I need to compare two unstructured addresses and be able to identify if they are the same (or similar enough).
Scenario
Address is supplied by the end user in plain text.
There is nothing to help the user to write on a more identifiable manner (no autocomplete, nothing. Just an empty textbox).
"#102 Nice-Looking Street, Gotham City, NY" should match with "Nice Loking St., Gotham City, New York, apt 102".
Using a third-party service is not an option.
Search is not a problem. I already have the two strings. What I need is to check if they represent the same address, despite its differences on structure.
What I have found
I know we can use some Fuzzy logic for this kind of comparison, with some tolerance for misspelling, but...
There are some keywords (like, for instance, comparing "Street" to "St." or comparing "#102" to "apt 102", or "NY" to "New York") that are not supposed to penalize the degree of reliability.
Some words can be placed in different order (like the appartement in the above example).
I do not want to reinvent the Wheel. This problem seems like a common concern in different contexts and I think there is an algorithm (with some slight modifications, maybe) that might be a fit for this scenario.
Thanks in advance
I've helped build some open source tools to do this.
Basically, the approach is to try to split and address into it's constituent parts and then intelligently compare those parts.
Both parts of the problem are hard.
The first part is often called address parsing. Here's what we use: https://github.com/datamade/usaddress
The second part has many, many names but, let's call it fuzzy matching. Here's the library we made for that: https://github.com/datamade/dedupe
We also provided some facilities for using them together: http://dedupe.readthedocs.io/en/latest/Variable-definition.html#address-type
Related
Imagine I have two sources of data. One source is calling Mærsk for A.P. Møller - Mærsk A while the other is A.P. Møller - Mærsk A/S. Now I have a lot of companies and I want to streamline the naming of these.
Both sources are indexed in elasticsearch but I am too much of a newbie with this technology to come up with a proper search query. My initial though was to use common which gives decent results, but I figure there are better ways.
Any suggestions?
EDIT
A little clarification. My two sources is just a data source that deliver company names. I've stored these names in its own index for each source - a document is just the name.
So I have two indices with company names (nothing else there). Now for each company name in index A I want find the corresponding company in index B. The challenge is that there are various ways to write a company name - it is not standardized. I want to create this link with as little manual labour as possible and minimal risk for errors as well.
The OP has probably moved on from this question, given it was asked a while ago. And, for example, common has now been deprecated. But in case it helps others, here are some guidelines:
The Problem
As I understand it from the question, the problem is exemplified by this: I have two company names in two different data sources. One is:
A.P. Møller - Mærsk A
The other is:
A.P. Møller - Mærsk A/S
Assuming these represent the same company, the problem is how to resolve these to a single canonical name (for example, "Mærsk" if that is an appropriate name in this case).
Furthermore, how can we perform this matching process across a large set of company names in as automated a way as possible?
One warning - it usually pays to make such tasks repeatable - even if you think it's going to be a one-time-only clean-up exercise, it often doesn't end up that way (IMHO).
One Solution
Getting to a fully-automated matching solution is typically not possible in cases like this - some manual intervention is usually needed. But you may be able to get close.
I will take some liberties - for example, I will ignore the "two different data sources" aspect. Instead, I will assume we have one overall list, the union of both sources (because maybe there are name variants within each list).
Here is what has broadly worked for me in a similar domain (film titles).
FULL DISCLOSURE: I did not use ElasticSearch, in my case. I used Lucene and some custom Java. But in this context, there are many similarities. My references below are all to ElasticSearch v7.5 functionality.
Tokenization
The question indicates that data has already been indexed - but using what tokenization steps? Some suggestions (which may already have been implemented in the OP's case):
Consider leaving in stop-words. Not a hard-and-fast rule, but consider what would happen to the band The The if stop-words were removed. There would be nothing to index. In relatively short text such as names, stop-words may be too important to remove.
Consider ascii folding, etc. to normalize text (removal of diacritics, such as é to e; expansion of ligatures, such as æ to ae; and so on. This assumes you are using Latin-based text. Less relevant for other scripts (Chinese, etc.).
Consider customizations specific to your problem domain. For example, there may be nomenclature variations such as "LTD", "Ltd", etc. representing the word "Limited" in company names. Or the use of ampersands (&) in some examples, but "and" in others. "Smith & Sons, Ltd" versus "Smith and Sons Limited".
other transformations such as lowercase and removal of punctuation are more straightforward.
Supporting Metadata
The OP may not have access to any of this - but supporting metadata can be vital in determining if two name variants refer to the same entity. An example from the world of film titles: There are two movies in IMDb called "Kicking and Screaming" - and numerous TV episodes. They can be distinguished from each other by comparing related metadata such as:
type of release (movie, TV episode, etc).
year of initial release (perhaps with a +/- tolerance threshold).
I don't know what the equivalent might be for companies.
A fairly crude technique would be to append such data to each company name, thus increasing the number of tokens available in each indexable term.
Or, the metadata data can be used downstream to further verify whether two terms match or not.
Matching & Score Thresholds
Let's assume we have simple word-boundary indexed terms (although there are plenty of other ways to go - ngrams, shingles, etc.).
Now we perform a search on each company name (plus additional metadata, if we added it).
Let's assume we have defined a threshold score that must be reached for a search result to be considered a match. The score should be easily adjustable to tune matching behavior.
If we get only one match which exceeds this score, we can assume we have an automated match: the two names represent the same underlying company.
If we get zero matches which exceed this score, then we can assume the company name is unique in our data set.
If we get multiple matches, then that is the point at which manual intervention may be needed, to determine if the names are equivalent or not.
Test Cases
The aim is to minimize false positive matches, while also minimizing match misses.
How do you know?
The only good answer I have for this is to generate a set of test cases. And the best way to do that is to study the data, so you can find suitably cunning & devious cases to test.
Conclusion
This all sounds like a lot of work. How much of it you actually do, or how little - how rigorous or how cursory - is up to you. Depends on your context, of course.
I've got a list of names and I need to split them up into first and last names. Since some names have 2-3 spaces in them, a simple split for a space won't do.
What sort of heuristics do people use to perform the split?
Note that this isn't a duplicate of questions that effectively ask how to split at a space; I'm looking for heuristics and algorithms, not actual code help.
Update: I'm limiting the problem set to English-style names. This is all I need to solve and likely all that anyone approaching this (English language) question will need as well.
I've read a very interesting and comprehensive post on this subject:
http://www.w3.org/International/questions/qa-personal-names
It even suggests to ask yourself whether you really need separate fields for first and last names. It seems to depend on the target region(s) of your application.
Two approaches can help, though not fully solve this problem.
Programatically separate the easy ones, the ones that are not easy get pushed into a different list, "remaining to be split". Manually sort that list. As you manually sort, some heuristics might emerge which could be coded, further reducing the size of the remaining list. If this is a one-time thing, and list is not super massive, this will get the job done.
A closely related problem is when a name is split, but you don't know which is the first and which is last. Some systems work around this problem by doing fuzzy lookups such that if on the first attempt no match is found, flip the first and last name and try again. You didn't say why you need to split the names. If it is to lookup against reference data, consider some kind of similar fuzzy lookup heuristics which allow for trying different splits instead of trying to get the split correct up-front.
Not really an answer, but in this case there really is no perfect answer.
Different countries and regions have different formats for names. For example, Asia the family name is usually first and then given names follows. The West, you’ve got the first name and last name convention, but gets complicated when people double barrel, or include middle names. And then some regions people are only given one name.
Personally, I don’t think there’s one single algorithm that can give you 100% accurate results I’m afraid.
The following assumes English-style surnames. If that's not the case, please update your question.
It's usually safe to assume that the last space character signals the start of a person's surname. But since there are exceptions, one strategy would be to compile a large database of known multi-word surnames from some other source. You could then test for these surnames, and treat them as exceptions.
I have been playing around with Markov Chain Text Generation and Naive Bayes classifiers. I am wondering if there is a way to apply either of those concepts towards identifying certain types of words in a novel. E.G. Last names or place names
I can look through my markov chain and I see that certain words tend to relate the same way to certain other types of words. E.G. Mr. frequently comes before a last name, 'went to' tends to come before a place name and last names tend to follow first names.
Is there a good way that I can write a program that will take a list of example names and then go through a large set of books and identify all words like those names with decent accuracy? Is English regular enough for this to work? Has this been done before? Would this method have a name?
Thanks,
Andrew
In fact, there are only few patterns for names, e.g.:
{FirstName}{Space}{Token with big first char}
{BigCharacter}{Dot}{Space}{Token with big first char}
{"Mr" | "Ms"}{Dot}{Space}{Token with big first char}
and several more. All you need is a dictionary of first names and simple engine to catch such patterns. There's a good framework for this (and many other things) - GATE. It has very large dictionary of first names and special pattern language (JAPE) for manipulating token sequences. You can use it directly or just get the dictionary and implement the logic by yourself.
I am tasked with trying to create an automated system that removes personal information from text documents.
Emails, phone numbers are relatively easy to remove. Names are not. The problem is hard because there are names in the documents that need to be kept (eg, references, celebrities, characters etc). The author name needs to be removed from the content (there may also be more than one author).
I have currently thought of the following:
Quite often personal names are located at the beginning of a document
Look at how frequently the name is used in the document (personal names tend to be written just once)
Search for words around the name to find patterns (mentions of university and so on...)
Any ideas? Anyone solved this problem already??
With current technology, doing what what you are describing in a fully automated way with a low error rate is impossible.
It might be possible to come up with an approximate solution, but it would still make a lot of errors...... either false positives or false negatives or some combination of the two.
If you are still really determined to try, I think your best approach would be Bayseian filtering (as used in spam filtering). The reason for this is that it is quite good at assigning probabilities based on relative positions and frequencies of words, and could also learn which names are more likely / less likely to be celebrities etc.
The area of machine learning that you would need to learn about to make an attempt at this would be natural language processing. There are a few different approaches that could be used, bayesian networks (something better then a naive bayes classifier), support vector machines, or neural nets would be areas to research. Whatever system you end up building would probably need to use an annotated corpus (labeled set of data) to learn where names should be. Even with a large corpus, whatever you build will not be 100% accurate, so you would probably be better off setting flags at the names for deletion instead of just deleting all of the words that might be names.
This is a common problem in basic cryptography courses (my first programming job).
If you generated a word histogram of your entire document corpus (each bin is a word on the x-axis whose height is frequency represented by height on the y-axis), words like "this", "the", "and" and so forth would be easy to identify because of their large y-values (frequency). Surnames should at the far right of your histogram--very infrequent; given names towards the left, but not by much.
Does this technique definitively identify the names in each document? No, but it could be used to substantially constrain your search, by eliminating all words whose frequency is larger than X. Likewise, there should be other attributes that constrain your search, such as author names only appear once on the documents they authored and not on any other documents.
I have got a simple contacts database but I'm having problems with users entering in duplicate data. I have implemented a simple data comparison but unfortunately the duplicated data that is being entered is not exactly the same. For example, names are incorrectly spelled or one person will put in 'Bill Smith' and another will put in 'William Smith' for the same person.
So is there some sort of algorithm that can give a percentage for how similar an entry is to another?
So is there some sort of algorithm
that can give a percentage for how
similar an entry is to another?
Algorithms as Soundex and Edit distances (as suggested in a previous post) can solve some of your problems. However, if you are serious about cleaning your data, this will not be enough. As others have stated "Bill" does not sound anything like "William".
The best solution I have found is to use a reduction algorithm and table to reduce the names to it's root name.
To your regular Address table, add Root-versions of the names, e.g
Person (Firstname, RootFirstName, Surname, Rootsurname....)
Now, create a mapping table.
FirstNameMappings (Primary KEY Firstname, Rootname)
Populate your Mapping table by:
Insert IGNORE (select Firstname, "UNDEFINED" from Person) into FirstNameMappings
This will add all firstnames that you have in your person table together with the RootName of "UNDEFINED"
Now, sadly, you will have to go through all the unique first names and map them to a RootName. For example "Bill", "Billl" and "Will" should all be translated to "William"
This is very time consuming, but if data quality really is important for you I think it's one of the best ways.
Now use the newly created mapping table to update the "Rootfirstname" field in your Person table. Repeat for surname and address. Once this is done you should be able to detect duplicates without suffering from spelling errors.
You can compare the names with the Levenshtein distance. If the names are the same, the distance is 0, else it is given by the minimum number of operations needed to transform one string into the other.
I imagine that this problem is well understood but what occurs to me on first reading is:
compare fields individually
count those that match (for a possibly loose definition of match, and possibly weighing the fields differently)
present for human intervention any cases which pass some threshold
Use your existing database to get a good first guess for the threshold, and correct as you accumulate experience.
You may prefer a fairly strong bias toward false positives, at least at first.
While I do not have an algorithm for you, my first action would be to take a look at the process involved in entering a new contact. Perhaps users do not have an easy way to find the contact they are looking for. Much like on Stack Overflow's new question form, you could suggest contacts that already exist on the new contact screen.
If you have access SSIS check out the Fuzzy grouping and Fuzzy lookup transformation.
http://www.sqlteam.com/article/using-fuzzy-lookup-transformations-in-sql-server-integration-services
http://msdn.microsoft.com/en-us/library/ms137786.aspx
If you have a large database with string fields, you can very quickly find a lot of duplicates by using the simhash algorithm.
This may or may not be related but, minor misspellings might be detected by a Soundex search, e.g., this will allow you to consider Britney Spears, Britanny Spares, and Britny Spears as duplicates.
Nickname contractions, however, are difficult to consider as duplicates and I doubt if it is wise. There are bound to be multiple people named Bill Smith and William Smith, and you would have to iterate that with Charles->Chuck, Robert->Bob, etc.
Also, if you are considering, say, Muslim users, the problems become more difficult (there are too many Muslims, for example, that are named Mohammed/Mohammad).
I'm not sure it will work well for the names vs nicknames problem, but the most common algorithm in this sort of area would be the edit distance / Levenshtein distance algorithm. It's basically a count of the number of character changes, additions and removals required to turn one item into another.
For names, I'm not sure you're ever going to get good results with a purely algorithmic approach - What you really need is masses of data. Take, for example, how much better Google spelling suggestions are than those in a normal desktop application. This is because Google can process billions of web queries and look at what queries lead to each other, what 'did you mean' links actually get clicked etc.
There are a few companies which specialise in the name matching problem (mostly for national security and fraud applications). The one I could remember, Search Software America seems to have been bought out by these guys http://www.informatica.com/products_services/identity_resolution/Pages/index.aspx, but I suspect any of these sorts of solutions would be far to expensive for a contacts application.
FullContact.com has API's that can solve this for you, see their documentation here: http://www.fullcontact.com/developer/docs/?category=name.
They have APIs for Name Normalization (Bill into William), Name Deducer (for raw text), and Name Similarity (comparing two names).
All APIs are free at the moment, it could be a good way to get started.
You might also want to look into probabilistic matching.
For those wandering around the web and end up here, might I suggest that you try using a Google Sheet add-on I created called Flookup.
It's particularly good with names and it has a couple of other awesome features which I'll describe below:
Say you have a list of names and there are 2 people called "John Smith". You can use the rank parameter from Flookup to instruct the algorithm to return the 1st, 2nd, 3rd or nth best match. This is helpful if you have additional information that you can use to identify the "John Smith" you want.
Say you have an additional database/list of apartment numbers. You an specify which "John Smith" you want by typing: John Smith & Apartment A or John Smith & Apartment B as the lookup parameter to help distinguish between the two names.
I hope you find Flookup as beneficial as others have.