What is bounds propagation in clpfd - prolog

I am trying to figure out what is bounds propagation in clpfd, but cannot seem to find a good explanation anywhere.
I am revising for Prolog and clpfd and came across this question, but looking at the lecture notes it does not make sense to me. Could someone please explain the actual meaning of bounds propagation and what it is used for.
Here is the question I am referring to:
When the following Prolog program:- use_module(library(clpfd)).bounds(X, Y, Z) :-
X in 1..5,
Y in 1..2,
Z in 3..5,
X #= Y + Z.
is queried it gives the answer:
?- bounds(X, Y, Z).
X in 4..5,
Y in 1..2,
Z in 3..4.
Explain how bounds propagation can be applied to infer this answer.

I give you a start:
After all constraints are posted, one thing is immediately clear: X is at least 4. Why? Because Y is at least 1, and Z is at least 3, and X is the sum of Y and Z.
Given this knowledge, go through the posted constraints again, and see if you can adjust any boundaries.
This is what bounds propagation does: going through the boundaries of all variables and seeing if any of them can be adjusted due to the posted constraints. This is repeated until there are no more possible domain reductions.

Related

CLP(FD) variable domains & propagation

In my Prolog course the past semester, I fell a little behind around the time CLP was introduced. Now I'm trying to catch up, and have tried my hand at a past exam that the professor supplied to all students.
In particular, there was this question:
What is the domain of the decision variable Z in CLP(FD) after the following query:
?- X in 1..7, Y in -3..100, Y #> X, Z #\= 0, Z #= Y - X.
It seems to me that the answer should be
Z in 1..99
but when I ran it in my SWI-Prolog installation to double-check, I got
Z in -5.. -1\/1..99
which seems to be based on a naive comparison of the maximum and minimum values of X & Y, without regard for the constraint linking them (Y #> X).
I realize that concessions to feasibility have to be made here and the domains returned will sometimes be less restrictive than they could be, but I'm surprised to see it fail on such a simple example.
My questions
I assume that this has to do with how CLP chooses to propagate (or not to propagate) various constraints internally, but I don't understand how it does that - it's all something of a black box for me. How, exactly (or failing that, approximately), does CLP propagate its constraints?
Is there any way to make CLP(FD) apply the constraint appropriately, perhaps by reordering? I've already tried tacking on an extra Y #> X at the end, but that didn't change any of the variables domains.
It seems to me that the answer should be
Z in 1..99
How can you be so sure that you are right? This is one of the nice properties of constraints: You can verify this most easily:
?- X in 1..7, Y in -3..100, Y #> X, Z #\= 0, Z #= Y -X.
X in 1..7,
Z+X#=Y,
X#=<Y+ -1,
Z in -5.. -1\/1..99,
Y in 2..100.
?- X in 1..7, Y in -3..100, Y #> X, Z #\= 0, Z #= Y -X, Z #< 0.
false.
OK, now I believe what you said.
So you have discovered here an inconsistency which is present also in SICStus' native library(clpfd) as well as library(clpz). First please note that the answer given was not incorrect! It said: Yes, there are solutions provided X in 1..7, Z+X#=Y, X#=<Y+ -1, Z in -5.. -1\/1..99, Y in 2..100. is true. Helas, this is not true.
So that answer is a bit like the legalese in many insurance contracts where they say, yes we will pay, provided all that tiny unreadable print holds, but in reality you could replace that wall of microtext by a big fat false.
In general, such inconsistencies are inevitable since CLP(FD)/CLP(Z) as defined in above systems permits to formulate undecidable problems. Thus, no matter how evolved your constraint solver is, we have the guarantee that there will be always cases that we cannot solve. That's a scientific, mathematical law, much more reliable than empirical laws like gravity or that speed limit.
The inconsistency here is effectively an engineering tradeoff. As long as nobody complains and doesn't have a convincing use case, the developers of such systems will not see a reason to improve. After all, such an improvement might slow down existing use cases.
How, exactly (or failing that, approximately), does CLP propagate its constraints?
Actually, for any problem of realistic size, nobody knows. But this is not necessary either. In the case of CLP(FD), the fundamental element are the domains attached to the logical variables. You see them as (in)/2 goals like Z in -5.. -1\/1..99. Connected between them are the actual constraints. In your case Y #> X and Z #= Y-X. These constraints now only see the domains of the variables and try to maintain consistency between them. As an even coarser approximation, the domains are seen as intervals thus Z in -5 .. 99 instead of above. What (most of them) do not see are the other constraints. In this case, there is no direct connection between Y #> X and Z #= Y-X. And thus the inconsistency. Such limited consistency checks are much easier to implement and also quite fast and often outperform more complete algorithms. With the discovery of better algorithms things evolve. A nice example is all_distinct/1 which maintains consistency between all variables using Regin's algorithm, whereas all_different/1 only maintains consistency between each pair of variables. But in any case: these things evolve and it is a bit of a surprise that this is an exam question.
Is there any way to make CLP(FD) apply the constraint appropriately ...?
?- X in 1..7, Y in -3..100, Y #> X, Z #\= 0, Z #= Y -X, clpfd:contracting([X,Y,Z]).
X in 1..7,
Z+X#=Y,
X#=<Y+ -1,
Z in 1..99,
Y in 2..100.
But most will ignore this issue and just add labeling([],[X,Y])
What is the domain of Z?
That is an ambiguous question. Give both as an answer.

SWI Prolog vs. GNU Prolog - CLP(FD) issues under SWI

I wrote a quick predicate in Prolog trying out CLP(FD) and its ability to solve systems of equations.
problem(A, B) :-
A-B #= 320,
A #= 21*B.
When I call it in SWI, I get:
?- problem(A,B).
320+B#=A,
21*B#=A.
Whereas in GNU, I get the correct answer of:
| ?- problem(A,B).
A = 336
B = 16
What's going on here? Ideally I'd like to get the correct results in SWI as it's a much more robust environment.
This is a good observation.
At first glance, it will no doubt appear to be a shortcoming of SWI that it fails to propagate as strongly as GNU Prolog.
However, there are also other factors at play here.
The core issue
To start, please try the following query in GNU Prolog:
| ?- X #= X.
Declaratively, the query can be read as: X is an integer. The reasons are:
(#=)/2 only holds for integers
X #= X does not constrain the domain of the integer X in any way.
However, at least on my machine, GNU Prolog answers with:
X = _#0(0..268435455)
So, in fact, the domain of the integer X has become finite even though we have not restricted it in any way!
For comparison, we get for example in SICStus Prolog:
?- X #= X.
X in inf..sup.
This shows that the domain of the integer X has not been restricted in any way.
Replicating the result with CLP(Z)
Let us level the playing field. We can simulate the above situation with SWI-Prolog by artificially restricting the variables' domains to, say, the finite interval 0..264:
?- problem(A, B),
Upper #= 2^64,
[A,B] ins 0..Upper.
In response, we now get with SWI-Prolog:
A = 336,
B = 16,
Upper = 18446744073709551616.
So, restricting the domain to a finite subset of integers has allowed us to replicate the result we know from GNU Prolog also with the CLP(FD) solver of SWI-Prolog or its successor, CLP(Z).
The reason for this
The ambition of CLP(Z) is to completely replace low-level arithmetic predicates in user programs by high-level declarative alternatives that can be used as true relations and of course also as drop-in replacements. For this reason, CLP(Z) supports unbounded integers, which can grow as large as your computer's memory allows. In CLP(Z), the default domain of all integer variables is the set of all integers. This means that certain propagations that are applied for bounded domains are not performed as long as one of the domains is infinite.
For example:
?- X #> Y, Y #> X.
X#=<Y+ -1,
Y#=<X+ -1.
This is a conditional answer: The original query is satisfiable iff the so-called residual constraints are satisfiable.
In contrast, we get with finite domains:
?- X #> Y, Y #> X, [X,Y] ins -5000..2000.
false.
As long as all domains are finite, we expect roughly the same propagation strength from the involved systems.
An inherent limitation
Solving equations over integers is undecidable in general. So, for CLP(Z), we know that there is no decision algorithm that always yields correct results.
For this reason, you sometimes get residual constraints instead of an unconditional answer. Over finite sets of integers, equations are of course decidable: If all domains are finite and you do not get a concrete solution as answer, use one of the enumeration predicates to exhaustively search for solutions.
In systems that can reason over infinite sets of integers, you will sooner or later, and necessarily, encounter such phenomena.

relational prolog and bit mask manipulations

I am trying my hand at relational prolog. Part of my program needs to deal with bitmasks. It however seems that prolog code handles bit makes, such as to set a bit or clear a bit doesn't work relationally -- i.e. it only works in setting a bit, but not in the other direction, identifying what bit is set.
For example:
setbit(X, N, V) :-
N1 #= 1<< N,
V #= X \/ N1.
this code only work in one direction, where X and N are given and V is calculated. If one provides V and N, then X is not derived, but rather its left as an uninstantiated expression.
Does this mean that calculating with bit maps and masks is out of scope of relational prolog.
?- setbit(0,1,X).
X = 2.
?- setbit(X, 1, 2).
2#=X\/2.
the latter doesn't bind X to 0.
thank you,
Daniel
Edit: based on the comments below, the following code works very well:
setbit(X, N, V) :-
X in 0..1,
label([X]),
N1 #= 1<< N,
V #= X \/ N1.
clearbit(X, N, V) :-
X in 0..1,
label([X]),
current_prolog_flag(max_tagged_integer, MTI),
N1 #= MTI /\ \(1<<N),
% N1 #= 0xffffffffffffff /\ \(1<<N),
V #= X /\ N1
Note, the current_prolog_flag -- it retrieves the maximum integer fitting into one word on the current machine architecture -- on 64 bit its 54 bits, the rest of the bits are used for housekeeping.
From a given solution, you cannot conclude that it is the only solution. That is, from
?- setbit(0,1,X).
X = 2.
you cannot conclude that
?- setbit(X, 1, 2).
has X = 0 as the only solution. In fact, there is another solution, namely
?- setbit(2, 1, 2).
true.
Ideally, all constraints would maintain domain-consistency. In this ideal world we would have:
?- setbit(X, 1, 2).
X in 0\/2, % idealiter
2#=X\/2.
instead of
?- setbit(X, 1, 2).
2#=X\/2. % realiter
But first of all, let us realize that both answers are correct! The second answer says precisely the same as the ideal one. However, finding a concrete solution may be more costly in the second case. In particular, since the following query has an answer:
?- setbit(X, 1, 2), X #> 2.
X in 3..sup,
2#=X\/2. % inconsistency
This answer reads like the notice of winning a lottery ticket you never heard of:
Yes, congratulation! There is a solution, provided all this fine print, this X in 3..sup, 2#=/2 has a solution, otherwise it does not have any solution. So don't complain, we told you so.
That is, an answer may very well contain exactly zero solutions. To be absolutely sure about a solution, you have to eliminate all constraints. The easiest way to do so, is using labeling/2. However, labeling/2 is defined only for finite domains (that's where the FD in CLPFD stems from). But in this case X is not constrained to a finite domain - would that be the case, we would have an extra constraint like X in 0..2.
The degree of consistency in clpfd-systems heavily depends on the actual use cases. After all, full consistency is undecidable. So there will always be cases where we would expect a more precise outcome. It is rather a question of tradeoffs for both run- and development time. Should you have convincing use cases contact the system developer.
In this particular case, you are probably better off using modulo arithmetics and addition.
I am not great at clpfd, but I think the problem here is that you haven't given X a finite domain or asked for its values to be enumerated. This works:
?- setbit(X, 1, 2), X in 0..1, label([X]).
X = 0 ;
false.
The second expression there, X in 0..1 says you want X to be zero or one, and the third says, "give me the values X can obtain."

What is bounds propagation

I am trying to figure out what is bounds propagation in clpfd, but cannot seem to find a good explanation anywhere.
I am revising for Prolog and clpfd and came across this question, but looking at the lecture notes it does not make sense to me. Could someone please explain the actual meaning of bounds propagation and what it is used for.
Here is the question I am referring to:
When the following Prolog program
:- use_module(library(clpfd)).
bounds(X, Y, Z) :-
X in 1..5,
Y in 1..2,
Z in 3..5,
X #= Y + Z.
is queried it gives the answer:
?- bounds(X, Y, Z).
X in 4..5,
Y in 1..2,
Z in 3..4.
Explain how bounds propagation can be applied to infer this answer.
Bounds propagation is a form of propagation that the constraint solver automatically applies for you. The key point, for users, is that they need not understand the algorithm behind it, but can simply rely on the constraint solver to do the work for them. In the result you show, the solver has already applied this form of propagation.
To understand what the constraint solver is doing for you, here is a start:
We know:
Y is at least 1
Z is at least 3
X is the sum of Y and Z.
Hence (exercise: Why?): X is at least 4.
Then, repeat this reasoning for all other variables, for both upper and lower bounds!
Repeat this until no more domain elements can be removed from any of the variables, which is called a fix point of the propagation. When this is done, you have established bounds consistency.

prolog doesn't give me a solution when one exists

I am working through Seven Languages in Seven Weeks, but there is something I don't understand about prolog. I have the following program (based on their wallace and grommit program):
/* teams.pl */
onTeam(a, aTeam).
onTeam(b, aTeam).
onTeam(b, superTeam).
onTeam(c, superTeam).
teamMate(X, Y) :- \+(X = Y), onTeam(X, Z), onTeam(Y, Z).
and load it like this
?- ['teams.pl'].
true.
but it doesn't give me any solutions to the following
?- teamMate(a, X).
false.
it can solve simpler stuff (which is shown in the book):
?- onTeam(b, X).
X = aTeam ;
X = superTeam.
and there are solutions:
?- teamMate(a, b).
true ;
false.
What am I missing? I have tried with both gnu prolog and swipl.
...AND THERE IS MORE...
when you move the "can't be your own teammate" restriction to then end:
/* teams.pl */
onTeam(a, aTeam).
onTeam(b, aTeam).
onTeam(b, superTeam).
onTeam(c, superTeam).
teamMate(X, Y) :- onTeam(X, Z), onTeam(Y, Z), \+(X = Y).
it gives me the solutions I would expect:
?- ['teams.pl'].
true.
?- teamMate(a, X).
X = b.
?- teamMate(b, X).
X = a ;
X = c.
What gives?
You have made a very good observation! In fact, the situation is even worse, because even the most general query fails:
?- teamMate(X, Y).
false.
Declaratively, this means "there are no solutions whatsoever", which is obviously wrong and not how we expect relations to behave: If there are solutions, then more general queries must not fail.
The reason you get this strange and logically incorrect behaviour is that (\+)/1 is only sound if its arguments are sufficiently instantiated.
To express disequality of terms in a more general way, which works correctly no matter if the arguments are instantiated or not, use dif/2, or, if your Prolog system does not provide it, the safe approximation iso_dif/2 which you can find in the prolog-dif tag.
For example, in your case (note_that_I_am_using_underscores_for_readability instead of tuckingTheNamesTogetherWhichMakesThemHarderToRead):
team_mate(X, Y) :- dif(X, Y), on_team(X, Z), on_team(Y, Z).
Your query now works exactly as expected:
?- team_mate(a, X).
X = b.
The most general query of course also works correctly:
?- team_mate(X, Y).
X = a,
Y = b ;
X = b,
Y = a ;
X = b,
Y = c ;
etc.
Thus, using dif/2 to express disequality preserves logical-purity of your relations: The system now no longer simply says false even though there are solutions. Instead, you get the answer you expect! Note that, in contrast to before, this also works no matter where you place the call!
The answer by mat gives you some high-level considerations and a solution. My answer is a more about the underlying reasons, which might or might not be interesting to you.
(By the way, while learning Prolog, I asked pretty much the same question and got a very similar answer by the same user. Great.)
The proof tree
You have a question:
Are two players team mates?
To get an answer from Prolog, you formulate a query:
?- team_mate(X, Y).
where both X and Y can be free variables or bound.
Based on your database of predicates (facts and rules), Prolog tries to find a proof and gives you solutions. Prolog searches for a proof by doing a depth-first traversal of a proof tree.
In your first implementation, \+ (X = Y) comes before anything else, so it at the root node of the tree, and will be evaluated before the following goals. And if either X or Y is a free variable, X = Y must succeed, which means that \+ (X = Y) must fail. So the query must fail.
On the other hand, if either X or Y is a free variable, dif(X, Y) will succeed, but a later attempt to unify them with each other must fail. At that point, Prolog will have to look for a proof down another branch of the proof tree, if there are any left.
(With the proof tree in mind, try to figure out a way of implementing dif/2: do you think it is possible without either a) adding some kind of state to the arguments of dif/2 or b) changing the resolution strategy?)
And finally, if you put \+ (X = Y) at the very end, and take care that both X and Y are ground by the time it is evaluated, then the unification becomes more like a simple comparison, and it can fail, so that the negation can succeed.

Resources