Swift fatal error: Can't form Range with end < start - for-loop

LeetCode medium 120. Triangle (Dynamic Programming)
Question:
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
//The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
//Note:
//Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
I always get
fatal error: Can't form Range with end < start
on "for i in (row-1)...0".
Thank you so much! Appreciate your time!
class Solution
{
func minimumTotal(triangle: [[Int]]) -> Int
{
if triangle.count == 0
{
return 0
}
if triangle.count == 1
{
return triangle[0][0]
}
var arr = [Int](count: triangle.last!.count, repeatedValue: 0)
let row = triangle.count
for i in (row-1)...0
{
let col = triangle[i].count
for j in 0...col-1
{
if i == row-1
{
arr[i] = triangle[i][j]
continue
}
arr[j] = min(arr[j], arr[j+1]) + triangle[i][j]
}
}
return arr[0]
}
}
var test1 = Solution()
//var input = [[10]]
//var input = [[1],[2,3]]
var input = [[-1],[2,3],[1,-1,-3]]
var result = test1.minimumTotal(input)
print(result)

for in (0...row-1).reverse()
Swift can't read row-1...0

It's a bad idea to create a range where the start is higher than the end: your code will compile, but it will crash at runtime, so use stride instead of ranage
for i in (row-1).stride(to: 0, by: 1) { }

Related

how to solve the overlapping sub problems in Dynamic programming

Problem statement =>
You are given queries. Each query consists of a single number N. You can perform any of the 2 operations on in each move:
1: If we take 2 integers a and b where N=a*b (a>1,b>1), then we can change N=max(a,b).
2: Decrease the value of N by 1.
Determine the minimum number of moves required to reduce the value of N to 0.
here is the link for better understanding.
https://www.hackerrank.com/challenges/down-to-zero-ii/problem
I know here are some overlapping sub-problems and we can use DP to ignore the computation of same sub-problems again and again.
Now, my question is how in this problem, same sub-problems have same solutions. Because we have to solve this from top to bottom and sub-problem have same solution if we solved them from bottom to top.
For example
N=4
1 possibility = 4->3->2->1->0
2 possibility = 4->2->1->0
Now in above two possibility, 2 is repeating and I can use DP, but how I store their values. I mean, in 1 possibility solution of 2 is different from 2nd possibility because in first one I've to traverse 4->3->2 here solution of 2 is 2 and in 2nd possibility we traverse 4->2 and solution of 2 here is 1 now these 2 same sub-problems have different values because of the solving from top to bottom. Now I'm totally confused here. Please someone help me out in this.
The solution for a number N should store the minimun steps required to make it 0
this is how the sol should look
int dp[1000001];
memset(dp,-1,sizeof(dp);
int sol(N){
if(N == 2){
return 2;
}
if(dp[n]!=-1){
return dp[n]'
}
int sol = 1+sol(min(move1,move2));
dp[n] = sol ;
return sol;
}
EDIT 2:
I think this is a solution for your problem. The solution is in JavaScript:
// ****************************************************************************
function findPaths(tree, depth = 0, path = [], paths = [-1, []]) {
const [node, children] = tree
path.push(node)
if (!children) {
// console.log(path, depth)
if (paths[0] === -1 || paths[0] > depth) {
paths[0] = depth
paths[1] = [paths.length]
} else if (paths[0] === depth) {
paths[1].push(paths.length)
}
paths.push([...path])
path.pop()
return
}
children.forEach((el) => {
findPaths(el, depth + 1, path, paths)
})
path.pop()
return paths
}
// ****************************************************************************
function downToZero(n) {
const tree = [n]
const divisors = []
for (let i = 2; i <= Math.sqrt(n); i++) {
if (n % i == 0) {
divisors.push(Math.max(i, n / i))
}
}
if (divisors.length) {
tree.push(divisors.map(downToZero))
} else if (n > 0) {
tree.push([downToZero(n - 1)])
}
return tree
}
// ****************************************************************************
function printPaths(paths) {
console.log('Total number of solutions:', paths.length - 2)
console.log('Total number of solutions with minimal moves:', paths[1].length)
console.log('Minimal moves:', paths[0])
paths[1].forEach((pathIndex) => {
let printPath = ''
paths[pathIndex].forEach((element) => {
printPath = `${printPath}${printPath === '' ? '' : '->'}${element}`
})
console.log(printPath)
})
console.log('')
}
// ****************************************************************************
// Test
printPaths(findPaths(downToZero(812849)))
printPaths(findPaths(downToZero(100)))
printPaths(findPaths(downToZero(19)))
printPaths(findPaths(downToZero(4)))

Trouble understanding a for loop in Swift 3

I am studying some code to try to learn Swift 3. I came across this for loop and can't decipher what exactly it is doing. If you understand it, could you try to break it down with an explanation?
var size = 0
var candidate = (value: 0, index: 0)
for i in 0..<count {
if size == 0 {
candidate = (A[i], i)
size += 1
} else {
if candidate.value != A[i] {
size -= 1
} else {
size += 1
}
}
}
// set variable "size" to the value of zero
var size = 0
// set variable "candidate" to be a NAMED TUPLE with initial values (0,0)
var candidate = (value: 0, index: 0)
// start a FOR loop from 0 to "count" which by the way has not been defined yet, so that might be a problem.
for i in 0..<count {
// if size is zero, then we set candidate equal to ARRAY "A" of index "i" and increment 'size'... and by the way, this Array "A" has not been defined anywhere, so that might be a problem.
if size == 0 {
candidate = (A[i], i)
size += 1
// otherwise, we do one of two things: 1) if the 'candidate' tuple's (value:) parameter is NOT equal to the value of Array 'A''s index of 'i', then we decrement 'size' ... by the way this Array 'A' has not yet been defined so that might be a problem... or 2) increment the value of 'size.'
} else {
if candidate.value != A[i] {
size -= 1
} else {
size += 1
}
}
}
So it looks like there should be an array somewhere called 'A'
and 'count' should really be A.count
Basically the loop is (seems to be trying to) going through the Array 'A' and comparing adjacent values and adjusting the 'size' variable as a result of each of these comparisons.

Maximum number achievable by converting two adjacent x to one (x+1)

Given a sequence of N integers where 1 <= N <= 500 and the numbers are between 1 and 50. In a step any two adjacent equal numbers x x can be replaced with a single x + 1. What is the maximum number achievable by such steps.
For example if given 2 3 1 1 2 2 then the maximum possible is 4:
2 3 1 1 2 2 ---> 2 3 2 2 2 ---> 2 3 3 2 ---> 2 4 2.
It is evident that I should try to do better than the maximum number available in the sequence. But I can't figure out a good algorithm.
Each substring of the input can make at most one single number (invariant: the log base two of the sum of two to the power of each entry). For every x, we can find the set of substrings that can make x. For each x, this is (1) every occurrence of x (2) the union of two contiguous substrings that can make x - 1. The resulting algorithm is O(N^2)-time.
An algorithm could work like this:
Convert the input to an array where every element has a frequency attribute, collapsing repeated consecutive values in the input into one single node. For example, this input:
1 2 2 4 3 3 3 3
Would be represented like this:
{val: 1, freq: 1} {val: 2, freq: 2} {val: 4, freq: 1} {val: 3, freq: 4}
Then find local minima nodes, like the node (3 3 3 3) in 1 (2 2) 4 (3 3 3 3) 4, i.e. nodes whose neighbours both have higher values. For those local minima that have an even frequency, "lift" those by applying the step. Repeat this until no such local minima (with even frequency) exist any more.
Start of the recursive part of the algorithm:
At both ends of the array, work inwards to "lift" values as long as the more inner neighbour has a higher value. With this rule, the following:
1 2 2 3 5 4 3 3 3 1 1
will completely resolve. First from the left side inward:
1 4 5 4 3 3 3 1 1
Then from the right side:
1 4 6 3 2
Note that when there is an odd frequency (like for the 3s above), there will be a "remainder" that cannot be incremented. The remainder should in this rule always be left on the outward side, so to maximise the potential towards the inner part of the array.
At this point the remaining local minima have odd frequencies. Applying the step to such a node will always leave a "remainder" (like above) with the original value. This remaining node can appear anywhere, but it only makes sense to look at solutions where this remainder is on the left side or the right side of the lift (not in the middle). So for example:
4 1 1 1 1 1 2 3 4
Can resolve to one of these:
4 2 2 1 2 3 4
Or:
4 1 2 2 2 3 4
The 1 in either second or fourth position, is the above mentioned "remainder". Obviously, the second way of resolving is more promising in this example. In general, the choice is obvious when on one side there is a value that is too high to merge with, like the left-most 4 is too high for five 1 values to get to. The 4 is like a wall.
When the frequency of the local minimum is one, there is nothing we can do with it. It actually separates the array in a left and right side that do not influence each other. The same is true for the remainder element discussed above: it separates the array into two parts that do not influence each other.
So the next step in the algorithm is to find such minima (where the choice is obvious), apply that kind of step and separate the problem into two distinct problems which should be solved recursively (from the top). So in the last example, the following two problems would be solved separately:
4
2 2 3 4
Then the best of both solutions will count as the overall solution. In this case that is 5.
The most challenging part of the algorithm is to deal with those local minima for which the choice of where to put the remainder is not obvious. For instance;
3 3 1 1 1 1 1 2 3
This can go to either:
3 3 2 2 1 2 3
3 3 1 2 2 2 3
In this example the end result is the same for both options, but in bigger arrays it would be less and less obvious. So here both options have to be investigated. In general you can have many of them, like 2 in this example:
3 1 1 1 2 3 1 1 1 1 1 3
Each of these two minima has two options. This seems like to explode into too many possibilities for larger arrays. But it is not that bad. The algorithm can take opposite choices in neighbouring minima, and go alternating like this through the whole array. This way alternating sections are favoured, and get the most possible value drawn into them, while the other sections are deprived of value. Now the algorithm turns the tables, and toggles all choices so that the sections that were previously favoured are now deprived, and vice versa. The solution of both these alternatives is derived by resolving each section recursively, and then comparing the two "grand" solutions to pick the best one.
Snippet
Here is a live JavaScript implementation of the above algorithm.
Comments are provided which hopefully should make it readable.
"use strict";
function Node(val, freq) {
// Immutable plain object
return Object.freeze({
val: val,
freq: freq || 1, // Default frequency is 1.
// Max attainable value when merged:
reduced: val + (freq || 1).toString(2).length - 1
});
}
function compress(a) {
// Put repeated elements in a single node
var result = [], i, j;
for (i = 0; i < a.length; i = j) {
for (j = i + 1; j < a.length && a[j] == a[i]; j++);
result.push(Node(a[i], j - i));
}
return result;
}
function decompress(a) {
// Expand nodes into separate, repeated elements
var result = [], i, j;
for (i = 0; i < a.length; i++) {
for (j = 0; j < a[i].freq; j++) {
result.push(a[i].val);
}
}
return result;
}
function str(a) {
return decompress(a).join(' ');
}
function unstr(s) {
s = s.replace(/\D+/g, ' ').trim();
return s.length ? compress(s.split(/\s+/).map(Number)) : [];
}
/*
The function merge modifies an array in-place, performing a "step" on
the indicated element.
The array will get an element with an incremented value
and decreased frequency, unless a join occurs with neighboring
elements with the same value: then the frequencies are accumulated
into one element. When the original frequency was odd there will
be a "remainder" element in the modified array as well.
*/
function merge(a, i, leftWards, stats) {
var val = a[i].val+1,
odd = a[i].freq % 2,
newFreq = a[i].freq >> 1,
last = i;
// Merge with neighbouring nodes of same value:
if ((!odd || !leftWards) && a[i+1] && a[i+1].val === val) {
newFreq += a[++last].freq;
}
if ((!odd || leftWards) && i && a[i-1].val === val) {
newFreq += a[--i].freq;
}
// Replace nodes
a.splice(i, last-i+1, Node(val, newFreq));
if (odd) a.splice(i+leftWards, 0, Node(val-1));
// Update statistics and trace: this is not essential to the algorithm
if (stats) {
stats.total_applied_merges++;
if (stats.trace) stats.trace.push(str(a));
}
return i;
}
/* Function Solve
Parameters:
a: The compressed array to be reduced via merges. It is changed in-place
and should not be relied on after the call.
stats: Optional plain object that will be populated with execution statistics.
Return value:
The array after the best merges were applied to achieve the highest
value, which is stored in the maxValue custom property of the array.
*/
function solve(a, stats) {
var maxValue, i, j, traceOrig, skipLeft, skipRight, sections, goLeft,
b, choice, alternate;
if (!a.length) return a;
if (stats && stats.trace) {
traceOrig = stats.trace;
traceOrig.push(stats.trace = [str(a)]);
}
// Look for valleys of even size, and "lift" them
for (i = 1; i < a.length - 1; i++) {
if (a[i-1].val > a[i].val && a[i].val < a[i+1].val && (a[i].freq % 2) < 1) {
// Found an even valley
i = merge(a, i, false, stats);
if (i) i--;
}
}
// Check left-side elements with always increasing values
for (i = 0; i < a.length-1 && a[i].val < a[i+1].val; i++) {
if (a[i].freq > 1) i = merge(a, i, false, stats) - 1;
};
// Check right-side elements with always increasing values, right-to-left
for (j = a.length-1; j > 0 && a[j-1].val > a[j].val; j--) {
if (a[j].freq > 1) j = merge(a, j, true, stats) + 1;
};
// All resolved?
if (i == j) {
while (a[i].freq > 1) merge(a, i, true, stats);
a.maxValue = a[i].val;
} else {
skipLeft = i;
skipRight = a.length - 1 - j;
// Look for other valleys (odd sized): they will lead to a split into sections
sections = [];
for (i = a.length - 2 - skipRight; i > skipLeft; i--) {
if (a[i-1].val > a[i].val && a[i].val < a[i+1].val) {
// Odd number of elements: if more than one, there
// are two ways to merge them, but maybe
// one of both possibilities can be excluded.
goLeft = a[i+1].val > a[i].reduced;
if (a[i-1].val > a[i].reduced || goLeft) {
if (a[i].freq > 1) i = merge(a, i, goLeft, stats) + goLeft;
// i is the index of the element which has become a 1-sized valley
// Split off the right part of the array, and store the solution
sections.push(solve(a.splice(i--), stats));
}
}
}
if (sections.length) {
// Solve last remaining section
sections.push(solve(a, stats));
sections.reverse();
// Combine the solutions of all sections into one
maxValue = sections[0].maxValue;
for (i = sections.length - 1; i >= 0; i--) {
maxValue = Math.max(sections[i].maxValue, maxValue);
}
} else {
// There is no more valley that can be resolved without branching into two
// directions. Look for the remaining valleys.
sections = [];
b = a.slice(0); // take copy
for (choice = 0; choice < 2; choice++) {
if (choice) a = b; // restore from copy on second iteration
alternate = choice;
for (i = a.length - 2 - skipRight; i > skipLeft; i--) {
if (a[i-1].val > a[i].val && a[i].val < a[i+1].val) {
// Odd number of elements
alternate = !alternate
i = merge(a, i, alternate, stats) + alternate;
sections.push(solve(a.splice(i--), stats));
}
}
// Solve last remaining section
sections.push(solve(a, stats));
}
sections.reverse(); // put in logical order
// Find best section:
maxValue = sections[0].maxValue;
for (i = sections.length - 1; i >= 0; i--) {
maxValue = Math.max(sections[i].maxValue, maxValue);
}
for (i = sections.length - 1; i >= 0 && sections[i].maxValue < maxValue; i--);
// Which choice led to the highest value (choice = 0 or 1)?
choice = (i >= sections.length / 2)
// Discard the not-chosen version
sections = sections.slice(choice * sections.length/2);
}
// Reconstruct the solution from the sections.
a = [].concat.apply([], sections);
a.maxValue = maxValue;
}
if (traceOrig) stats.trace = traceOrig;
return a;
}
function randomValues(len) {
var a = [];
for (var i = 0; i < len; i++) {
// 50% chance for a 1, 25% for a 2, ... etc.
a.push(Math.min(/\.1*/.exec(Math.random().toString(2))[0].length,5));
}
return a;
}
// I/O
var inputEl = document.querySelector('#inp');
var randEl = document.querySelector('#rand');
var lenEl = document.querySelector('#len');
var goEl = document.querySelector('#go');
var outEl = document.querySelector('#out');
goEl.onclick = function() {
// Get the input and structure it
var a = unstr(inputEl.value),
stats = {
total_applied_merges: 0,
trace: a.length < 100 ? [] : undefined
};
// Apply algorithm
a = solve(a, stats);
// Output results
var output = {
value: a.maxValue,
compact: str(a),
total_applied_merges: stats.total_applied_merges,
trace: stats.trace || 'no trace produced (input too large)'
};
outEl.textContent = JSON.stringify(output, null, 4);
}
randEl.onclick = function() {
// Get input (count of numbers to generate):
len = lenEl.value;
// Generate
var a = randomValues(len);
// Output
inputEl.value = a.join(' ');
// Simulate click to find the solution immediately.
goEl.click();
}
// Tests
var tests = [
' ', '',
'1', '1',
'1 1', '2',
'2 2 1 2 2', '3 1 3',
'3 2 1 1 2 2 3', '5',
'3 2 1 1 2 2 3 1 1 1 1 3 2 2 1 1 2', '6',
'3 1 1 1 3', '3 2 1 3',
'2 1 1 1 2 1 1 1 2 1 1 1 1 1 2', '3 1 2 1 4 1 2',
'3 1 1 2 1 1 1 2 3', '4 2 1 2 3',
'1 4 2 1 1 1 1 1 1 1', '1 5 1',
];
var res;
for (var i = 0; i < tests.length; i+=2) {
var res = str(solve(unstr(tests[i])));
if (res !== tests[i+1]) throw 'Test failed: ' + tests[i] + ' returned ' + res + ' instead of ' + tests[i+1];
}
Enter series (space separated):<br>
<input id="inp" size="60" value="2 3 1 1 2 2"><button id="go">Solve</button>
<br>
<input id="len" size="4" value="30"><button id="rand">Produce random series of this size and solve</button>
<pre id="out"></pre>
As you can see the program produces a reduced array with the maximum value included. In general there can be many derived arrays that have this maximum; only one is given.
An O(n*m) time and space algorithm is possible, where, according to your stated limits, n <= 500 and m <= 58 (consider that even for a billion elements, m need only be about 60, representing the largest element ± log2(n)). m is representing the possible numbers 50 + floor(log2(500)):
Consider the condensed sequence, s = {[x, number of x's]}.
If M[i][j] = [num_j,start_idx] where num_j represents the maximum number of contiguous js ending at index i of the condensed sequence; start_idx, the index where the sequence starts or -1 if it cannot join earlier sequences; then we have the following relationship:
M[i][j] = [s[i][1] + M[i-1][j][0], M[i-1][j][1]]
when j equals s[i][0]
j's greater than s[i][0] but smaller than or equal to s[i][0] + floor(log2(s[i][1])), represent converting pairs and merging with an earlier sequence if applicable, with a special case after the new count is odd:
When M[i][j][0] is odd, we do two things: first calculate the best so far by looking back in the matrix to a sequence that could merge with M[i][j] or its paired descendants, and then set a lower bound in the next applicable cells in the row (meaning a merge with an earlier sequence cannot happen via this cell). The reason this works is that:
if s[i + 1][0] > s[i][0], then s[i + 1] could only possibly pair with the new split section of s[i]; and
if s[i + 1][0] < s[i][0], then s[i + 1] might generate a lower j that would combine with the odd j from M[i], potentially making a longer sequence.
At the end, return the largest entry in the matrix, max(j + floor(log2(num_j))), for all j.
JavaScript code (counterexamples would be welcome; the limit on the answer is set at 7 for convenient visualization of the matrix):
function f(str){
var arr = str.split(/\s+/).map(Number);
var s = [,[arr[0],0]];
for (var i=0; i<arr.length; i++){
if (s[s.length - 1][0] == arr[i]){
s[s.length - 1][1]++;
} else {
s.push([arr[i],1]);
}
}
var M = [new Array(8).fill([0,0])],
best = 0;
for (var i=1; i<s.length; i++){
M[i] = new Array(8).fill([0,i]);
var temp = s[i][1],
temp_odd,
temp_start,
odd = false;
for (var j=s[i][0]; temp>0; j++){
var start_idx = odd ? temp_start : M[i][j-1][1];
if (start_idx != -1 && M[start_idx - 1][j][0]){
temp += M[start_idx - 1][j][0];
start_idx = M[start_idx - 1][j][1];
}
if (!odd){
M[i][j] = [temp,start_idx];
temp_odd = temp;
} else {
M[i][j] = [temp_odd,-1];
temp_start = start_idx;
}
if (!odd && temp & 1 && temp > 1){
odd = true;
temp_start = start_idx;
}
best = Math.max(best,j + Math.floor(Math.log2(temp)));
temp >>= 1;
temp_odd >>= 1;
}
}
return [arr, s, best, M];
}
// I/O
var button = document.querySelector('button');
var input = document.querySelector('input');
var pre = document.querySelector('pre');
button.onclick = function() {
var val = input.value;
var result = f(val);
var text = '';
for (var i=0; i<3; i++){
text += JSON.stringify(result[i]) + '\n\n';
}
for (var i in result[3]){
text += JSON.stringify(result[3][i]) + '\n';
}
pre.textContent = text;
}
<input value ="2 2 3 3 2 2 3 3 5">
<button>Solve</button>
<pre></pre>
Here's a brute force solution:
function findMax(array A, int currentMax)
for each pair (i, i+1) of indices for which A[i]==A[i+1] do
currentMax = max(A[i]+1, currentMax)
replace A[i],A[i+1] by a single number A[i]+1
currentMax = max(currentMax, findMax(A, currentMax))
end for
return currentMax
Given the array A, let currentMax=max(A[0], ..., A[n])
print findMax(A, currentMax)
The algorithm terminates because in each recursive call the array shrinks by 1.
It's also clear that it is correct: we try out all possible replacement sequences.
The code is extremely slow when the array is large and there's lots of options regarding replacements, but actually works reasonbly fast on arrays with small number of replaceable pairs. (I'll try to quantify the running time in terms of the number of replaceable pairs.)
A naive working code in Python:
def findMax(L, currMax):
for i in range(len(L)-1):
if L[i] == L[i+1]:
L[i] += 1
del L[i+1]
currMax = max(currMax, L[i])
currMax = max(currMax, findMax(L, currMax))
L[i] -= 1
L.insert(i+1, L[i])
return currMax
# entry point
if __name__ == '__main__':
L1 = [2, 3, 1, 1, 2, 2]
L2 = [2, 3, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2]
print findMax(L1, max(L1))
print findMax(L2, max(L2))
The result of the first call is 4, as expected.
The result of the second call is 5 as expected; the sequence that gives the result: 2,3,1,1,2,2,2,2,2,2,2,2, -> 2,3,1,1,3,2,2,2,2,2,2 -> 2,3,1,1,3,3,2,2,2,2, -> 2,3,1,1,3,3,3,2,2 -> 2,3,1,1,3,3,3,3 -> 2,3,1,1,4,3, -> 2,3,1,1,4,4 -> 2,3,1,1,5

Split a random value into four that sum up to it

I have one value like 24, and I have four textboxes. How can I dynamically generate four values that add up to 24?
All the values must be integers and can't be negative, and the result cannot be 6, 6, 6, 6; they must be different like: 8, 2, 10, 4. (But 5, 6, 6, 7 would be okay.)
For your stated problem, it is possible to generate an array of all possible solutions and then pick one randomly. There are in fact 1,770 possible solutions.
var solutions = [[Int]]()
for i in 1...21 {
for j in 1...21 {
for k in 1...21 {
let l = 24 - (i + j + k)
if l > 0 && !(i == 6 && j == 6 && k == 6) {
solutions.append([i, j, k, l])
}
}
}
}
// Now generate 20 solutions
for _ in 1...20 {
let rval = Int(arc4random_uniform(UInt32(solutions.count)))
println(solutions[rval])
}
This avoids any bias at the cost of initial setup time and storage.
This could be improved by:
Reducing storage space by only storing the first 3 numbers. The 4th one is always 24 - (sum of first 3)
Reducing storage space by storing each solution as a single integer: (i * 10000 + j * 100 + k)
Speeding up the generation of solutions by realizing that each loop doesn't need to go to 21.
Here is the solution that stores each solution as a single integer and optimizes the loops:
var solutions = [Int]()
for i in 1...21 {
for j in 1...22-i {
for k in 1...23-i-j {
if !(i == 6 && j == 6 && k == 6) {
solutions.append(i * 10000 + j * 100 + k)
}
}
}
}
// Now generate 20 solutions
for _ in 1...20 {
let rval = Int(arc4random_uniform(UInt32(solutions.count)))
let solution = solutions[rval]
// unpack the values
let i = solution / 10000
let j = (solution % 10000) / 100
let k = solution % 100
let l = 24 - (i + j + k)
// print the solution
println("\([i, j, k, l])")
}
Here is a Swift implementation of the algorithm given in https://stackoverflow.com/a/8064754/1187415, with a slight
modification because all numbers are required to be positive.
The method to producing N positive random integers with sum M is
Build an array containing the number 0, followed by N-1 different
random numbers in the range 1 .. M-1, and finally the number M.
Compute the differences of subsequent array elements.
In the first step, we need a random subset of N-1 elements out of
the set { 1, ..., M-1 }. This can be achieved by iterating over this
set and choosing each element with probability n/m, where
m is the remaining number of elements we can choose from and
n is the remaining number of elements to choose.
Instead of storing the chosen random numbers in an array, the
difference to the previously chosen number is computed immediately
and stored.
This gives the following function:
func randomNumbers(#count : Int, withSum sum : Int) -> [Int] {
precondition(sum >= count, "`sum` must not be less than `count`")
var diffs : [Int] = []
var last = 0 // last number chosen
var m = UInt32(sum - 1) // remaining # of elements to choose from
var n = UInt32(count - 1) // remaining # of elements to choose
for i in 1 ..< sum {
// Choose this number `i` with probability n/m:
if arc4random_uniform(m) < n {
diffs.append(i - last)
last = i
n--
}
m--
}
diffs.append(sum - last)
return diffs
}
println(randomNumbers(count: 4, withSum: 24))
If a solution with all elements equal (e.g 6+6+6+6=24) is not
allowed, you can repeat the method until a valid solution is found:
func differentRandomNumbers(#count : Int, withSum sum : Int) -> [Int] {
precondition(count >= 2, "`count` must be at least 2")
var v : [Int]
do {
v = randomNumbers(count: count, withSum: sum)
} while (!contains(v, { $0 != v[0]} ))
return v
}
Here is a simple test. It computes 1,000,000 random representations
of 7 as the sum of 3 positive integers, and counts the distribution
of the results.
let set = NSCountedSet()
for i in 1 ... 1_000_000 {
let v = randomNumbers(count: 3, withSum: 7)
set.addObject(v)
}
for (_, v) in enumerate(set) {
let count = set.countForObject(v)
println("\(v as! [Int]) \(count)")
}
Result:
[1, 4, 2] 66786
[1, 5, 1] 67082
[3, 1, 3] 66273
[2, 2, 3] 66808
[2, 3, 2] 66966
[5, 1, 1] 66545
[2, 1, 4] 66381
[1, 3, 3] 67153
[3, 3, 1] 67034
[4, 1, 2] 66423
[3, 2, 2] 66674
[2, 4, 1] 66418
[4, 2, 1] 66292
[1, 1, 5] 66414
[1, 2, 4] 66751
Update for Swift 3:
func randomNumbers(count : Int, withSum sum : Int) -> [Int] {
precondition(sum >= count, "`sum` must not be less than `count`")
var diffs : [Int] = []
var last = 0 // last number chosen
var m = UInt32(sum - 1) // remaining # of elements to choose from
var n = UInt32(count - 1) // remaining # of elements to choose
for i in 1 ..< sum {
// Choose this number `i` with probability n/m:
if arc4random_uniform(m) < n {
diffs.append(i - last)
last = i
n -= 1
}
m -= 1
}
diffs.append(sum - last)
return diffs
}
print(randomNumbers(count: 4, withSum: 24))
Update for Swift 4.2 (and later), using the unified random API:
func randomNumbers(count : Int, withSum sum : Int) -> [Int] {
precondition(sum >= count, "`sum` must not be less than `count`")
var diffs : [Int] = []
var last = 0 // last number chosen
var m = sum - 1 // remaining # of elements to choose from
var n = count - 1 // remaining # of elements to choose
for i in 1 ..< sum {
// Choose this number `i` with probability n/m:
if Int.random(in: 0..<m) < n {
diffs.append(i - last)
last = i
n -= 1
}
m -= 1
}
diffs.append(sum - last)
return diffs
}
func getRandomValues(amountOfValues:Int, totalAmount:Int) -> [Int]?{
if amountOfValues < 1{
return nil
}
if totalAmount < 1{
return nil
}
if totalAmount < amountOfValues{
return nil
}
var values:[Int] = []
var valueLeft = totalAmount
for i in 0..<amountOfValues{
if i == amountOfValues - 1{
values.append(valueLeft)
break
}
var value = Int(arc4random_uniform(UInt32(valueLeft - (amountOfValues - i))) + 1)
valueLeft -= value
values.append(value)
}
var shuffledArray:[Int] = []
for i in 0..<values.count {
var rnd = Int(arc4random_uniform(UInt32(values.count)))
shuffledArray.append(values[rnd])
values.removeAtIndex(rnd)
}
return shuffledArray
}
getRandomValues(4, 24)
This is not a final answer, but it should be a (good) starting point.
How it works: It takes 2 parameters. The amount of random values (4 in your case) and the total amount (24 in your case).
It takes a random value between the total Amount and 0, stores this in an array and it subtracts this from a variable which stores the amount that is left and stores the new value.
Than it takes a new random value between the amount that is left and 0, stores this in an array and it again subtracts this from the amount that is left and stores the new value.
When it is the last number needed, it sees what amount is left and adds that to the array
EDIT:
Adding a +1 to the random value removes the problem of having 0 in your array.
EDIT 2:
Shuffling the array does remove the increased chance of having a high value as the first value.
One solution that is unfortunatly non-deterministic but completely random is as follows:
For a total of 24 in 4 numbers:
pick four random numbers between 1 and 21
repeat until the total of the numbers equals 24 and they are not all 6.
This will, on average, loop about 100 times before finding a solution.
Here's a solution which should have significantly* less bias than some of the other methods. It works by generating the requested number of random floating point numbers, multiplying or dividing all of them until they add up to the target total, and then rounding them into integers. The rounding process changes the total, so we need to correct for that by adding or subtracting from random terms until they add up to the right amount.
func getRandomDoubles(#count: Int, #total: Double) -> [Double] {
var nonNormalized = [Double]()
nonNormalized.reserveCapacity(count)
for i in 0..<count {
nonNormalized.append(Double(arc4random()) / 0xFFFFFFFF)
}
let nonNormalizedSum = reduce(nonNormalized, 0) { $0 + $1 }
let normalized = nonNormalized.map { $0 * total / nonNormalizedSum }
return normalized
}
func getRandomInts(#count: Int, #total: Int) -> [Int] {
let doubles = getRandomDoubles(count: count, total: Double(total))
var ints = [Int]()
ints.reserveCapacity(count)
for double in doubles {
if double < 1 || double % 1 >= 0.5 {
// round up
ints.append(Int(ceil(double)))
} else {
// round down
ints.append(Int(floor(double)))
}
}
let roundingErrors = total - (reduce(ints, 0) { $0 + $1 })
let directionToAdjust: Int = roundingErrors > 0 ? 1 : -1
var corrections = abs(roundingErrors)
while corrections > 0 {
let index = Int(arc4random_uniform(UInt32(count)))
if directionToAdjust == -1 && ints[index] <= 1 { continue }
ints[index] += directionToAdjust
corrections--
}
return ints
}
*EDIT: Martin R has correctly pointed out that this is not nearly as uniform as one might expect, and is in fact highly biased towards numbers in the middle of the 1-24 range. I would not recommend using this solution, but I'm leaving it up so that others can know not to make the same mistake.
As a recursive function the algorithm is very nice:
func getRandomValues(amount: Int, total: Int) -> [Int] {
if amount == 1 { return [total] }
if amount == total { return Array(count: amount, repeatedValue: 1) }
let number = Int(arc4random()) % (total - amount + 1) + 1
return [number] + getRandomValues(amount - 1, total - number)
}
And with safety check:
func getRandomValues(amount: Int, total: Int) -> [Int]? {
if !(1...total ~= amount) { return nil }
if amount == 1 { return [total] }
if amount == total { return Array(count: amount, repeatedValue: 1) }
let number = Int(arc4random()) % (total - amount + 1) + 1
return [number] + getRandomValues(amount - 1, total - number)!
}
As #MartinR pointed out the code above is extremely biased. So in order to have a uniform distribution of the output values you should use this piece of code:
func getRandomValues(amount: Int, total: Int) -> [Int] {
var numberSet = Set<Int>()
// add splitting points to numberSet
for _ in 1...amount - 1 {
var number = Int(arc4random()) % (total - 1) + 1
while numberSet.contains(number) {
number = Int(arc4random()) % (total - 1) + 1
}
numberSet.insert(number)
}
// sort numberSet and return the differences between the splitting points
let sortedArray = (Array(numberSet) + [0, total]).sort()
return sortedArray.enumerate().flatMap{
indexElement in
if indexElement.index == amount { return nil }
return sortedArray[indexElement.index + 1] - indexElement.element
}
}
A javascript implementation for those who may be looking for such case:
const numbersSumTo = (length, value) => {
const fourRandomNumbers = Array.from({ length: length }, () => Math.floor(Math.random() * 6) + 1);
const res = fourRandomNumbers.map(num => (num / fourRandomNumbers.reduce((a, b) => a + b, 0)) * value).map(num => Math.trunc(num));
res[0] += Math.abs(res.reduce((a, b) => a + b, 0) - value);
return res;
}
// Gets an array with 4 items which sum to 100
const res = numbersSumTo(4, 100);
const resSum = res.reduce((a, b) => a + b, 0);
console.log({
res,
resSum
});
Also plenty of different methods of approach can be found here on this question: https://math.stackexchange.com/questions/1276206/method-of-generating-random-numbers-that-sum-to-100-is-this-truly-random

Algorithm to generate a sequence proportional to specified percentage

Given a Map of objects and designated proportions (let's say they add up to 100 to make it easy):
val ss : Map[String,Double] = Map("A"->42, "B"->32, "C"->26)
How can I generate a sequence such that for a subset of size n there are ~42% "A"s, ~32% "B"s and ~26% "C"s? (Obviously, small n will have larger errors).
(Work language is Scala, but I'm just asking for the algorithm.)
UPDATE: I resisted a random approach since, for instance, there's ~16% chance that the sequence would start with AA and ~11% chance it would start with BB and there would be very low odds that for n precisely == (sum of proportions) the distribution would be perfect. So, following #MvG's answer, I implemented as follows:
/**
Returns the key whose achieved proportions are most below desired proportions
*/
def next[T](proportions : Map[T, Double], achievedToDate : Map[T,Double]) : T = {
val proportionsSum = proportions.values.sum
val desiredPercentages = proportions.mapValues(v => v / proportionsSum)
//Initially no achieved percentages, so avoid / 0
val toDateTotal = if(achievedToDate.values.sum == 0.0){
1
}else{
achievedToDate.values.sum
}
val achievedPercentages = achievedToDate.mapValues(v => v / toDateTotal)
val gaps = achievedPercentages.map{ case (k, v) =>
val gap = desiredPercentages(k) - v
(k -> gap)
}
val maxUnder = gaps.values.toList.sortWith(_ > _).head
//println("Max gap is " + maxUnder)
val gapsForMaxUnder = gaps.mapValues{v => Math.abs(v - maxUnder) < Double.Epsilon }
val keysByHasMaxUnder = gapsForMaxUnder.map(_.swap)
keysByHasMaxUnder(true)
}
/**
Stream of most-fair next element
*/
def proportionalStream[T](proportions : Map[T, Double], toDate : Map[T, Double]) : Stream[T] = {
val nextS = next(proportions, toDate)
val tailToDate = toDate + (nextS -> (toDate(nextS) + 1.0))
Stream.cons(
nextS,
proportionalStream(proportions, tailToDate)
)
}
That when used, e.g., :
val ss : Map[String,Double] = Map("A"->42, "B"->32, "C"->26)
val none : Map[String,Double] = ss.mapValues(_ => 0.0)
val mySequence = (proportionalStream(ss, none) take 100).toList
println("Desired : " + ss)
println("Achieved : " + mySequence.groupBy(identity).mapValues(_.size))
mySequence.map(s => print(s))
println
produces :
Desired : Map(A -> 42.0, B -> 32.0, C -> 26.0)
Achieved : Map(C -> 26, A -> 42, B -> 32)
ABCABCABACBACABACBABACABCABACBACABABCABACABCABACBA
CABABCABACBACABACBABACABCABACBACABABCABACABCABACBA
For a deterministic approach, the most obvious solution would probably be this:
Keep track of the number of occurrences of each item in the sequence so far.
For the next item, choose that item for which the difference between intended and actual count (or proportion, if you prefer that) is maximal, but only if the intended count (resp. proportion) is greater than the actual one.
If there is a tie, break it in an arbitrary but deterministic way, e.g. choosing the alphabetically lowest item.
This approach would ensure an optimal adherence to the prescribed ratio for every prefix of the infinite sequence generated in this way.
Quick & dirty python proof of concept (don't expect any of the variable “names” to make any sense):
import sys
p = [0.42, 0.32, 0.26]
c = [0, 0, 0]
a = ['A', 'B', 'C']
n = 0
while n < 70*5:
n += 1
x = 0
s = n*p[0] - c[0]
for i in [1, 2]:
si = n*p[i] - c[i]
if si > s:
x = i
s = si
sys.stdout.write(a[x])
if n % 70 == 0:
sys.stdout.write('\n')
c[x] += 1
Generates
ABCABCABACABACBABCAABCABACBACABACBABCABACABACBACBAABCABCABACABACBABCAB
ACABACBACABACBABCABACABACBACBAABCABCABACABACBABCAABCABACBACABACBABCABA
CABACBACBAABCABCABACABACBABCABACABACBACBAACBABCABACABACBACBAABCABCABAC
ABACBABCABACABACBACBAACBABCABACABACBACBAABCABCABACABACBABCABACABACBACB
AACBABCABACABACBACBAABCABCABACABACBABCAABCABACBACBAACBABCABACABACBACBA
For every item of the sequence, compute a (pseudo-)random number r equidistributed between 0 (inclusive) and 100 (exclusive).
If 0 ≤ r < 42, take A
If 42 ≤ r < (42+32), take B
If (42+32) ≤ r < (42+32+26)=100, take C
The number of each entry in your subset is going to be the same as in your map, but with a scaling factor applied.
The scaling factor is n/100.
So if n was 50, you would have { Ax21, Bx16, Cx13 }.
Randomize the order to your liking.
The simplest "deterministic" [in terms of #elements of each category] solution [IMO] will be: add elements in predefined order, and then shuffle the resulting list.
First, add map(x)/100 * n elements from each element x chose how you handle integer arithmetics to avoid off by one element], and then shuffle the resulting list.
Shuffling a list is simple with fisher-yates shuffle, which is implemented in most languages: for example java has Collections.shuffle(), and C++ has random_shuffle()
In java, it will be as simple as:
int N = 107;
List<String> res = new ArrayList<String>();
for (Entry<String,Integer> e : map.entrySet()) { //map is predefined Map<String,Integer> for frequencies
for (int i = 0; i < Math.round(e.getValue()/100.0 * N); i++) {
res.add(e.getKey());
}
}
Collections.shuffle(res);
This is nondeterministic, but gives a distribution of values close to MvG's. It suffers from the problem that it could give AAA right at the start. I post it here for completeness' sake given how it proves my dissent with MvG was misplaced (and I don't expect any upvotes).
Now, if someone has an idea for an expand function that is deterministic and won't just duplicate MvG's method (rendering the calc function useless), I'm all ears!
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<title>ErikE's answer</title>
</head>
<body>
<div id="output"></div>
<script type="text/javascript">
if (!Array.each) {
Array.prototype.each = function(callback) {
var i, l = this.length;
for (i = 0; i < l; i += 1) {
callback(i, this[i]);
}
};
}
if (!Array.prototype.sum) {
Array.prototype.sum = function() {
var sum = 0;
this.each(function(i, val) {
sum += val;
});
return sum;
};
}
function expand(counts) {
var
result = "",
charlist = [],
l,
index;
counts.each(function(i, val) {
char = String.fromCharCode(i + 65);
for ( ; val > 0; val -= 1) {
charlist.push(char);
}
});
l = charlist.length;
for ( ; l > 0; l -= 1) {
index = Math.floor(Math.random() * l);
result += charlist[index];
charlist.splice(index, 1);
}
return result;
}
function calc(n, proportions) {
var percents = [],
counts = [],
errors = [],
fnmap = [],
errorSum,
worstIndex;
fnmap[1] = "min";
fnmap[-1] = "max";
proportions.each(function(i, val) {
percents[i] = val / proportions.sum() * n;
counts[i] = Math.round(percents[i]);
errors[i] = counts[i] - percents[i];
});
errorSum = counts.sum() - n;
while (errorSum != 0) {
adjust = errorSum < 0 ? 1 : -1;
worstIndex = errors.indexOf(Math[fnmap[adjust]].apply(0, errors));
counts[worstIndex] += adjust;
errors[worstIndex] = counts[worstIndex] - percents[worstIndex];
errorSum += adjust;
}
return expand(counts);
}
document.body.onload = function() {
document.getElementById('output').innerHTML = calc(99, [25.1, 24.9, 25.9, 24.1]);
};
</script>
</body>
</html>

Resources