I have a list like: [a([x,y]), b([u,v])] and I want my result as [[x,y], [u,v]].
Here is my code:
p(L, Res) :-
findall(X, (member(a(X), L)), A1), append([A1],[],L1),
findall(Y, (member(b(Y), L)), A2), append(L1,[A2],L2),
append(L2, Res).
This provides a partially good result but if my list is [a([x,y]), c([u,v])], I would like the result to be: [[x,y],[]] and it is [[x,y]].
More examples:
p([b([u,v]), a([x,y]), c([s,t]), d([e,f])], R)
The result I get: [[x,y],[u,v]] (as expected).
p([b([u,v]), z([x,y]), c([s,t]), d([e,f])], R)
The result I get: [[u,v]]'.
The result I want: [[],[u,v]].
EDIT: Added more examples.
Now that it's clear what the problem statement really is, the solution is a little more understood. Your current solution is a little bit overdone and can be simplified. Also, the case where you want to have a [] element when the term isn't found falls a little outside of the paradigm, so can be handled as an exception. #AnsPiter has the right idea about using =../2, particularly if you need a solution that handles multiple occurrences of a and/or b in the list.
p(L, Res) :-
find_term(a, L, As), % Find the a terms
find_term(b, L, Bs), % Find the b terms
append(As, Bs, Res). % Append the results
find_term(F, L, Terms) :-
Term =.. [F, X],
findall(X, member(Term, L), Ts),
( Ts = [] % No results?
-> Terms = [[]] % yes, then list is single element, []
; Terms = Ts % no, then result is the list of terms
).
Usage:
| ?- p([b([u,v]), z([x,y]), c([s,t]), d([e,f])], R).
R = [[],[u,v]]
yes
| ?- p([b([x,y]), a([u,v])], L).
L = [[u,v],[x,y]]
yes
| ?-
The above solution will handle multiple occurrences of a and b.
If the problem really is restricted to one occurrence of each, then findall/3 and append/3 are way overkill and the predicate can be written:
p(L, [A,B]) :-
( member(a(A), L)
-> true
; A = []
),
( member(b(B), L)
-> true
; B = []
).
Term =.. List : Unifies List with a list whose head is the atom corresponding to the principal functor of
Term and whose tail is a list of the arguments of Term.
Example :
| ?- foo(n,n+1,n+2)=..List.
List = [foo,n,n+1,n+2] ?
| ?- Term=..[foo,n,n+1,n+2].
Term = foo(n,n+1,n+2)
rely on your suggestion; you have a term contains a single argument List
so ;
p([],[]).
p([X|Xs], Result) :-
X=..[F,Y],
(%IF
\+(F='c')-> % not(F=c)
Result=[Y|Res];
%ELSE
Result = Res % Result = [Res] ==> [[x,y],[]]
),
p(Xs,Res).
Test :
| ?- p([a([x,y]), c([u,v])],R).
R = [[x,y]] ?
yes
| ?- p([a([x,y]), b([u,v])],R).
R = [[x,y],[u,v]] ?
yes
Related
I am a beginner in prolog and i have a problem with getting objects from list matching a pattern.
If i have a list [1,2,3,4,5,1,1] . I want to use a predicate selectAll(Elem,List,X).
Where i use ?- selectAll(1,[1,2,3,4,5,1,1],X), I get X =[1,1,1], but i also want to use data structures inside the predicate, not only atoms.
I originally wrote this predicate for getting all matching elements, but it works only for simple cases, where only atoms are used:
selectAll(_, [], []).
selectAll(X, [X | LIST], [X | RES]):-
selectAll(X, LIST, RES),!.
selectAll(X, [H | LIST], RES):-
selectAll(X, LIST, RES).
When i use this test predicate, everything works fine. I get X=[1,1,1], the result i want.
test_select_all:-
selectAll(1, [1,2,3,4,5,1,1], X),
write(X),nl,
fail.
I have a data structure called kv_pairs(A,B) where A and B contain atoms of any type.
So when i use the selectAll predicate for this datatype, i get unwanted results. X = [kv_pair(1,a)]. It selects only 1 element at most.
test_select_all_dict:-
selectAll(kv_pair(1,_), [kv_pair(1, a), kv_pair(1, b),kv_pair(3, jkak), kv_pair(15, asdjk), kv_pair(1, c)], X),
write(X),nl,
fail.
I then created this predicate, specifically for finding list elements, where all types are kv_pairs
selectAll(_, [], []).
selectAll(kv_pair(Arg, _), [kv_pair(Arg,_) | LIST], [kv_pair(Arg,_) | RES]):-
selectAll(kv_pair(Arg, _), LIST, RES),!.
selectAll(kv_pair(Arg, X), [kv_pair(A, B) | LIST], RES):-
selectAll(kv_pair(Arg, X), LIST, RES).
But then i get also unwanted results.
X = [kv_pair(1,_8378),kv_pair(1,_8396),kv_pair(1,_8426)]
How can i get
X = [kv_pair(1,a),kv_pair(1,b),kv_pair(1,c)]?
Any help would be appreciated.
You can use the ISO predicate subsumes_term/2 to undo bindings after unification:
select_all(Pattern, List, Result) :-
select_all_loop(List, Pattern, Result).
select_all_loop([], _, []).
select_all_loop([X|Xs], P, R) :-
( subsumes_term(P, X)
-> R = [X|Ys]
; R = Ys ),
select_all_loop(Xs, P, Ys).
Examples:
?- select_all(kv_pair(1,_), [kv_pair(1,a), kv_pair(1,b), kv_pair(3,c), kv_pair(4,d), kv_pair(1,c)], R).
R = [kv_pair(1, a), kv_pair(1, b), kv_pair(1, c)].
?- select_all(p(1,Y), [p(1,a), p(1,b), p(2,b), p(1,c)], L).
L = [p(1, a), p(1, b), p(1, c)].
?- select_all(p(X,b), [p(1,a), p(1,b), p(2,b), p(1,c)], L).
L = [p(1, b), p(2, b)].
I am still learning Prolog and I came across this little snippet of code that I don't quite know if I have understood correctly.
Code:
% Takes the spiders friends and returns a list with persons who don't know each other.
getConspirators( [], Res, Res).
getConspirators( [H|T], CConspirators, Res):-
append( [H|T], CConspirators, PK),
knowsAtleastOne( PK),
% Gets all the friends of the possible conspirator H.
allFriends( H, PFriends),
subtract( T, PFriends, Pprim),
getConspirators( Pprim, [H|CConspirators], Res).
getConspirators( [_|T], CConspirators, Res) :-
getConspirators( T, CConspirators, Res).
% Checks if any person Y or Y's friends know anybody in PK.
knowsAtleastOne( PK):-
forall( person(Y), (memberchk(Y,PK) ; friendCons(Y,PK)) ).
% Checks if a person X's friends know any of the conspirators.
friendCons( X, Conspirators):-
friend( X, Y),
memberchk( Y, Conspirators),
!.
(this is NOT the whole program, just a small snippet of it)
I am not sure if I have understood the getConspirators( [H|T], CConspirators, Res) :- and the getConspirators( [_|T], CConspirators, Res) :- parts of the
getConspirators predicate. They look almost the same! Now, I do know that the "_" symbol means "literally any value" (AKA Prolog doesn't care about what value it is). But how does Prolog know which case to pick when running through the code? My theory is that Prolog runs the getConspirators( [_|T], CConspirators, Res) :- case if and only if the getConspirators( [H|T], CConspirators, Res) :- case fails (returns false) somewhere along the way. Have I understood this correctly?
There are three elements in play here: backtracking, unification and the list notation. I'll explain the three with a simpler example:
moon(europa).
moon(ganymede).
planet(jupiter).
planet(saturn).
We know that Europa and Ganymede are two moons (of Jupiter) and that Jupiter and Saturn are planets. When we query what planets are known, we write:
?- planet(X).
X = jupiter ; % type ; for the next answer
X = saturn. % there's no more answer, hence .
Unification happens when prolog looks for a rule head which fits to the query where the variables are substituted accordingly. For instance, there is no substitution that makes moon(X) = planet(Y) equal, but there is one for planet(jupiter) = planet(X), namely X=jupiter. That's how you obtain the first solution. For the second solution, Prolog needs to unifywith the second rule head, namely planet(saturn) = planet(X). Because this is done after the first option is completely enumerated, we call this backtracking.
Now we can focus on (linked) lists. A list is either empty ([]) or it has a first element X prepended to a tail list Xs ([X|Xs]). Prolog has also a nicer notation for the list [X | [Y | [] ]], namely [X,Y]. Internally they are the same. When we now want to collect a list of astral objects, we can formulate the following three rules:
astral_objects([]). % The empty list is a list of astral objects.
astral_objects([X|Xs]) :- % The list [X | Xs] is a list of astral objects if...
moon(X), % ... its first element X is a moon
astral_objects(Xs). % ... and the remaining list Xs is a list of astral objects
astral_object([X|Xs]) :- % Likewise for planets
planet(X),
astral_objects(Xs).
When we formulate query for a two-element list, we get all combinations of objects:
?- astral_object([A,B]).
A = B, B = europa ;
A = europa,
B = ganymede ;
A = europa,
B = jupiter ;
A = europa,
B = saturn ;
A = ganymede,
B = europa ;
A = B, B = ganymede ;
A = ganymede,
B = jupiter
%...
By unification, only rules 2 and 3 apply. In both cases we have astral_objects([X|Xs]) = astral_objects([A,B]). Remember that [A,B] is shorthand for [A|[B]] and there for X=A and Xs=[B]. The first rule of the body will unify X with the corresponding moon/planet and the recursion step describes the tail. Again, we unify astral_objects([X|Xs]) = astral_objects([B]), leading to X=B and Xs = []. Now the recursion step will only match the terminal case of the empty list and we have fully explored this path.
Now what happens if we look for an arbitrary list of astral objects?
?- astral_object(Xs).
Xs = [] ;
Xs = [europa] ;
Xs = [europa, europa] ;
Xs = [europa, europa, europa] ;
Xs = [europa, europa, europa, europa] ;
Xs = [europa, europa, europa, europa, europa]
%... does not terminate
The head astral_objects(Xs) matches all three bodies. After returning the substitution for the terminal case, it descends into the first rule over and over again. Since the length of the list is unrestricted, there are an infinite number of solutions to find before the third rule is ever tried. To avoid this, you can fairly enumerate the lists before you try to make them satisfy the predicate:
?- length(Xs,_), astral_object(Xs).
Xs = [] ;
Xs = [europa] ;
Xs = [ganymede] ;
Xs = [jupiter] ;
Xs = [saturn] ;
Xs = [europa, europa] ;
Xs = [europa, ganymede] ;
Xs = [europa, jupiter] ;
Xs = [europa, saturn] ;
Xs = [ganymede, europa]
%...
It still does not terminate, but you see the lists in ascending length and therefore the variety.
the question asked was "the getConspirators([H|T], CConspirators, Res) :- _body_ and the getConspirators([_|T], CConspirators, Res) :- _body_ parts ... My theory is that Prolog runs the getConspirators([_|T], CConspirators, Res) :- case if and only if the getConspirators([H|T], CConspirators, Res) :- case fails (returns false)"
Your theory is incorrect . Both of them will match . The only difference is that for the case of getConspirators([H|T], CConspirators, Res) :- _body_ the first element of the list will be available in the body as variable named H . But for getConspirators([_|T], CConspirators, Res) :- _body_ the first element of the list will not be available in the body as a named variable .
A good way to interpret the meaning of _ as demonstrated in this code is "a variable that I do not care to refer to later" .
I am trying to create an included_list(X,Y) term that checks if X is a non-empty sublist of Y.
I already use this for checking if the elements exist on the Y list
check_x(X,[X|Tail]).
check_x(X,[Head|Tail]):- check_x(X,Tail).
And the append term
append([], L, L).
append([X | L1], L2, [X | L3]) :- append(L1, L2, L3).
to create a list, in order for the program to finish on
included_list([HeadX|TailX],[HeadX|TailX]).
but I am having problems handling the new empty list that I am trying to create through "append" (I want to create an empty list to add elements that are confirmed to exist on both lists.)
I have found this
sublist1( [], _ ).
sublist1( [X|XS], [X|XSS] ) :- sublist1( XS, XSS ).
sublist1( [X|XS], [_|XSS] ) :- sublist1( [X|XS], XSS ).
but it turns true on sublist([],[1,2,3,4)
Since you're looking for a non-contiguous sublist or ordered subset, and not wanting to include the empty list, then:
sub_list([X], [X|_]).
sub_list([X], [Y|T]) :-
X \== Y,
sub_list([X], T).
sub_list([X,Y|T1], [X|T2]) :-
sub_list([Y|T1], T2).
sub_list([X,Y|T1], [Z|T2]) :-
X \== Z,
sub_list([X,Y|T1], T2).
Some results:
| ?- sub_list([1,4], [1,2,3,4]).
true ? a
no
| ?- sub_list(X, [1,2,3]).
X = [1] ? a
X = [2]
X = [3]
X = [1,2]
X = [1,3]
X = [1,2,3]
X = [2,3]
(2 ms) no
| ?- sub_list([1,X], [1,2,3,4]).
X = 2 ? a
X = 3
X = 4
(2 ms) no
Note that it doesn't just tell you if one list is a sublist of another, but it answers more general questions of, for example, What are the sublists of L? When cuts are used in predicates, it can remove possible valid solutions in that case. So this solution avoids the use of cut for this reason.
Explanation:
The idea is to generate a set of rules which define what a sublist is and try to do so without being procedural or imperative. The above clauses can be interpreted as:
[X] is a sublist of the list [X|_]
[X] is a sublist of the list [Y|T] if X and Y are different and [X] is a sublist of the list T. The condition of X and Y different prevents this rule from overlapping with rule #1 and greatly reduces the number of inferences required to execute the query by avoiding unnecessary recursions.
[X,Y|T1] is a sublist of [X|T2] if [Y|T1] is a sublist of T2. The form [X,Y|T1] ensures that the list has at least two elements so as not to overlap with rule #1 (which can result in any single solution being repeated more than once).
[X,Y|T1] is a sublist of [Z|T2] if X and Z are different and [X,Y|T1] is a sublist of T2. The form [X,Y|T1] ensures that the list has at least two elements so as not to overlap with rule #2, and the condition of X and Z different prevents this rule from overlapping with rule #3 (which can result in any single solution being repeated more than once) and greatly reduces the number of inferences required to execute the query by avoiding unnecessary recursions.
Here is what you an do:
mysublist(L,L1):- sublist(L,L1), notnull(L).
notnull(X):-X\=[].
sublist( [], _ ).
sublist( [X|XS], [X|XSS] ) :- sublist( XS, XSS ).
sublist( [X|XS], [_|XSS] ) :- sublist( [X|XS], XSS ).
Taking a reference from this:
Prolog - first list is sublist of second list?
I just added the condition to check if it was empty beforehand.
Hope this helps.
If order matters. Example [1,2,3] is sublist of [1,2,3,4] but [1,3,2] not.
You can do something like this.
sublist([],L).
sublist([X|L1],[X|L2]):- sublist(L1,L2)
I would use append :
sublist(X, []) :-
is_list(X).
sublist(L, [X | Rest]) :-
append(_, [X|T], L),
sublist(T, Rest).
Basically we can check if M is a sublist of L if M exists in L by appending something on its back and/or its front.
append([], Y, Y).
append([X|XS],YS,[X|Res]) :- append(XS, YS, Res).
sublist(_, []).
sublist(L, M) :- append(R, _, L), append(_, M, R).
Question
Is it possible to schedule a goal to be executed as soon as the length of a list is known / fixed or, as #false pointed out in the comments, a given argument becomes a [proper] list? Something along this line:
when(fixed_length(L), ... some goal ...).
When-conditions can be constructed using ?=/2, nonvar/1, ground/1, ,/2, and ;/2 only and it seems they are not very useful when looking at the whole list.
As a further detail, I'm looking for a solution that presents logical-purity if that is possible.
Motivation
I think this condition might be useful when one wants to use a predicate p(L) to check a property for a list L, but without using it in a generative way.
E.g. it might be the case that [for efficiency or termination reasons] one prefers to execute the following conjunction p1(L), p2(L) in this order if L has a fixed length (i.e. L is a list), and in reversed order p2(L), p1(L) otherwise (if L is a partial list).
This might be achieved like this:
when(fixed_length(L), p1(L)), p2(L).
Update
I did implement a solution, but it lacks purity.
It would be nice if when/2 would support a condition list/1. In the meantime, consider:
list_ltruth(L, Bool) :-
freeze(L, nvlist_ltruth(L, Bool)).
nvlist_ltruth(Xs0, Bool) :-
( Xs0 == [] -> Bool = true
; Xs0 = [_|Xs1] -> freeze(Xs1, nvist_ltruth(Xs1, Bool))
; Bool = false
).
when_list(L, Goal_0) :-
nvlist_ltruth(L, Bool),
when(nonvar(Bool),( Bool == true, Goal_0 )).
So you can combine this also with other conditions.
Maybe produce a type error, if L is not a list.
when(nonvar(Bool), ( Bool == true -> Goal_0 ; sort([], L) ).
Above trick will only work in an ISO conforming Prolog system like SICStus or GNU that produces a type_error(list,[a|nonlist]) for sort([],[a|nonlist]), otherwise replace it by:
when(nonvar(Bool),
( Bool == true -> Goal_0 ; throw(error(type_error(list,L), _)).
Many systems contain some implementation specific built-in like '$skip_list' to traverse lists rapidly, you might want to use it here.
I've managed to answer my own question, but not with a pure solution.
Some observations
The difficulty encountered in writing a program that schedules some goal for execution when the length of a list is precisely known is the fact that the actual condition might change. Consider this:
when(fixed_length(L), Goal)
The length of the list might change if L is unbound or if the last tail is unbound. Say we have this argument L = [_,_|Tail]. L has a fixed width only if Tail has a fixed width (in other words, L is a list if T is a list). So, a condition that checks Tail might be the only thing to do at first. But if Tail becomes [a|Tail2] a new when-condition that tests if Tail2 is a list is needed.
The solution
1. Getting the when-condition
I've implemented a predicate that relates a partial list with the when-condition that signals when it might become a list (i.e. nonvar(T) where T is the deepest tail).
condition_fixed_length(List, Cond):-
\+ (List = []),
\+ \+ (List = [_|_]),
List = [_|Tail],
condition_fixed_length(Tail, Cond).
condition_fixed_length(List, Cond):-
\+ \+ (List = []),
\+ \+ (List = [_|_]),
Cond = nonvar(List).
2. Recursively when-conditioning
check_on_fixed_length(List, Goal):-
(
condition_fixed_length(List, Condition)
->
when(Condition, check_on_fixed_length(List, Goal))
;
call(Goal)
).
Example queries
Suppose we want to check that all elements of L are a when the size of L is fixed:
?- check_on_fixed_length(L, maplist(=(a), L)).
when(nonvar(L), check_on_fixed_length(L, maplist(=(a), L))).
... and then L = [_,_|Tail]:
?- check_on_fixed_length(L, maplist(=(a), L)), L = [_,_|L1].
L = [_G2887, _G2890|L1],
when(nonvar(L1), check_on_fixed_length([_G2887, _G2890|L1], maplist(=(a), [_G2887, _G2890|L1]))).
?- check_on_fixed_length(L, maplist(=(a), L)), L = [_,_|L1], length(L1, 3).
L = [a, a, a, a, a],
L1 = [a, a, a].
Impurity
conditon_fixed_length/2 is the source of impurity as it can be seen from the following query:
?- L = [X, Y|Tail], condition_fixed_length(L, Cond), L = [a,a].
L = [a, a],
X = Y, Y = a,
Tail = [],
Cond = nonvar([]).
?- L = [X, Y|Tail], L = [a, a], condition_fixed_length(L, Cond).
false.
Hello is there any way to separate a list in Prolog into two other lists, the first includes everything before an element and the second everything after the element. For example
A=[1,2,3,5,7,9,0] and element=5
the two lists should be
A1=[1,2,3] and A2=[7,9,0]
I don't care about finding the element just what to do next
it's easy as
?- Elem = 5, A = [1,2,3,5,7,9,0], append(A1, [Elem|A2], A).
edit to explain a bit...
append/3 it's a relation among 3 lists.
It's general enough to solve any concatenation on proper lists - when not there are circular arguments.
The comparison it's a plain unification, that take place on second argument. That must be a list beginning with Elem. Prolog list constructor syntax is [Head|Tail]. To make unification succeed, Elem must match the Head.
Here's an alternative method, illustrating how to handle it with list recursion:
split([E|T], E, [], T).
split([X|T], E, [X|LL], LR) :-
X \== E,
split(T, E, LL, LR).
Or better, if your Prolog supports dif/2:
split([E|T], E, [], T).
split([X|T], E, [X|LL], LR) :-
dif(X, E),
split(T, E, LL, LR).
Examples:
| ?- split([1,2,3,4,5], 3, L, R).
L = [1,2]
R = [4,5] ? ;
no
| ?- split([1,2,3,4,5], 5, L, R).
L = [1,2,3,4]
R = [] ? ;
(1 ms) no
| ?- split([1,2,3,4,5], 1, L, R).
L = []
R = [2,3,4,5] ? ;
no
| ?-
It is a sort of specialized twist on append/3 as CapelliC showed.