Server Database

I am new to couch db, while going through documentation of Couch DB1.6, i came to know that it is single server DB, so I was wondering how map reduce inherently take advantage of it.
If i need to scale this DB then do I need to put more RAID hardware, of will it work on commodity hardware like HDFS?
I came to know that couch db 2.0 planning to bring clustering feature, but could not get proper documentation on this.
Can you please help me understanding how exactly internally file get stored and accessed.
Really appreciate your help.
I think your question is something like this:
"MapReduce is … a parallel, distributed algorithm on a cluster." [shortened from MapReduce article on Wikipedia]
But CouchDB 1.x is not a clustered database.
So what does CouchDB mean by using the term "map reduce"?
This is a reasonable question.
The historical use of "MapReduce" as described by Google in this paper using that stylized term, and implemented in Hadoop also using that same styling implies parallel processing over a dataset that may be too large for a single machine to handle.
But that's not how CouchDB 1.x works. View index "map" and "reduce" processing happens not just on single machine, but even on a single thread! As dch (a longtime contributor to the core CouchDB project) explains in his answer to https://stackoverflow.com/a/12725497/179583:
The issue is that eventually, something has to operate in serial to build the B~tree in such a way that range queries across the indexed view are efficient. … It does seem totally wacko the first time you realise that the highly parallelisable map-reduce algorithm is being operated sequentially, wat!
So: what benefit does map/reduce bring to single-server CouchDB? Why were CouchDB 1.x view indexes built around it?
The benefit is that the two functions that a developer can provide for each index "map", and optionally "reduce", form very simple building blocks that are easy to reason about, at least after your indexes are designed.
What I mean is this:
With e.g. the SQL query language, you focus on what data you need — not on how much work it takes to find it. So you might have unexpected performance problems, that may or may not be solved by figuring out the right columns to add indexes on, etc.
With CouchDB, the so-called NoSQL approach is taken to an extreme. You have to think explicitly about how you each document or set of documents "should be" found. You say, I want to be able to find all the "employee" documents whose "supervisor" field matches a certain identifier. So now you have to write a map function:
function (doc) {
if (doc.isEmployeeRecord) emit(doc.supervisor.identifier);
}
And then you have to query it like:
GET http://couchdb.local:5984/personnel/_design/my_indexes/_view/by_supervisor?key=SOME_UUID
In SQL you might simply say something like:
SELECT * FROM personnel WHERE supervisor == ?
So what's the advantage to the CouchDB way? Well, in the SQL case this query could be slow if you don't have an index on the supervisor column. In the CouchDB case, you can't really make an unoptimized query by accident — you always have to figure out a custom view first!
(The "reduce" function that you provide to a CouchDB view is usually used for aggregate functions purposes, like counting or averaging across multiple documents.)
If you think this is a dubious advantage, you are not alone. Personally I found designing my own indexes via a custom "map function" and sometimes a "reduce function" to be an interesting challenge, and it did pay off in knowing the scaling costs at least of queries (not so much for replications…).
So don't think of CouchDB view so much as being "MapReduce" (in the stylized sense) but just as providing efficiently-accessible storage for the results of running [].map(…).reduce(…) across a set of data. Because the "map" function is applied to only a document at once, the total set of data can be bigger than fits in memory at once. Because the "reduce" function is limited in its size, it further encourages efficient processing of a large set of data into an efficiently-accessed index.
If you want to learn a bit more about how the indexes generated in CouchDB are stored, you might find these articles interesting:
The Power of B-trees
CouchDB's File Format is brilliantly simple and speed-efficient (at the cost of disk space).
Technical Details, View Indexes
You may have noticed, and I am sorry, that I do not actually have a clear/solid answer of what the actual advantage and reasons were! I did not design or implement CouchDB, was only an avid user for many years.
Maybe the bigger advantage is that, in systems like Couchbase and CouchDB 2.x, the "parallel friendliness" of the map/reduce idea may come into play more. So then if you have designed an app to work in CouchDB 1.x it may then scale in the newer version without further intervention on your part.

Exasol vs HBase

I'm quite new to BigData architecture so please don't be to harsh on me.
I am trying to figure out the best alternative to build a BI Architecture able to deal with huge amounts of data. As I see it, the solution has to be clustered/horizontally scalable to cope with system growing. I would like to be able to interact with the system using SQL, so HBase + Hive (or even Pig, not for sql but not to need to manually write MR tasks) could be a solution. What would be the benefits/disadvantages of such an architecture opposed to, for instance, Exasolution and their In-Memory - MPP - Columnar solution.
Are there other alternatives which might have some extra-benefits? What about maintenance and configuration? Any Microsoft solution (I may find customer specific needs regarding this)
Sorry for posting such an open question, but I would like to see some discussion so that I can learn from you as much as possible.
Though being an EXASOL guy, I will not start to try to convince you that EXASOL is the one and only good solution out there. It heavily depends on the use case you are trying to implement, and the requirements you have to fulfill.
Hadoop is a very flexible, scalable system and used very often for storing and processing huge volumes of data.
EXASOL in contrast is a specialized RDBMS for complex analytic query processing.
I think that these two options don't really directly compete but complement each other. In many cases companies need a scalable data lake to store and preprocess there data, or to query it in rather simply ways. Once you want to enter the real-time business with complex analytics, where dozens, hundreds or even thousands of analysts are running lots of queries, then an in-memory RDBMS is a great choice.
King, the producer of Candy Crush, combines these two worlds to a powerful data management eco system. They store petabytes of data within Hadoop and use EXASOL on top as an in-memory layer for hundreds of terabytes of data. You can read more about that exciting use case here: http://bit.ly/1TR8APY
Another important difference of these two worlds is the complexity. While EXASOL is tuning-free because it is a specialized system (similar to an appliance) for a certain use case running SQL queries or R/Python/Java in-database-analytics, the Hadoop stack is much more complex. You'll need a certain level of know how to setup, maintain and tune this system. This doesn't need to be a reason for any of the two option. As mentioned, it heavily depends on what you want.
From a price perspective, Hadoop is free and so it should be much cheaper than an in-memory db such as EXASOL, right? Wait a minute, it's not that easy. Again, you have to consider the whole picture. How much data you really want to store, how much of that needs to be queried for analysis, how much hardware would you need to buy, how many people do you have to be hired and trained for the operation or the analytics deployed on the system.
Summary
To summarize my thoughts, the world is too complicated to directly compare these two technologies. Depending on the use case and your personal requirements, either one or the other could be the better option. And in my opinion, the trend in the market is combining such systems to a data mgmt eco systems where you get the best out of the two worlds... Actually three worlds, because the world of operational data processing of NoSQL solutions should also be mentioned here.
I hope that helped a bit. If you need any further details especially about EXASOL, don't hesitate to contact me or connect with me on LinkedIn: de.linkedin.com/in/exagolo

Using Redis as cache in existing database

We have a fairly large database, a few hundred tables across 2 schemas and the larger tables have upwards of 80M records. As a result over time the application has slowed. In particular around materialized views. We wondered about using Redis as a cache to help speed this application up on a whole. What we're not overly sure on would be the level of work needed to properly utilise Redis in this case or if we could use it in part across the biggest tables? It's an Oracle 11g and Java application. As someone who has no experience with Redis what would the steps involved be for general adoption into an existing DB and the learning curve. It's a small team, so we don't want to undertake something that is too much work to properly implement.
Your question, IMO, borders on the verge of being too general to provide a meaningful answer :) I can, however, address one aspect of it, specifically about Redis' learning curve. Borrowing Karl Seguin's words from his (still very relevant) "Redis: Zero to Master in 30 minutes" posts:
learning Redis is the most efficient way a programmer can spend 30 minutes.
So take 30 minutes to read through the posts, grab a book about Redis or simply go to http://try.redis.io and type tutorial. Once you understand what Redis is and how to use it, you can start thinking about offloading some of the traffic from your Oracle to it.

Pitfalls in prototype database design (for performance viability testing)

Following on from my previous question, I'm looking to run some performance tests on various potential schema representations of an object model. However, the catch is that while the model is conceptually complete, it's not actually finalised yet - and so the exact number of tables, and numbers/types of attributes in each table aren't definite.
From my (possibly naive) perspective it seems like it should be possible to put together a representative prototype model for each approach, and test the performance of each of these to determine which is the fastest approach for each case.
And that's where the question comes in. I'm aware that the performance characteristics of databases can be very non-intuitive, such that a small (even "trivial") change can lead to an order of magnitude difference. Thus I'm wondering what common pitfalls there might be when setting up a dummy table structure and populating it with dummy data. Since the environment is likely to make a massive difference here, the target is Oracle 10.2.0.3.0 running on RHEL 3.
(In particular, I'm looking for examples such as "make sure that one of your tables has a much more selective index than the other"; "make sure you have more than x rows/columns because below this you won't hit page faults and the performance will be different"; "ensure you test with the DATETIME datatype if you're going to use it because it will change the query plan greatly", and so on. I tried Google, expecting there would be lots of pages/blog posts on best practices in this area, but couldn't find the trees for the wood (lots of pages about tuning performance of an existing DB instead).)
As a note, I'm willing to accept an answer along the lines of "it's not feasible to perform a test like this with any degree of confidence in the transitivity of the result", if that is indeed the case.
There are a few things that you can do to position yourself to meet performance objectives. I think they happen in this order:
be aware of architectures, best practices and patterns
be aware of how the database works
spot-test performance to get additional precision or determine impact of wacky design areas
More on each:
Architectures, best practices and patterns: one of the most common reasons for reporting databases to fail to perform is that those who build them are completely unfamiliar with the reporting domain. They may be experts on the transactional database domain - but the techniques from that domain do not translate to the warehouse/reporting domain. So, you need to know your domain well - and if you do you'll be able to quickly identify an appropriate approach that will work almost always - and that you can tweak from there.
How the database works: you need to understand in general what options the optimizer/planner has for your queries. What's the impact to different statements of adding indexes? What's the impact of indexing a 256 byte varchar? Will reporting queries even use your indexes? etc
Now that you've got the right approach, and generally understand how 90% of your model will perform - you're often done forecasting performance with most small to medium size databases. If you've got a huge one, there's a ton at stake, you've got to get more precise (might need to order more hardware), or have a few wacky spots in the design - then focus your tests on just this. Generate reasonable test data - and (important) stats that you'd see in production. And look to see what the database will do with that data. Unless you've got real data and real prod-sized servers you'll still have to extrapolate - but you should at least be able to get reasonably close.
Running performance tests against various putative implementation of a conceptual model is not naive so much as heroically forward thinking. Alas I suspect it will be a waste of your time.
Let's take one example: data. Presumably you are intending to generate random data to populate your tables. That might give you some feeling for how well a query might perform with large volumes. But often performance problems are a product of skew in the data; a random set of data will give you an averaged distribution of values.
Another example: code. Most performance problems are due to badly written SQL, especially inappropriate joins. You might be able to apply an index to tune an individual for SELECT * FROM my_table WHERE blah but that isn't going to help you forestall badly written queries.
The truism about premature optimization applies to databases as well as algorithms. The most important thing is to get the data model complete and correct. If you manage that you are already ahead of the game.
edit
Having read the question which you linked to I more clearly understand where you are coming from. I have a little experience of this Hibernate mapping problem from the database designer perspective. Taking the example you give at the end of the page ...
Animal > Vertebrate > Mammal > Carnivore > Canine > Dog type hierarchy,
... the key thing is to instantiate objects as far down the chain as possible. Instantiating a column of Animals will perform much slower than instantiating separate collections of Dogs, Cats, etc. (presuming you have tables for all or some of those sub-types).
This is more of an application design issue than a database one. What will make a difference is whether you only build tables at the concrete level (CATS, DOGS) or whether you replicate the hierarchy in tables (ANIMALS, VERTEBRATES, etc). Unfortunately there are no simple answers here. For instance, you have to consider not just the performance of data retrieval but also how Hibernate will handle inserts and updates: a design which performs well for queries might be a real nightmare when it comes to persisting data. Also relational integrity has an impact: if you have some entity which applies to all Mammals, it is comforting to be able to enforce a foreign key against a MAMMALS table.
Performance problems with databases do not scale linearly with data volume. A database with a million rows in it might show one hotspot, while a similar database with a billion rows in it might reveal an entirely different hotspot. Beware of tests conducted with sample data.
You need good sound database design practices in order to keep your design simple and sound. Worry about whether your database meets the data requirements, and whether your model is relevant, complete, correct and relational (provided you're building a relational database) before you even start worrying about speed.
Then, once you've got something that's simple, sound, and correct, start worrying about speed. You'd be amazed at how much you can speed things up by just tweaking the physical features of your database, without changing any app code. To do this, you need to learn a lot about your particular DBMS.
They never said database development would be easy. They just said it would be this much fun!

Resources