I'm aware there are lots of questions about defining a binary tree to check whether something is a binary tree or not,but i could not find a thread that tackled this question in the "opposite direction".
Why does your definition of binary tree not return all possible binary trees when called as "es_arbol(X)"? Explain in detail and try to implement a different definition that does return all possible binary tree structures.
Ok,so basically i'm stuck in this part of an assignment.After defining my binary-tree-validating function i noticed that when called with no arguments it just returns trees that "grow" through their right nodes,or at least that's how i interpret the output of swi-prolog.What i am not getting is,assuming my definition is correct,Prolog should be able to construct them in both ways.If not,i would like if someone could point me in the right direction to work out a more general definition of a binary tree,or maybe explain why is it that my definition is not sufficient.
This is my definition:
es_arbol(nil).
es_arbol(arbol(_,I,D)) :- es_arbol(I), es_arbol(D).
The reason that your predicate generates an infinite number of trees along one branch is because you have more than one recursion, and like any language, Prolog will continue making the first recursive call it finds until it returns, which in this case, never will. So you always recurse on one leg of the tree. In other words, you have at least two variables in each tree (the left and right subtrees) that have an infinite number of possibilities.
Binary trees have an infinite number of recursive possibilities along two dimensions. You need a way to order the trees using a single-dimensional metric. One such metric could be the count of nodes in the tree. If you order your trees by node count, starting with node count 0, then for each node count, there are a finite number of trees to enumerate. Here is the general way this would work:
Nodes is a valid number of nodes
nil is a valid binary tree with 0 nodes
arbol(_, TL, TR) is a valid binary tree with N nodes if NL and NR2 add up to N-1 and TL is a valid binary tree of NL nodes, and TR is a valid binary tree of NR nodes. Since Prolog will find all solutions from a given point before backtracking prior to that point, it will search for all of the trees with the given number of nodes first before backtracking to a new valid number of nodes.
In Prolog, it looks like this.
:- use_module(library(clpfd)).
es_arbol(Tree) :-
length(_, Nodes),
es_arbol(Tree, Nodes).
I'm using length/2 to "generate" Nodes values of 0, 1, 2, etc. es_arbol(Tree) will succeed with binary trees with successive node counts starting at 0. For a given node count, Nodes, it will find all the solutions to es_arbol(Tree, Nodes) before it finally fails and backtracks to length(_, Nodes) again which will succeed on the next value of Node.
es_arbol(nil, 0).
es_arbol(arbol(_,TreeL,TreeR), N) :-
N #> 0,
NL + NR #= N - 1,
NL #>= 0, NR #>= 0,
es_arbol(TreeL, NL),
es_arbol(TreeR, NR).
The base case is trivial. nil is the tree with 0 nodes. The recursive case says that arbol(_,L,R) is a binary tree with N nodes if N > 0, NL and NR are non-negative integers that add up to N, and TL and TR are binary trees with length NL and NR, respectively.
The results of running the above code are:
?- es_arbol(Tree).
Tree = nil ;
Tree = arbol(_G258, nil, nil) ;
Tree = arbol(_G17, nil, arbol(_G157, nil, nil)) ;
Tree = arbol(_G17, arbol(_G200, nil, nil), nil) ;
Tree = arbol(_G14, nil, arbol(_G154, nil, arbol(_G593, nil, nil))) ;
Tree = arbol(_G14, nil, arbol(_G154, arbol(_G603, nil, nil), nil)) ;
Tree = arbol(_G14, arbol(_G130, nil, nil), arbol(_G191, nil, nil)) ;
Tree = arbol(_G14, arbol(_G53, nil, arbol(_G193, nil, nil)), nil) ;
Tree = arbol(_G14, arbol(_G53, arbol(_G236, nil, nil), nil), nil) ;
Tree = arbol(_G14, nil, arbol(_G100, nil, arbol(_G214, nil, arbol(_G354, nil, nil)))) ;
Tree = arbol(_G14, nil, arbol(_G100, nil, arbol(_G214, arbol(_G397, nil, nil), nil))) ;
Tree = arbol(_G14, nil, arbol(_G100, arbol(_G216, nil, nil), arbol(_G277, nil, nil))) ;
Tree = arbol(_G14, nil, arbol(_G100, arbol(_G139, nil, arbol(_G279, nil, nil)), nil)) ;
Tree = arbol(_G14, nil, arbol(_G100, arbol(_G139, arbol(_G322, nil, nil), nil), nil)) ;
Tree = arbol(_G14, arbol(_G130, nil, nil), arbol(_G191, nil, arbol(_G664, nil, nil))) ;
Tree = arbol(_G14, arbol(_G130, nil, nil), arbol(_G191, arbol(_G674, nil, nil), nil)) ;
Tree = arbol(_G14, arbol(_G132, nil, arbol(_G272, nil, nil)), arbol(_G676, nil, nil)) .
...
As #false has pointed out in the comments, the use of CLP(FD) is not the most efficient way in this case of applying a enumerative constraint. An alternative, more efficient means would be to use between/3:
es_arbol(nil, 0).
es_arbol(arbol(_,TreeL,TreeR), N) :-
N > 0,
N1 is N - 1,
between(0, N1, NL),
NR is N1 - NL,
es_arbol(TreeL, NL),
es_arbol(TreeR, NR).
Lurker has already given a very nice general solution using CLP(FD) constraints.
I would like to augment the existing answer with an alternative way to constrain the depth of the search. Instead of integers, I am using a list to "count" in a symbolic way.
To reason about lists in Prolog, DCG notation (dcg) is often very convenient, also in this case:
es_arbol(nil) --> [].
es_arbol(arbol(_,I,D)) --> [_], es_arbol(I), es_arbol(D).
Declaratively, you can think about these rules as "consuming credit" to apply.
If I query naively, then I get an unfair enumeration:
?- phrase(es_arbol(A), Ls).
A = nil,
Ls = [] ;
A = arbol(_9016, nil, nil),
Ls = [_9024] ;
A = arbol(_9016, nil, arbol(_9030, nil, nil)),
Ls = [_9024, _9038] ;
A = arbol(_9016, nil, arbol(_9030, nil, arbol(_9044, nil, nil))),
Ls = [_9024, _9038, _9052] ;
A = arbol(_9016, nil, arbol(_9030, nil, arbol(_9044, nil, arbol(_9058, nil, nil)))),
Ls = [_9024, _9038, _9052, _9066] .
The point is that we can easily turn this into a fair enumeration by restricting the length of the list. For example, to get all trees with exactly two inner node, we can use:
?- phrase(es_arbol(A), [_,_]).
A = arbol(_10426, nil, arbol(_10434, nil, nil)) ;
A = arbol(_10426, arbol(_10434, nil, nil), nil) ;
false.
Building on this, we can use iterative deepening to fairly enumerate all tree shapes:
?- length(Ls, _), phrase(es_arbol(A), Ls).
Ls = [],
A = nil ;
Ls = [_7130],
A = arbol(_7142, nil, nil) ;
Ls = [_7130, _7136],
A = arbol(_7148, nil, arbol(_7156, nil, nil)) ;
Ls = [_7130, _7136],
A = arbol(_7148, arbol(_7156, nil, nil), nil) ;
Ls = [_7130, _7136, _7142],
A = arbol(_7154, nil, arbol(_7162, nil, arbol(_7170, nil, nil))) ;
Ls = [_7130, _7136, _7142],
A = arbol(_7154, nil, arbol(_7162, arbol(_7170, nil, nil), nil)) ;
Ls = [_7130, _7136, _7142],
A = arbol(_7154, arbol(_7162, nil, nil), arbol(_7170, nil, nil)) .
Thus, counting "symbolically" is sometimes a convenient alternative to using actual integers.
I am going to implement getting all leaves from tree to list and vice versa - for list of leaves construct tree - I know that such trees is infitity.
leaves(nil) -->
[].
leaves(t(X, nil, nil)) -->
[X].
leaves(t(_, t(Y, L, R), nil)) -->
leaves(t(Y, L, R)).
leaves(t(_, t(X, LL, LR), t(Y, RL, RR))) -->
leaves(t(X, LL, LR)),
leaves(t(Y, RL, RR)).
Is seems to be even workin, for example
phrase( leaves( t(6, t(3,
t(1, nil, nil),
t(5, nil, nil)
),
t(4,
t(2, nil, nil),
t(8,
t(7, nil, nil),
t(9, nil, nil)
)
)
)
), X).
X = [1, 5, 2, 7, 9] ;
false.
One result, as expected. However, problem is in vice versa - it is looping - of course it is obvious that there are infitely such tree - but I dosen't give any result.
phrase(leaves(X), [1, 5, 2, 7, 9]) is looping, but for
phrase(leaves(X), [1]) it seems to be working in expected way:
X = t(1, nil, nil) ;
X = t(_G8388509, t(1, nil, nil), nil) ;
X = t(_G8388509, t(_G8388513, t(1, nil, nil), nil), nil)
Is it possible to implement it such that it will be working in the same way for one-element list ?
Edit
After reexamining your prior answers, I come to following conclusions:
leaves(nil, Ls, Ls) --> [].
leaves(t(X, nil, nil), Ls, Ls) -->[X].
leaves(t(_, t(Y, L, R), nil), [_|Ls0], Ls) -->
leaves(t(Y, L, R), Ls0, Ls).
leaves(t(_, nil, t(Y, L, R)), [_|Ls0], Ls) -->
leaves(t(Y, L, R), Ls0, Ls).
leaves(t(_, t(X, LL, LR), t(Y, RL, RR)), [_|Ls0], Ls) -->
leaves(t(X, LL, LR), Ls0, Ls1),
leaves(t(Y, RL, RR), Ls1, Ls).
phrase(leaves(X, [1,2], _), [1,2]).
X = t(_G1522, t(_G1526, t(1, nil, nil), t(2, nil, nil)), nil) ;
X = t(_G1522, nil, t(_G1526, t(1, nil, nil), t(2, nil, nil))) ;
X = t(_G1522, t(1, nil, nil), t(2, nil, nil)) ;
X = t(_G1522, t(1, nil, nil), t(_G1530, t(2, nil, nil), nil)) ;
X = t(_G1522, t(1, nil, nil), t(_G1530, nil, t(2, nil, nil))) ;
X = t(_G1522, t(_G1526, t(1, nil, nil), nil), t(2, nil, nil)) ;
X = t(_G1522, t(_G1526, nil, t(1, nil, nil)), t(2, nil, nil)) ;
false.
I expected infite result, but I got finite result. However, is it incorrect ?
I'm a Prolog rookie, please keep that in mind.
I try to write a predicate to determine if some given term is a binary search tree. I figured out this code:
is_btree(nil).
is_btree(node(N,L,R)) :-
number(N),
is_btree(L),
is_btree(R),
small(N, R),
big(N, L).
small(N, nil).
small(N, node(M,L,R)) :-
N < M,
small(N, L),
small(N, R).
big(N, nil).
big(N, node(M,L,R)) :-
N > M,
big(N, L),
big(N, R).
It works quite fine until I test a graph that has a node on the right side which passes the condition "higher than parent node", but it is higher or equal to parent node of the parent node. In this case Prolog reports failure.
Here is a sample query which fails unexpectedly:
?- is_btree(node(9,node( 3,node( 2,nil,nil),
node(10,nil,nil)),
node(12,node( 8,nil,nil),
node(15,nil,nil)))).
false.
A very similar problem arises when some node on the left side is higher than parent node of the parent node—a situation that is shown in the following illustration:
How can I check node values only with the value of their immediate parent node, but not the values of parents' parents?
Here's a slightly different take on the problem you want to solve.
dcg for collecting elements: in-order tree-traversal
in_order(nil) --> [].
in_order(node(X,L,R)) --> in_order(L), [X], in_order(R).
clpfd for relating adjacent list elements (which are all finite-domain variables)
chain(Zs, #<)
Let's put it all together and define is_bintreeFD/1 like this:
:- use_module(library(clpfd)).
is_bintreeFD(T) :-
phrase(in_order(T), Zs),
chain(Zs, #<).
Sample queries:
?- is_bintreeFD(node(9,node( 3,node(2,nil,nil),node(10,nil,nil)),
node(12,node(8,nil,nil),node(15,nil,nil)))).
false.
?- is_bintreeFD(node(9,node( 3,node( 2,nil,nil),node( 8,nil,nil)),
node(12,node(10,nil,nil),node(15,nil,nil)))).
true.
This answer directly follows up on this previous answer, particularly on a comment by #WillNess that suggested "[...] switch the two goals, so the traversal is stopped as soon as possible on failure [...] to have chain before the phrase [...]".
lazy_chain/2 is like chain/2, but utilizes prolog-coroutining to wait for sufficient instantiation:
:- use_module(library(clpfd)).
lazy_chain(Zs, R_2) :-
( var(R_2) -> instantiation_error(R_2)
; clpfd:chain_relation(R_2) -> freeze(Zs, lazy_chain_aux(Zs,R_2))
; otherwise -> domain_error(chain_relation, R_2)
).
lazy_chain_aux([], _).
lazy_chain_aux([Z0|Zs], R_2) :-
freeze(Zs, lazy_chain_aux_(Zs,R_2,Z0)).
lazy_chain_aux_([], _, _).
lazy_chain_aux_([Z1|Zs], R_2, Z0) :-
call(R_2, Z0, Z1),
freeze(Zs, lazy_chain_aux_(Zs,R_2,Z1)).
Based on lazy_chain/2 we define is_bintreeL/2 like this:
is_bintreeL(T) :-
lazy_chain(Zs, #<),
phrase(in_order(T), Zs).
So... what about "early failure"?
?- T = node(2, nil, node(1, nil, node(3, nil, node(4, nil, node(5, nil, node(6, nil, node(7, nil, node(8, nil, node(9, nil, node(10, nil, node(11, nil, node(12, nil, node(13, nil, node(14, nil, node(15, nil, node(16, nil, node(17, nil, node(18, nil, node(19, nil, node(20, nil, node(21, nil, node(22, nil, node(23, nil, node(24, nil, node(25, nil, node(26, nil, node(27, nil, node(28, nil, node(29, nil, node(30, nil, node(31, nil, node(32, nil, node(33, nil, node(34, nil, node(35, nil, node(36, nil, node(37, nil, node(38, nil, node(39, nil, node(40, nil, node(41, nil, node(42, nil, node(43, nil, node(44, nil, node(45, nil, node(46, nil, node(47, nil, node(48, nil, node(49, nil, node(50, nil, node(51, nil, node(52, nil, node(53, nil, node(54, nil, node(55, nil, node(56, nil, node(57, nil, node(58, nil, node(59, nil, node(60, nil, node(61, nil, node(62, nil, node(63, nil, node(64, nil, node(65, nil, node(66, nil, node(67, nil, node(68, nil, node(69, nil, node(70, nil, node(71, nil, node(72, nil, node(73, nil, node(74, nil, node(75, nil, node(76, nil, node(77, nil, node(78, nil, node(79, nil, node(80, nil, node(81, nil, node(82, nil, node(83, nil, node(84, nil, node(85, nil, node(86, nil, node(87, nil, node(88, nil, node(89, nil, node(90, nil, node(91, nil, node(92, nil, node(93, nil, node(94, nil, node(95, nil, node(96, nil, node(97, nil, node(98, nil, node(99, nil, node(100, nil, nil)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))),
time((phrase(in_order(T),Zs),eager_chain(Zs,#<))).
% 210 inferences, 0.000 CPU in 0.000 seconds (98% CPU, 4100201 Lips)
false.
?- T = node(2, nil, node(1, nil, node(3, nil, node(4, nil, node(5, nil, node(6, nil, node(7, nil, node(8, nil, node(9, nil, node(10, nil, node(11, nil, node(12, nil, node(13, nil, node(14, nil, node(15, nil, node(16, nil, node(17, nil, node(18, nil, node(19, nil, node(20, nil, node(21, nil, node(22, nil, node(23, nil, node(24, nil, node(25, nil, node(26, nil, node(27, nil, node(28, nil, node(29, nil, node(30, nil, node(31, nil, node(32, nil, node(33, nil, node(34, nil, node(35, nil, node(36, nil, node(37, nil, node(38, nil, node(39, nil, node(40, nil, node(41, nil, node(42, nil, node(43, nil, node(44, nil, node(45, nil, node(46, nil, node(47, nil, node(48, nil, node(49, nil, node(50, nil, node(51, nil, node(52, nil, node(53, nil, node(54, nil, node(55, nil, node(56, nil, node(57, nil, node(58, nil, node(59, nil, node(60, nil, node(61, nil, node(62, nil, node(63, nil, node(64, nil, node(65, nil, node(66, nil, node(67, nil, node(68, nil, node(69, nil, node(70, nil, node(71, nil, node(72, nil, node(73, nil, node(74, nil, node(75, nil, node(76, nil, node(77, nil, node(78, nil, node(79, nil, node(80, nil, node(81, nil, node(82, nil, node(83, nil, node(84, nil, node(85, nil, node(86, nil, node(87, nil, node(88, nil, node(89, nil, node(90, nil, node(91, nil, node(92, nil, node(93, nil, node(94, nil, node(95, nil, node(96, nil, node(97, nil, node(98, nil, node(99, nil, node(100, nil, nil)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))),
time((lazy_chain(Zs,#<),phrase(in_order(T),Zs))).
% 52 inferences, 0.000 CPU in 0.000 seconds (98% CPU, 1225664 Lips)
false.
Laziness wins—at least in above case:)
Note, however, that using lazy_chain/2 with dcg can lead to bugs that are hard to find!
For a more robust solution, see this alternative answer...
For the sake of completeness, here's the source code of eager_chain/2:
eager_chain(Zs, R_2) :-
( var(R_2) -> instantiation_error(R_2)
; clpfd:chain_relation(R_2) -> eager_chain_aux(Zs, R_2)
; otherwise -> domain_error(chain_relation, R_2)
).
eager_chain_aux([], _).
eager_chain_aux([Z0|Zs], R_2) :-
eager_chain_aux_(Zs, R_2, Z0).
eager_chain_aux_([], _, _).
eager_chain_aux_([Z1|Zs], R_2, Z0) :-
call(R_2, Z0, Z1),
eager_chain_aux_(Zs, R_2, Z1).
In this answer we use clpfd
for declarative integer arithmetics.
:- use_module(library(clpfd)).
:- asserta(clpfd:full_answer).
We define the predicates is_bintree/1 and bintree_in/2 like this:
is_bintree(T) :-
bintree_in(T, _).
bintree_in(nil, LB-UB) :- % LB-UB denotes the open interval (LB,UB)
LB #< UB. % that is all integers I suchthat LB<I<UB
bintree_in(node(Mid,L,R), LB-UB) :-
Mid #> LB,
Mid #< UB,
bintree_in(L, LB-Mid),
bintree_in(R, Mid-UB).
First, we test1,2 the tree given by the OP:
| ?- bintree_in(node(9,node( 3,node(2,nil,nil),node(10,nil,nil)),
node(12,node(8,nil,nil),node(15,nil,nil))), _).
no
Let's fix the tree and check again!
| ?- bintree_in(node(9,node( 3,node( 2,nil,nil),node( 8,nil,nil)),
node(12,node(10,nil,nil),node(15,nil,nil))), _).
_A in inf..1, _B in 16..sup ? ; % (somewhat sloppy)
no
OK! Next up are a few corner cases:
| ?- bintree_in(T, 0-0). % no solution (as expected)
no
| ?- bintree_in(T, 0-1). % empty tree
T = nil ? ;
no
| ?- bintree_in(T, 0-2). % singleton tree
T = nil ? ;
T = node(1,nil,nil) ? ;
no
Note that while is_btree/1 can only "test", bintree_in/2 can both3 "test" and "generate"!
So let's generate (all possible) binary trees of a certain size in a small domain:
| ?- bintree_in(T, 0-3). % T has less than 3 elements
T = nil ? ;
T = node(_A,nil,nil), _A in 1..2 ? ;
T = node(1,nil,node(2,nil,nil)) ? ;
T = node(2,node(1,nil,nil),nil) ? ;
no
| ?- bintree_in(T, 0-4). % T has less than 4 elements
T = nil ? ;
T = node(_A,nil,nil), _A in 1..3 ? ;
T = node(_A,nil,node(_B,nil,nil)), _A#=<_B+ -1, _B#>=_A+1, _B in 2..3, _A in 1..2 ? ;
T = node(1,nil,node(2,nil,node(3,nil,nil))) ? ;
T = node(1,nil,node(3,node(2,nil,nil),nil)) ? ;
T = node(_A,node(_B,nil,nil),nil), _A#>=_B+1, _A in 2..3, _B in 1..2 ? ;
T = node(2,node(1,nil,nil),node(3,nil,nil)) ? ;
T = node(3,node(1,nil,node(2,nil,nil)),nil) ? ;
T = node(3,node(2,node(1,nil,nil),nil),nil) ? ;
no
Last, we generate candidate solutions with bintree_in/2 and test these with is_btree/1!
is_btree/1 needs sufficient instantiation; labeling/2 provides us with ground terms.
| ?- call_time(( UB in 2..12,
indomain(UB),
bintree_in(T, 0-UB),
term_variables(T, Zs),
labeling([], Zs),
\+ is_btree(T)
; true
),
T_ms).
T_ms = 6270 ? ;
no
Footnote 1:
The code in this answer runs (at on sicstus-prolog and swi-prolog.
Footnote 2:
All prolog-toplevel output presented is that of
SICStus Prolog 4.3.2 (64-bit).
Footnote 3:
Not just do both, but
(almost) arbitrarily mix generate and test, as it can handle partially instantiated terms.
In a comment to this previous answer, #WillNess suggested adding "early-failure" as a feature.
in_order_inf_sup//3 effectively combines in_order//1 and
chain/2:
:- use_module(library(clpfd)).
in_order_inf_sup(nil, P, P) --> [].
in_order_inf_sup(node(X,L,R), P0, P) -->
in_order_inf_sup(L, P0, P1),
[X],
{ P1 #< X },
in_order_inf_sup(R, X, P).
Sample queries (same as in previous answer):
?- phrase(in_order_inf_sup(node(9,node( 3,node(2,nil,nil),node(10,nil,nil)),
node(12,node(8,nil,nil),node(15,nil,nil))),_,_),
Zs).
false.
?- phrase(in_order_inf_sup(node(9,node( 3,node( 2,nil,nil),node( 8,nil,nil)),
node(12,node(10,nil,nil),node(15,nil,nil))),_,_),
Zs).
Zs = [2,3,8,9,10,12,15].
But it should fail. That tree is an invalid BST and your predicate tests for valid BSTs.
There is something to be done here though. Right now you perform two passes over a tree - first in is_btree, second, with small/big.
The two can be fused into one, but an immediately apparent solution will do exactly what you want, and thus succeed on such invalid BSTs:
is_bst(nil).
is_bst(node(N,L,R)):-
( L = nil
; L = node(M,LL,LR), M < N, is_bst(L), ....
),
( R = nil
; ......
).
To fix it, we have to return one more result from the tree traversal — that is the tree's rightmost element — and use it in the comparisons for validation.
(edit: missed that the leftmost element also needs to be returned)