Compiling within the code with g++ in Code::Blocks - windows

I am trying to write a game similar to code hunt (https://www.codehunt.com/about.aspx)
So How this will work, is the player can modify a .cpp file, which will be compiled and and ran within the code, but I have problems about how to compile it.
I'am using the latest g++ compiler, and this is how I try to achive this:
void Builder::build(const char* file){
std::string s = "g++ ";
s += file;
s += " -o test.o";
system(s.c_str());
}
Where we get the .cpp file's name, and this code piece is supposed to build test.o
This is just a test now, it might get more complex, I just wanted to test if the compiler will work within the code, but I get this error message when I try to run this:
c:/mingw/bin/../lib/gcc/mingw32/4.9.3/../../../libmingw32.a(main.o):(.text.startup+0xa7):undefined reference to 'WinMain#16'
collect2.exe: error: ld returned 1 exit status
PATH for mingw is set correctly, I checked.
I am using Windows 8.1, g++ 4.9.3 and Code::Blocks.

In Windows execution doesn't normally start at the main functions, it starts at the WinMain function, which takes some Windows-specific arguments. You should read e.g. this WinMain reference for more information.
That some programs still seems to start at a main function is because there is an object file linked with the program that contains the WinMain function which calls your main function.

OK I'm an idiot, so the problem was that I was trying to build a file whitout a main function. This was deliberat design choice at first, but...well yeah. Sorry about that.
Thank you Joachim Pileborg for leading me to it.

Related

Getting "cannot find symbol .... while executing load ..." error when trying to run Hello World as a C extension (dll) example

I have used the C code from the following verbatim: https://wiki.tcl-lang.org/page/Hello+World+as+a+C+extension
/*
* hello.c -- A minimal Tcl C extension.
*/
#include <tcl.h>
static int
Hello_Cmd(ClientData cdata, Tcl_Interp *interp, int objc, Tcl_Obj *const objv[])
{
Tcl_SetObjResult(interp, Tcl_NewStringObj("Hello, World!", -1));
return TCL_OK;
}
/*
* Hello_Init -- Called when Tcl loads your extension.
*/
int DLLEXPORT
Hello_Init(Tcl_Interp *interp)
{
if (Tcl_InitStubs(interp, TCL_VERSION, 0) == NULL) {
return TCL_ERROR;
}
/* changed this to check for an error - GPS */
if (Tcl_PkgProvide(interp, "Hello", "1.0") == TCL_ERROR) {
return TCL_ERROR;
}
Tcl_CreateObjCommand(interp, "hello", Hello_Cmd, NULL, NULL);
return TCL_OK;
}
My command for compiling is nearly verbatim except for the last character, indicating Tcl version 8.6 rather than 8.4, and it compiles without error:
gcc -shared -o hello.dll -DUSE_TCL_STUBS -I$TCLINC -L$TCLLIB -ltclstub86
Then I created the following Tcl program:
load hello.dll Hello
puts "got here"
But when running it with tclsh get the following error:
cannot find symbol "Hello_Init"
while executing
"load ./hello.dll Hello"
(file "hello.tcl" line 1)
So I am essentially following a couple of suggestions from Donal Fellows answer here: cannot find symbol "Embeddedrcall_Init" The OP there however commented that, like me, the suggestion(s) hadn't resolved their issue. One thing that I didn't try from that answer was "You should have an exported (extern "C") function symbol in your library" -- could that be the difference maker? Shouldn't it have been in the example all along then?
At the suggestion of somebody on comp.lang.tcl I found "DLL Export Viewer" but when I run it against the DLL it reports 0 functions found :( What am I doing wrong?
Could it be an issue with MinGW/gcc on Windows, and I need to bite the bullet and do this with Visual Studio? That's overkill I'd like to avoid if possible.
The core of the problem is that your function Hello_Init is not ending up in the global symbol table exported by the resulting DLL. (Some linkers would put such things in as _Hello_Init instead of Hello_Init; Tcl adapts to them transparently.) The symbol must be there for Tcl's load command to work: without it, there's simply no consistent way to tell your extension code what the Tcl_Interp context handle is (which allows it to make commands, variables, etc.)
(If you'd been working with C++, one of the possible problem is a missing extern "C" whose actual meaning is to turn off name mangling. That's probably not the problem here.)
Since you are on Windows — going by the symbols in your DLL, such as EnterCriticalSection and GetLastError — the problem is probably linked to exactly how you are linking. I'm guessing that Tcl is defining your function to have __declspec(dllexport) (assuming you've not defined STATIC_BUILD, which absolutely should not be used when building a DLL) and yet that's not getting respected. Assuming you're using a modern-enough version of GCC… which you probably are.
I'm also going through the process of how to build tcl extensions in C and had exactly the same problem when working though this same example using tcl 8.6.
i.e. I was compiling using MinGW GCC (64-bit), and used the following:
gcc -shared -o hello.dll -DUSE_TCL_STUBS "-IC:\\ActiveTcl\\include" "-LC:\\ActiveTcl\\lib" -ltclstub86
And like the OP I got no compile error, but when loading the dll at a tclsh prompt tcl complained :
'cannot find symbol "Hello_Init"'
I can't say that I understand, but I was able to find a solution that works thanks to some trial and error, and some information on the tcl wiki here
https://wiki.tcl-lang.org/page/Building+Tcl+DLL%27s+for+Windows
In my case I had to adjust the compiler statement to the following
gcc -shared -o hello.dll hello.c "-IC:\\ActiveTcl\\include" "-LC:\\ActiveTcl\\bin" -ltcl86t
Obviously those file paths are specific to my system, but basically
I had to add an explicit reference to the .c file
I had to include the tcl86t dll library from the tcl bin directory
I had to remove the -DUSE_TCL_STUBS flag ( meaning that the references -LC:\\ActiveTcl\\lib and -ltclstub86 could also be removed)
(attempting to use the -DUSE_TCL_STUBS flag caused the compiler to complain with C:\ActiveTcl\lib/tclstub86.lib: error adding symbols: File format not recognized )
This successfully compiled a dll that I could load, and then call the hello function to print my 'Hello World' message.
Something else I stumbled over, and which wasn't immediately obvious:
reading https://www.tcl.tk/man/tcl8.6/TclCmd/load.htm, tcl epxects to find an 'init' function based on a certain naming convention.
if the C extension does not define a package name then the name of that init function will be derived from the dll filename.
This caused a few problems for me (when compiling via Eclipse IDE), as the dll name was being automatically determined from the eclipse projet name.
For example, if I recompile the same example, but call the .dll something else, eg.
gcc -shared -o helloWorldExenstion.dll hello.c "-IC:\\ActiveTcl\\include" "-LC:\\ActiveTcl\\bin" -ltcl86t
Then at tclsh prompt:
% load helloWorldExtension
cannot find symbol "Helloworldextension_Init"

Don't understand gcc that well, but I can't find why it's not working

I'm trying to compile a simple "hello world"
file_name
#include <stdio.h>
void main () {
printf ("Hello World\n");
}
then I try: gcc file_name and I get "File not recognized. File format not recognized"
I however am 100% sure I did the exact same thing a few weeks back (just to see if it works, as now) and it worked, so I just don't get it.
gcc -ver // returns 4.6.1 if this helpes
Also how is gcc -o supposed to work ? The manual (man gcc) is just gibberish at times (for me)
Let's say you program is saved as helloworld.c. Typing gcc -o myprog helloworld.c would compile helloworld.c into myprog. That way, when you want to run the program, all you type in the command line is ./myprog
gcc tries to guess the language used (e.g. C or C++) based on the extension of the file, so you need to ensure you have the proper file extension (usually .cpp for C++ and .c for C dource files). Alternatively, read the manual if there is a command line option to explicitly state the format (regardless of the extension).
As for the "-o" command line parameter: the name specified after that option is the name of the object file created from the compiled source file. The object files are then linked together to form an executable

How to force gcc to link like g++?

In this episode of "let's be stupid", we have the following problem: a C++ library has been wrapped with a layer of code that exports its functionality in a way that allows it to be called from C. This results in a separate library that must be linked (along with the original C++ library and some object files specific to the program) into a C program to produce the desired result.
The tricky part is that this is being done in the context of a rigid build system that was built in-house and consists of literally dozens of include makefiles. This system has a separate step for the linking of libraries and object files into the final executable but it insists on using gcc for this step instead of g++ because the program source files all have a .c extension, so the result is a profusion of undefined symbols. If the command line is manually pasted at a prompt and g++ is substituted for gcc, then everything works fine.
There is a well-known (to this build system) make variable that allows flags to be passed to the linking step, and it would be nice if there were some incantation that could be added to this variable that would force gcc to act like g++ (since both are just driver programs).
I have spent quality time with the gcc documentation searching for something that would do this but haven't found anything that looks right, does anybody have suggestions?
Considering such a terrible build system write a wrapper around gcc that exec's gcc or g++ dependent upon the arguments. Replace /usr/bin/gcc with this script, or modify your PATH to use this script in preference to the real binary.
#!/bin/sh
if [ "$1" == "wibble wobble" ]
then
exec /usr/bin/gcc-4.5 $*
else
exec /usr/bin/g++-4.5 $*
fi
The problem is that C linkage produces object files with C name mangling, and that C++ linkage produces object files with C++ name mangling.
Your best bet is to use
extern "C"
before declarations in your C++ builds, and no prefix on your C builds.
You can detect C++ using
#if __cplusplus
Many thanks to bmargulies for his comment on the original question. By comparing the output of running the link line with both gcc and g++ using the -v option and doing a bit of experimenting, I was able to determine that "-lstdc++" was the magic ingredient to add to my linking flags (in the appropriate order relative to other libraries) in order to avoid the problem of undefined symbols.
For those of you who wish to play "let's be stupid" at home, I should note that I have avoided any use of static initialization in the C++ code (as is generally wise), so I wasn't forced to compile the translation unit containing the main() function with g++ as indicated in item 32.1 of FAQ-Lite (http://www.parashift.com/c++-faq-lite/mixing-c-and-cpp.html).

GCC Calling label as a function

All is in the title.
For some reasons I have to do it like this.
But when I compile my code, GCC (or GAS maybe...) displays the following error:
.../Temp/cc1C1fjs.s:19: Error: immediate operand illegal with absolute jump
Code:
int main ( int argc, char **argv )
{
/* Some code */
( (void(*)()) &&label)();
/* Some code */
return 0;
label:
asm ("push %ebp");
asm ("mov %esp,%ebp");
/* Some code */
printf("Hello world");
asm ("leave");
asm("ret");
}
I'm sure that this should works because I tried to create a thread using CreateThread function (I'm under windows) specifing as entry point the address of label, and it works perfectly well.
So how can I ensure that the compiler accepting this syntax?
Or there is anothers ways for doing that?
I don't have a solution for you, but I do have a couple of suggestions:
Run gcc -S file.c and look at line #19 to see if you can spot what the actual problem is.
Look through the rest of the (short) .s file to see if anything is obviously amiss. For example, my version of gcc seems to decide that everything after return 0 is dead code, so none of your asm code nor the printf actually make it to the assembler.
Can't this code be moved into a function? This way you'll get the prologue/epilogue for free; taking the address would also be less fraught with difficulty.
I fixed a part of the problem:
#aix you have right, GCC remove
everything of the main function
after return 0;, I fixed this
replacing it by
asm("leave");
asm("xor %eax,%eax");
asm("ret");
Now the code after my label is generated.
Running gcc -S file.c then
gcc file.s -o file.exe, of course it displays the error and at
the error line there is call *$L2
(L2 is label in my c file). It works
by replacing it by call L2.
Now the code after my label and after my call in main is
executed and the program properly
terminates with state 0.
But I don't want to have to do that each time I will compile.
Is it normal that GCC write call *$L2 rather than call L2?

Checking, at runtime, for existence of a function in a program

I am writing a program that is meant to be extended by some function definitions. One of the way of compiling the program is to create a single executable linking your code to the main code. The problem is: one of the function to define is optional and I need to test for that.
On Linux, here is what I am doing:
Compile the program with the "-rdynamic" option to g++ or "--export-dynamic" option to ld. Then, Use ldsym like this:
fct_type myfct = (fct_type)dlsym(RTLD_DEFAULT, "fct");
If the function "fct" exists in the program, this will return its address, otherwise, it returns NULL.
Now, on Windows, I am supposed to be able to do so:
dll_handle = GetModuleHandle(0);
fct_type myfct = (fct_type)GetProcAddress(dll_handle, "fct");
But there is no "-rdynamic" or "--export-dynamic" option to g++ on MinGW32! So this doesn't work. Does anybody knows what to do on windows with MinGW32 ?
Ok, so in the end, I will answer my own question ...
You have to link with the flag -Wl,--export-all-symbols and it works ...

Resources