Is an iterative solution for Fibonacci series pseudo-polynomial? - algorithm

So when we do an iterative solution to find the nth number in a Fibonacci sequence, we run a for loop (n-2) times. This would mean that the time complexity would be O(n). Is this correct or would it actually be pseudo-polynomial depending on the number of bits of the input, much like the Knapsack problem?

Here, I assume Fib(n) is an iterative version of a program that computes Fibonacci numbers. Perhaps something like:
def Fib(n):
a, b = 0, 1
for _ in xrange(n):
a, b = b, a + b
return a
"Fib(n) is pseudo-polynomial" means in this context that computing Fib is bounded by a polynomial of its argument, n, but isn't bounded by a polynomial function of the size of the argument, log(n). That's true in this case.
"Fib(n) is O(n)" is a statement about the running time of Fib with respect to the value of its argument. There's sometimes ambiguity what "n" is, but here there's none -- it's the input to Fib, otherwise "n" would refer to two different things in the original statement. That's true here (although see the technical side-note below).
"Fib is O(n)" is ambiguous. There are people who will tell you that n clearly refers to the argument, and there's others who will tell you that n always refers to the size of the argument. The truth is that it's ambiguous and if it's not clear in context you should say what you mean (or ask what it means if you hear it and are confused). One context where it's not ambiguous is when you're talking about classes of P/NP problems -- there it's assumed that complexities are always relative to the size of the input.
A technical side-note
The iterative version of Fib(n) performs O(n) arithmetic operations, but whether it's O(n) time depends on your computational model, and specifically whether it can perform arbitrary integer arithmetic operations in O(1) time. Personally, I'd be careful and say "Fib(n) performs O(n) arithmetic operations" rather than "Fib(n) is O(n)" -- and if you plot the running time of Fib(n), you'll find it's not linear time in practice, as real bignum implementations are certainly not O(1) for all basic operations.

Yes, it is infact O(n). The time complexity of Knapsack Problem is a really weird one and is an exception.

Related

Do problem constraints change the time complexity of algorithms?

Let's say that the algorithm involves iterating through a string character by character.
If I know for sure that the length of the string is less than, say, 15 characters, will the time complexity be O(1) or will it remain as O(n)?
There are two aspects to this question - the core of the question is, can problem constraints change the asymptotic complexity of an algorithm? The answer to that is yes. But then you give an example of a constraint (strings limited to 15 characters) where the answer is: the question doesn't make sense. A lot of the other answers here are misleading because they address only the second aspect but try to reach a conclusion about the first one.
Formally, the asymptotic complexity of an algorithm is measured by considering a set of inputs where the input sizes (i.e. what we call n) are unbounded. The reason n must be unbounded is because the definition of asymptotic complexity is a statement like "there is some n0 such that for all n ≥ n0, ...", so if the set doesn't contain any inputs of size n ≥ n0 then this statement is vacuous.
Since algorithms can have different running times depending on which inputs of each size we consider, we often distinguish between "average", "worst case" and "best case" time complexity. Take for example insertion sort:
In the average case, insertion sort has to compare the current element with half of the elements in the sorted portion of the array, so the algorithm does about n2/4 comparisons.
In the worst case, when the array is in descending order, insertion sort has to compare the current element with every element in the sorted portion (because it's less than all of them), so the algorithm does about n2/2 comparisons.
In the best case, when the array is in ascending order, insertion sort only has to compare the current element with the largest element in the sorted portion, so the algorithm does about n comparisons.
However, now suppose we add the constraint that the input array is always in ascending order except for its smallest element:
Now the average case does about 3n/2 comparisons,
The worst case does about 2n comparisons,
And the best case does about n comparisons.
Note that it's the same algorithm, insertion sort, but because we're considering a different set of inputs where the algorithm has different performance characteristics, we end up with a different time complexity for the average case because we're taking an average over a different set, and similarly we get a different time complexity for the worst case because we're choosing the worst inputs from a different set. Hence, yes, adding a problem constraint can change the time complexity even if the algorithm itself is not changed.
However, now let's consider your example of an algorithm which iterates over each character in a string, with the added constraint that the string's length is at most 15 characters. Here, it does not make sense to talk about the asymptotic complexity, because the input sizes n in your set are not unbounded. This particular set of inputs is not valid for doing such an analysis with.
In the mathematical sense, yes. Big-O notation describes the behavior of an algorithm in the limit, and if you have a fixed upper bound on the input size, that implies it has a maximum constant complexity.
That said, context is important. All computers have a realistic limit to the amount of input they can accept (a technical upper bound). Just because nothing in the world can store a yottabyte of data doesn't mean saying every algorithm is O(1) is useful! It's about applying the mathematics in a way that makes sense for the situation.
Here are two contexts for your example, one where it makes sense to call it O(1), and one where it does not.
"I decided I won't put strings of length more than 15 into my program, therefore it is O(1)". This is not a super useful interpretation of the runtime. The actual time is still strongly tied to the size of the string; a string of size 1 will run much faster than one of size 15 even if there is technically a constant bound. In other words, within the constraints of your problem there is still a strong correlation to n.
"My algorithm will process a list of n strings, each with maximum size 15". Here we have a different story; the runtime is dominated by having to run through the list! There's a point where n is so large that the time to process a single string doesn't change the correlation. Now it makes sense to consider the time to process a single string O(1), and therefore the time to process the whole list O(n)
That said, Big-O notation doesn't have to only use one variable! There are problems where upper bounds are intrinsic to the algorithm, but you wouldn't put a bound on the input arbitrarily. Instead, you can describe each dimension of your input as a different variable:
n = list length
s = maximum string length
=> O(n*s)
It depends.
If your algorithm's requirements would grow if larger inputs were provided, then the algorithmic complexity can (and should) be evaluated independently of the inputs. So iterating over all the elements of a list, array, string, etc., is O(n) in relation to the length of the input.
If your algorithm is tied to the limited input size, then that fact becomes part of your algorithmic complexity. For example, maybe your algorithm only iterates over the first 15 characters of the input string, regardless of how long it is. Or maybe your business case simply indicates that a larger input would be an indication of a bug in the calling code, so you opt to immediately exit with an error whenever the input size is larger than a fixed number. In those cases, the algorithm will have constant requirements as the input length tends toward very large numbers.
From Wikipedia
Big O notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity.
...
In computer science, big O notation is used to classify algorithms according to how their run time or space requirements grow as the input size grows.
In practice, almost all inputs have limits: you cannot input a number larger than what's representable by the numeric type, or a string that's larger than the available memory space. So it would be silly to say that any limits change an algorithm's asymptotic complexity. You could, in theory, use 15 as your asymptote (or "particular value"), and therefore use Big-O notation to define how an algorithm grows as the input approaches that size. There are some algorithms with such terrible complexity (or some execution environments with limited-enough resources) that this would be meaningful.
But if your argument (string length) does not tend toward a large enough value for some aspect of your algorithm's complexity to define the growth of its resource requirements, it's arguably not appropriate to use asymptotic notation at all.
NO!
The time complexity of an algorithm is independent of program constraints. Here is (a simple) way of thinking about it:
Say your algorithm iterates over the string and appends all consonants to a list.
Now, for iteration time complexity is O(n). This means that the time taken will increase roughly in proportion to the increase in the length of the string. (Time itself though would vary depending on the time taken by the if statement and Branch Prediction)
The fact that you know that the string is between 1 and 15 characters long will not change how the program runs, it merely tells you what to expect.
For example, knowing that your values are going to be less than 65000 you could store them in a 16-bit integer and not worry about Integer overflow.
Do problem constraints change the time complexity of algorithms?
No.
If I know for sure that the length of the string is less than, say, 15 characters ..."
We already know the length of the string is less than SIZE_MAX. Knowing an upper fixed bound for string length does not make the the time complexity O(1).
Time complexity remains O(n).
Big-O measures the complexity of algorithms, not of code. It means Big-O does not know the physical limitations of computers. A Big-O measure today will be the same in 1 million years when computers, and programmers alike, have evolved beyond recognition.
So restrictions imposed by today's computers are irrelevant for Big-O. Even though any loop is finite in code, that need not be the case in algorithmic terms. The loop may be finite or infinite. It is up to the programmer/Big-O analyst to decide. Only s/he knows which algorithm the code intends to implement. If the number of loop iterations is finite, the loop has a Big-O complexity of O(1) because there is no asymptotic growth with N. If, on the other hand, the number of loop iterations is infinite, the Big-O complexity is O(N) because there is an asymptotic growth with N.
The above is straight from the definition of Big-O complexity. There are no ifs or buts. The way the OP describes the loop makes it O(1).
A fundamental requirement of big-O notation is that parameters do not have an upper limit. Suppose performing an operation on N elements takes a time precisely equal to 3E24*N*N*N / (1E24+N*N*N) microseconds. For small values of N, the execution time would be proportional to N^3, but as N gets larger the N^3 term in the denominator would start to play an increasing role in the computation.
If N is 1, the time would be 3 microseconds.
If N is 1E3, the time would be about 3E33/1E24, i.e. 3.0E9.
If N is 1E6, the time would be about 3E42/1E24, i.e. 3.0E18
If N is 1E7, the time would be 3E45/1.001E24, i.e. ~2.997E21
If N is 1E8, the time would be about 3E48/2E24, i.e. 1.5E24
If N is 1E9, the time would be 3E51/1.001E27, i.e. ~2.997E24
If N is 1E10, the time would be about 3E54/1.000001E30, i.e. 2.999997E24
As N gets bigger, the time would continue to grow, but no matter how big N gets the time would always be less than 3.000E24 seconds. Thus, the time required for this algorithm would be O(1) because one could specify a constant k such that the time necessary to perform the computation with size N would be less than k.
For any practical value of N, the time required would be proportional to N^3, but from an O(N) standpoint the worst-case time requirement is constant. The fact that the time changes rapidly in response to small values of N is irrelevant to the "big picture" behaviour, which is what big-O notation measures.
It will be O(1) i.e. constant.
This is because for calculating time complexity or worst-case time complexity (to be precise), we think of the input as a huge chunk of data and the length of this data is assumed to be n.
Let us say, we do some maximum work C on each part of this input data, which we will consider as a constant.
In order to get the worst-case time complexity, we need to loop through each part of the input data i.e. we need to loop n times.
So, the time complexity will be:
n x C.
Since you fixed n to be less than 15 characters, n can also be assumed as a constant number.
Hence in this case:
n = constant and,
(maximum constant work done) = C = constant
So time complexity is n x C = constant x constant = constant i.e. O(1)
Edit
The reason why I have said n = constant and C = constant for this case, is because the time difference for doing calculations for smaller n will become so insignificant (compared to n being a very large number) for modern computers that we can assume it to be constant.
Otherwise, every function ever build will take some time, and we can't say things like:
lookup time is constant for hashmaps

What is the overall O(n) time complexity of O(sum(a)) if a is an array of integers and n is the length of the array?

I’m having a hard time using O(n) principles to generalize the time complexity of an algorithm whose more specific time complexity is O(sum(a)) where a is an array of integers.
My intuition is that this time complexity should generalize to O(n) as you can think of this as a “linear” equation of ki values that occur n times where k is the integer value in the array, making it O(n)( k=1 for a straight up O(n) case).
But it doesn’t seem to be exactly the same as O(n) - the value of k could be much larger than n, and if all these k values are larger you have something that could be O(n^2) or O(n^3) depending on how large that value is.
Is this something to take into account for O(n) complexity where n is the length of the array? Should I actually be defining n as the sum of all elements in the array instead of the length of the array?
In general, what would be the best way to think about this?
Fundamentally, we want to describe the runtime of an algorithm based on the input. The "runtime" is a vague term, that is often swept under the rug. For example, the "runtime" of a sorting algorithm or a hashtable operation is measured in number of comparisons, but using "runtime" to mean the number of basic operations (which are also usually only vaguely defined) is also possible.
There are two choices (or simplifications) often made when calcuating runtime. The first, is to ignore the actual input, and to use the size of the input (measured somehow) instead. This size is usually denoted n. The second, is to use big-O notation to describe the worst case (or best case, or average, or amortized...).
Neither of these choices is always necessary, and sometimes, they won't make sense. To repeat, since this is the crux of the answer: describing runtimes in big-O of n is not the only way to describe runtimes and sometimes it makes no sense to do so.
For example, in the case of an algorithm that runs in O(sum(a)) time:
func f(a) {
t = 0
for x in a {
for i = 1..x {
t += 1
}
}
}
It's not useful to describe the runtime of this using the length of the input array a. It's not useful because the length of a doesn't say anything about the worst-case runtime.
Saying that t is incremented sum(a) times is a useful statement about the runtime of the program. It doesn't use big-O complexity notation.
And if you do want to express that in big-O notation, you can say that the runtime of this code is O(sum(a)). This blurs exactly what you're measuring in the runtime, because you can be including the cost of performing the statements other than incrementing t.
And going back to the example, you could (and if you were studying complexity classes, you probably would) say n is the size (in bits) of the input array. Then you could say something about the runtime (measured in basic operations): it's O(2^n), since the worst case input is an array with one element which takes the value 2^n-1 (*note).
*note: this ignores some technical details about how to encode an array using bits.

Two passes through an array O(n) or O(2n)

I was on interview cake practicing some questions, and on question 2 the solution given uses two separate for loops (not nested) and the solution provider claims that he/she solved it in O(n) time. From my understanding that would be O(2n) time. Am I wrong in thinking this, or did the solution provider make a mistake?
Excerpt from interview cake :
Big-O notation gives you a hint on how do your algorithm execution time depends on the input data. When you see that time complexity is O(n) you understand that there is a linear dependency between input and execution time. The constants are not mentioned.
By definition Ο(g(n)) is a set of functions for each of which the following statement holds: There exists such positive constants c and n0 that 0 ≤ f(n) ≤ cg(n) holds for all n ≥ n0. You see the definition is using an arbitrary constant c, if your g(n) itself has a constant that would not make any difference.
Eventually we have: O(cg(n)) = O(g(n)). In your particular case O(cn) = O(2n) = O(n). They both represent the same set of functions.
Big-O notation is most useful to see how code scales. That is, if I double the size of the array, how much longer will the code take to run? If your code is O(n), it will take twice as long, whereas if it is O(n^2), it will take 4 times as long, and so on. In this case, regardless of the fact that you make a pass through the loop twice, doubling the size of your array will take twice as long as before (twice as long for each of the loops).

Does a simple for loop have exponential complexity?

The time complexity of an algorithm is defined as the amount of time taken by it to run as a function of the length of the input.
If I have a simple for loop function in C, which runs for a given input n then:
the length of n is log n(number of bits required to represent it).
Since input is log n and the loop runs n times, the code runs exponentially many times in it's input length ( 2^(log n) = n))
C code:
int forfunction(unsigned int n){
unsigned int i=0;
for(;i<n;i++){
// do something ordinary
}
return 0;
}
This for loop being an example.
But we will never hear anyone say, that such a for loop program is exponential in it's input (the bits required to store n). Why is it so? The only difference I see is that this is a program and time complexity is defined for an algorithm. But even if it is, then why does this not have an impact/taken into account when we want to do a rough time complexity of a program?
EDIT:
Further clarification: I find it reasonable to claim it is exponential in it's input ( might be wrong =) ). If it so, then if a simple for loop is exponential, then what about other hard problems? Clearly this for loop is not a worry for anyone today. Why is it not? Why does this not have (much) real world implications when compared to other hard problems(EXP,NP-Hard,etc...)? Note: I am using hard the way it used to define NP-Hard problems.
Elaborating on #Anonymous's answer: The question you should be asking is "exponential in what?" Ultimately, whether this is exponential time depends on how n is presented to you.
If n is given to you as an explicit binary integer using O(log n) bits, then this function will run in pseudopolynomial time (technically exponential in the number of input bits, but polynomial in the numeric value of the input). This is why simple primality testing algorithms like trial division (divide n by all numbers from 2 up to √n and see if any of them are factors) technically run in exponential time even though they do run in time O(√n).
On the other hand, if n is given to you implicitly using O(n) bits (perhaps as the number of nodes in a graph given an adjacency matrix, or perhaps as the number of characters in a string given a string), then the runtime is polynomial because the input has at least linear size and linear work is done. This is why algorithms like DFS or BFS, which have runtimes of the form O(m + n), run in polynomial time: the number of bits in the input is Ω(m + n).
Hope this helps!
The amount of time a function takes is a function parameterised by something. Often it'll be the size of the input, but other times it's an explicit parameter, and it's up to you, when you're describing a function, to make it clear what you mean. Because it's often "obvious" what the parameterisation is from context, it's often omitted which leads to a lot of confusion when the parameterisation is not obvious to everyone.
When you add the word "complexity" then all that means is that instead of describing a function, you're saying it belongs to a particular class of functions. It doesn't obviate the need to say what the function is and what its argument is.
Techincally speaking the for loop or for that matter all linear programs are exponential in their inputs but this is not used to explain their runtime because for the simple reason that runtime is defined how it varies with change in input . Here in these problems it is considered the no of input bits is constant for example you might define the algorithm for only integer input so its input has always 32 bits so it is considered constant as even if value of n changes no of bits dont so constant terms cannot be used to define growth of algorithm hence omitted.

Is the time complexity of the empty algorithm O(0)?

So given the following program:
Is the time complexity of this program O(0)? In other words, is 0 O(0)?
I thought answering this in a separate question would shed some light on this question.
EDIT: Lots of good answers here! We all agree that 0 is O(1). The question is, is 0 O(0) as well?
From Wikipedia:
A description of a function in terms of big O notation usually only provides an upper bound on the growth rate of the function.
From this description, since the empty algorithm requires 0 time to execute, it has an upper bound performance of O(0). This means, it's also O(1), which happens to be a larger upper bound.
Edit:
More formally from CLR (1ed, pg 26):
For a given function g(n), we denote O(g(n)) the set of functions
O(g(n)) = { f(n): there exist positive constants c and n0 such that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0 }
The asymptotic time performance of the empty algorithm, executing in 0 time regardless of the input, is therefore a member of O(0).
Edit 2:
We all agree that 0 is O(1). The question is, is 0 O(0) as well?
Based on the definitions, I say yes.
Furthermore, I think there's a bit more significance to the question than many answers indicate. By itself the empty algorithm is probably meaningless. However, whenever a non-trivial algorithm is specified, the empty algorithm could be thought of as lying between consecutive steps of the algorithm being specified as well as before and after the algorithm steps. It's nice to know that "nothingness" does not impact the algorithm's asymptotic time performance.
Edit 3:
Adam Crume makes the following claim:
For any function f(x), f(x) is in O(f(x)).
Proof: let S be a subset of R and T be a subset of R* (the non-negative real numbers) and let f(x):S ->T and c ≥ 1. Then 0 ≤ f(x) ≤ f(x) which leads to 0 ≤ f(x) ≤ cf(x) for all x∈S. Therefore f(x) ∈ O(f(x)).
Specifically, if f(x) = 0 then f(x) ∈ O(0).
It takes the same amount of time to run regardless of the input, therefore it is O(1) by definition.
Several answers say that the complexity is O(1) because the time is a constant and the time is bounded by the product of some coefficient and 1. Well, it is true that the time is a constant and it is bounded that way, but that doesn't mean that the best answer is O(1).
Consider an algorithm that runs in linear time. It is ordinarily designated as O(n) but let's play devil's advocate. The time is bounded by the product of some coefficient and n^2. If we consider O(n^2) to be a set, the set of all algorithms whose complexity is small enough, then linear algorithms are in that set. But it doesn't mean that the best answer is O(n^2).
The empty algorithm is in O(n^2) and in O(n) and in O(1) and in O(0). I vote for O(0).
I have a very simple argument for the empty algorithm being O(0): For any function f(x), f(x) is in O(f(x)). Simply let f(x)=0, and we have that 0 (the runtime of the empty algorithm) is in O(0).
On a side note, I hate it when people write f(x) = O(g(x)), when it should be f(x) ∈ O(g(x)).
Big O is asymptotic notation. To use big O, you need a function - in other words, the expression must be parametrized by n, even if n is not used. It makes no sense to say that the number 5 is O(n), it's the constant function f(n) = 5 that is O(n).
So, to analyze time complexity in terms of big O you need a function of n. Your algorithm always makes arguably 0 steps, but without a varying parameter talking about asymptotic behaviour makes no sense. Assume that your algorithm is parametrized by n. Only now you may use asymptotic notation. It makes no sense to say that it is O(n2), or even O(1), if you don't specify what is n (or the variable hidden in O(1))!
As soon as you settle on the number of steps, it's a matter of the definition of big O: the function f(n) = 0 is O(0).
Since this is a low-level question it depends on the model of computation.
Under "idealistic" assumptions, it is possible you don't do anything.
But in Python, you cannot say def f(x):, but only def f(x): pass. If you assume that every instruction, even pass (NOP), takes time, then the complexity is f(n) = c for some constant c, and unless c != 0 you can only say that f is O(1), not O(0).
It's worth noting big O by itself does not have anything to do with algorithms. For example, you may say sin x = x + O(x3) when discussing Taylor expansion. Also, O(1) does not mean constant, it means bounded by constant.
All of the answers so far address the question as if there is a right and a wrong answer. But there isn't. The question is a matter of definition. Usually in complexity theory the time cost is an integer --- although that too is just a definition. You're free to say that the empty algorithm that quits immediately takes 0 time steps or 1 time step. It's an abstract question because time complexity is an abstract definition. In the real world, you don't even have time steps, you have continuous physical time; it may be true that one CPU has clock cycles, but a parallel computer could easily have asynchronoous clocks and in any case a clock cycle is extremely small.
That said, I would say that it's more reasonable to say that the halt operation takes 1 time step rather than that it takes 0 time steps. It does seem more realistic. For many situations it's arguably very conservative, because the overhead of initialization is typically far greater than executing one arithmetic or logical operation. Giving the empty algorithm 0 time steps would only be reasonable to model, for example, a function call that is deleted by an optimizing compiler that knows that the function won't do anything.
It should be O(1). The coefficient is always 1.
Consider:
If something grows like 5n, you don't say O(5n), you say O(n) [in other words, O(1n)]
If something grows like 7n^2, you don't say O(7n^2), you say O(n^2) [in other words, O(1n^2)]
Likewise you should say O(1), not O(some other constant)
There is no such thing as O(0). Even an oracle machine or a hypercomputer require the time for one operation, i.e. solve(the_goldbach_conjecture), ergo:
All machines, theoretical or real, finite or infinite produce algorithms with a minimum time complexity of O(1).
But then again, this code right here is O(0):
// Hello world!
:)
I would say it's O(1) by definition, but O(0) if you want to get technical about it: since O(k1g(n)) is equivalent to O(k2g(n)) for any constants k1 and k2, it follows that O(1 * 1) is equivalent to O(0 * 1), and therefore O(0) is equivalent to O(1).
However, the empty algorithm is not like, for example, the identity function, whose definition is something like "return your input". The empty algorithm is more like an empty statement, or whatever happens between two statements. Its definition is "do absolutely nothing with your input", presumably without even the implied overhead of simply having input.
Consequently, the complexity of the empty algorithm is unique in that O(0) has a complexity of zero times whatever function strikes your fancy, or simply zero. It follows that since the whole business is so wacky, and since O(0) doesn't already mean something useful, and since it's slightly ridiculous to even discuss such things, a reasonable special case for O(0) is something like this:
The complexity of the empty algorithm is O(0) in time and space. An algorithm with time complexity O(0) is equivalent to the empty algorithm.
So there you go.
Given the formal definition of Big O:
Let f(x) and g(x) be two functions defined over the set of real numbers. Then, we write:
f(x) = O(g(x)) as x approaches infinity iff there exists a real M and a real x0 so that:
|f(x)| <= M * |g(x)| for every x > x0
As I see it, if we substitute g(x) = 0 (in order to have a program with complexity O(0)), we must have:
|f(x)| <= 0, for every x > x0 (the constraint of existence of a real M and x0 is practically lifted here)
which can only be true when f(x) = 0.
So I would say that not only the empty program is O(0), but it is the only one for which that holds. Intuitively, this should've been true since O(1) encompasses all algorithms that require a constant number of steps regardless of the size of its task, including 0. It's essentially useless to talk about O(0); it's already in O(1). I suspect it's purely out of simplicity of definition that we use O(1), where it could as well be O(c) or something similar.
0 = O(f) for all function f, since 0 <= |f|, so it is also O(0).
Not only is this a perfectly sensible question, but it is important in certain situations involving amortized analysis, especially when "cost" means something other than "time" (for example, "atomic instructions").
Let's say there is a datastructure featuring multiple operation types, for which an amortized analysis is being conducted. It could well happen that one type of operation can always be funded fully using "coins" deposited during previous operations.
There is a simple example of this: the "multipop queue" described in Cormen, Leiserson, Rivest, Stein [CLRS09, 17.2, p. 457], and also on Wikipedia. Each time an item is pushed, a coin is put on the item, for a total amortized cost of 2. When (multi) pops occur, they can be fully paid for by taking one coin from each item popped, so the amortized cost of MULTIPOP(k) is O(0). To wit:
Note that the amortized cost of MULTIPOP is a constant (0)
...
Moreover, we can also charge MULTIPOP operations nothing. To pop the
first plate, we take the dollar of credit off the plate and use it to
pay the actual cost of a POP operation. To pop a second plate, we
again have a dollar of credit on the plate to pay for the POP
operation, and so on. Thus, we have always charged enough up front to
pay for MULTIPOP operations. In other words, since each plate on the
stack has 1 dollar of credit on it, and the stack always has a
nonnegative number of plates, we have ensured that the amount of
credit is always nonnegative.
Thus O(0) is an important "complexity class" for certain amortized operations.
O(1) means the algorithm's time complexity is always constant.
Let's say we have this algorithm (in C):
void doSomething(int[] n)
{
int x = n[0]; // This line is accessing an array position, so it is time consuming.
int y = n[1]; // Same here.
return x + y;
}
I am ignoring the fact that the array could have less than 2 positions, just to keep it simple.
If we count the 2 most expensive lines, we have a total time of 2.
2 = O(1), because:
2 <= c * 1, if c = 2, for every n > 1
If we have this code:
public void doNothing(){}
And we count it as having 0 expansive lines, there is no difference in saying it has O(0) O(1), or O(1000), because for every one of these functions, we can prove the same theorem.
Normally, if the algorithm takes a constant number of steps to complete, we say it has O(1) time complexity.
I guess this is just a convention, because you could use any constant number to represent the function inside the O().
No. It's O(c) by convention whenever you don't have dependence on input size, where c is any positive constant (typically 1 is used - O(1) = O(12.37)).

Resources