Related
I am working on a problem for homework. I am trying to get all the unique permutations of 0 and 1 where the number of 0s and 1s is passed in to binaryLists/3. I have a set of rules that will get the permutations, but I get a large number of duplicates as permutation/2 treats each 0 and 1 as unique. I feel like I need to put a cut somewhere, but I don't really understand cuts and I'm not sure how to think about this. My code is as follows:
binaryLists(0, 0, R).
binaryLists(Z, O, R) :-
Z >= 0, O >= 0,
generateZero(Z, Lz),
generateOne(O, Lo),
append(Lz, Lo, Tmp),
permutation(Tmp, R).
generateZero(0, R) :-
R = [].
generateZero(Z, R) :-
Z > 0,
Y is Z - 1,
generateZero(Y, Tmp),
append(Tmp, [0], R).
generateOne(0, R) :-
R = [].
generateOne(Z, R) :-
Z > 0,
Y is Z - 1,
generateOne(Y, Tmp),
append(Tmp, [1], R).
The result of this will give many duplicates of the same list (e.g. [1, 0, 0, 0]).
A cut won't help you here. It's a common Prolog beginner mistake to make rules overly complex and procedural, then try to fix things with cuts.
Here are some hints. You don't need append/3, permutation/2, and you don't need a 0/1 list generator.
Your first rule is on the right track, but has a flaw. You have the singleton R. You're trying to say that a list with 0 zeroes, and 0 ones, should be an empty list. So just say that:
binaryList(0, 0, []).
Now you can define two more rules which give the conditions for when the resulting list should start with a 1 and when it should start with a 0. Those are the only two additional rules you need:
binaryList(Zeroes, Ones, [0|R]) :-
Zeroes > 0,
... % What goes here?
binaryList(..., Ones, R). % What goes in place of ...?
binaryList(Zeroes, Ones, [1|R]) :-
Ones > 0,
... % What goes here?
binaryList(Zeroes, ..., R). % What goes in place of ...?
Once you create the proper rules in Prolog that define what makes a valid list, then Prolog will do the work for you in terms of exploring all of the possible solutions that satisfy the rules. That's how you get all of the permutations. The permutations are unique because the rules are non-overlapping in their solutions and ensure that each solution is different.
The point of this program is supposed to be to find the largest even number inside a list. For example, the query:
? - evenmax([1, 3, 9, 16, 25, -5, 18], X]
X = 18.
The way I thought to do this is to separate the list into two, one with just odd numbers and one with just even numbers. However, after doing that, I legitimately have no idea how to take the even-number list specifically and find the maximum integer in that.
Here is what I currently have:
seperate_list([], [], []).
separate_list([X|Xs], [X|Even], Odd) :-
0 is X mod 2,
separate_list(Xs, Even, Odd).
separate_list([X|Xs], Even, [X|Odd]) :-
1 is X mod 2,
separate_list(Xs, Even, Odd).
find_max([X|Xs], A, Max).
X > A,
find_max(Xs,X,Max).
find_max([X|Xs],A,Max) :-
X =< A,
find_max(Xs,A,Max).
find_max([],A,A).
I am still a newcomer to Prolog, so please bear with me...and I appreciate the help.
You could do it in one go. You can find the first even number in the list, then use this as seed and find the largest even number in the rest of the list.
But if you don't insist on doing it in a single traversal through the list, you can first collect all even numbers, then sort descending and take the first element of the sorted list.
evenmax(List, M) :-
include(even, List, Even),
sort(Even, Sorted),
reverse(Sorted, [M|_]).
even(E) :-
E rem 2 =:= 0.
If you want to see how include/2 is implemented, you can look here. Basically, this is a generalized and optimized version of the separate_list/3 that you have already defined in your question. sort/2 is a built-in, and reverse/2 is a library predicate, implementation is here.
There are many other ways to achieve the same, but for starters this should be good enough. You should ask more specific questions if you want more specific answers, for example:
What if the list has free variables?
What if you want to sort in decreasing order instead of sorting and then reversing?
How to do it in a single go?
and so on.
Sorry but... if you need the maximum (even) value... why don't you simply scan the list, memorizing the maximum (even) value?
The real problem that I see is: wich value return when there aren't even values.
In the following example I've used -1000 as minumum value (in case of no even values)
evenmax([], -1000). % or a adeguate minimum value
evenmax([H | T], EM) :-
K is H mod 2,
K == 0,
evenmax(T, EM0),
EM is max(H, EM0).
evenmax([H | T], EM) :-
K is H mod 2,
K == 1,
evenmax(T, EM).
-- EDIT --
Boris is right: the preceding is a bad solution.
Following his suggestions (thanks!) I've completely rewritten my solution. A little longer but (IMHO) a much better
evenmaxH([], 1, EM, EM).
evenmaxH([H | T], 0, _, EM) :-
0 =:= H mod 2,
evenmaxH(T, 1, H, EM).
evenmaxH([H | T], 1, M0, EM) :-
0 =:= H mod 2,
M1 is max(M0, H),
evenmaxH(T, 1, M1, EM).
evenmaxH([H | T], Found, M, EM) :-
1 =:= H mod 2,
evenmaxH(T, Found, M, EM).
evenmax(L, EM) :-
evenmaxH(L, 0, 0, EM).
I define evenmax like there is no member of list L which is even and is greater than X:
memb([X|_], X).
memb([_|T], X) :- memb(T,X).
even(X) :- R is X mod 2, R == 0.
evenmax(L, X) :- memb(L, X), even(X), not((memb(L, Y), even(Y), Y > X)), !.
There are already a number of good answers, but none that actually answers this part of your question:
I legitimately have no idea how to take the even-number list
specifically and find the maximum integer in that
Given your predicate definitions, it would be simply this:
evenmax(List, EvenMax) :-
separate_list(List, Evens, _Odds),
find_max(Evens, EvenMax).
For this find_max/2 you also need to add a tiny definition:
find_max([X|Xs], Max) :-
find_max(Xs, X, Max).
Finally, you have some typos in your code above: seperate vs. separate, and a . instead of :- in a clause head.
Example of my CLP problem (this is a small part of a larger problem which uses the clpfd library):
For a list of length 5, a fact el_sum(Pos,N,Sum) specifies that the N consecutive elements starting from position Pos (index from 1) have sum equal to Sum. So if we have
el_sum(1,3,4).
el_sum(2,2,3).
el_sum(4,2,5).
Then [1,2,1,4,1] would work for this example since 1+2+1=4, 2+1=3, 4+1=5.
I'm struggling with how to even start using the el_sum's to find solutions with an input list [X1,X2,X3,X4,X5]. I'm thinking I should use findall but I'm not really getting anywhere.
(My actual problem is much bigger than this so I'm looking for a solution that doesn't just work for three facts and a small list).
Thanks!
You are mixing here the monotonic world of constraints with some non-monotonic quantification. Don't try to mix them too closely. Instead, first transform those facts into, say, a list of terms.
el_sums(Gs) :-
G = el_sum(_,_,_),
findall(G, G, Gs).
And then, only then, start with the constraint part that will now remain monotonic. So:
?- el_sums(Gs), length(L5,5), maplist(l5_(L5), Gs).
l5_(L5, el_sum(P, N, S)) :-
length([_|Pre], P),
length(Cs, N),
phrase((seq(Pre),seq(Cs),seq(_)), L5),
list_sum(Cs,S).
seq([]) --> [].
seq([E|Es]) --> [E], seq(Es).
Not sure this will help, I don't understand your workflow... from where the list do come ? Anyway
:- [library(clpfd)].
el_sum(Pos,N,Sum) :-
length(L, 5),
L ins 0..100,
el_sum(Pos,N,Sum,L),
label(L), writeln(L).
el_sum(P,N,Sum,L) :-
N #> 0,
M #= N-1,
Q #= P+1,
el_sum(Q,M,Sum1,L),
element(N,L,T),
Sum #= Sum1 + T.
el_sum(_P,0,0,_L).
yields
?- el_sum(1,2,3).
[0,3,0,0,0]
true ;
[0,3,0,0,1]
true ;
...
I'm new in Prolog and trying to do some programming with Lists
I want to do this :
?- count_occurrences([a,b,c,a,b,c,d], X).
X = [[d, 1], [c, 2], [b, 2], [a, 2]].
and this is my code I know it's not complete but I'm trying:
count_occurrences([],[]).
count_occurrences([X|Y],A):-
occurrences([X|Y],X,N).
occurrences([],_,0).
occurrences([X|Y],X,N):- occurrences(Y,X,W), N is W + 1.
occurrences([X|Y],Z,N):- occurrences(Y,Z,N), X\=Z.
My code is wrong so i need some hits or help plz..
Here's my solution using bagof/3 and findall/3:
count_occurrences(List, Occ):-
findall([X,L], (bagof(true,member(X,List),Xs), length(Xs,L)), Occ).
An example
?- count_occurrences([a,b,c,b,e,d,a,b,a], Occ).
Occ = [[a, 3], [b, 3], [c, 1], [d, 1], [e, 1]].
How it works
bagof(true,member(X,List),Xs) is satisfied for each distinct element of the list X with Xs being a list with its length equal to the number of occurrences of X in List:
?- bagof(true,member(X,[a,b,c,b,e,d,a,b,a]),Xs).
X = a,
Xs = [true, true, true] ;
X = b,
Xs = [true, true, true] ;
X = c,
Xs = [true] ;
X = d,
Xs = [true] ;
X = e,
Xs = [true].
The outer findall/3 collects element X and the length of the associated list Xs in a list that represents the solution.
Edit I: the original answer was improved thanks to suggestions from CapelliC and Boris.
Edit II: setof/3 can be used instead of findall/3 if there are free variables in the given list. The problem with setof/3 is that for an empty list it will fail, hence a special clause must be introduced.
count_occurrences([],[]).
count_occurrences(List, Occ):-
setof([X,L], Xs^(bagof(a,member(X,List),Xs), length(Xs,L)), Occ).
Note that so far all proposals have difficulties with lists that contain also variables. Think of the case:
?- count_occurrences([a,X], D).
There should be two different answers.
X = a, D = [a-2]
; dif(X, a), D = [a-1,X-1].
The first answer means: the list [a,a] contains a twice, and thus D = [a-2]. The second answer covers all terms X that are different to a, for those, we have one occurrence of a and one occurrence of that other term. Note that this second answer includes an infinity of possible solutions including X = b or X = c or whatever else you wish.
And if an implementation is unable to produce these answers, an instantiation error should protect the programmer from further damage. Something along:
count_occurrences(Xs, D) :-
( ground(Xs) -> true ; throw(error(instantiation_error,_)) ),
... .
Ideally, a Prolog predicate is defined as a pure relation, like this one. But often, pure definitions are quite inefficient.
Here is a version that is pure and efficient. Efficient in the sense that it does not leave open any unnecessary choice points. I took #dasblinkenlight's definition as source of inspiration.
Ideally, such definitions use some form of if-then-else. However, the traditional (;)/2 written
( If_0 -> Then_0 ; Else_0 )
is an inherently non-monotonic construct. I will use a monotonic counterpart
if_( If_1, Then_0, Else_0)
instead. The major difference is the condition. The traditional control constructs relies upon the success or failure of If_0 which destroys all purity. If you write ( X = Y -> Then_0 ; Else_0 ) the variables X and Y are unified and at that very point in time the final decision is made whether to go for Then_0 or Else_0. What, if the variables are not sufficiently instantiated? Well, then we have bad luck and get some random result by insisting on Then_0 only.
Contrast this to if_( If_1, Then_0, Else_0). Here, the first argument must be some goal that will describe in its last argument whether Then_0 or Else_0 is the case. And should the goal be undecided, it can opt for both.
count_occurrences(Xs, D) :-
foldl(el_dict, Xs, [], D).
el_dict(K, [], [K-1]).
el_dict(K, [KV0|KVs0], [KV|KVs]) :-
KV0 = K0-V0,
if_( K = K0,
( KV = K-V1, V1 is V0+1, KVs0 = KVs ),
( KV = KV0, el_dict(K, KVs0, KVs ) ) ).
=(X, Y, R) :-
equal_truth(X, Y, R).
This definition requires the following auxiliary definitions:
if_/3, equal_truth/3, foldl/4.
If you use SWI-Prolog, you can do :
:- use_module(library(lambda)).
count_occurrences(L, R) :-
foldl(\X^Y^Z^(member([X,N], Y)
-> N1 is N+1,
select([X,N], Y, [X,N1], Z)
; Z = [[X,1] | Y]),
L, [], R).
One thing that should make solving the problem easier would be to design a helper predicate to increment the count.
Imagine a predicate that takes a list of pairs [SomeAtom,Count] and an atom whose count needs to be incremented, and produces a list that has the incremented count, or [SomeAtom,1] for the first occurrence of the atom. This predicate is easy to design:
increment([], E, [[E,1]]).
increment([[H,C]|T], H, [[H,CplusOne]|T]) :-
CplusOne is C + 1.
increment([[H,C]|T], E, [[H,C]|R]) :-
H \= E,
increment(T, E, R).
The first clause serves as the base case, when we add the first occurrence. The second clause serves as another base case when the head element matches the desired element. The last case is the recursive call for the situation when the head element does not match the desired element.
With this predicate in hand, writing count_occ becomes really easy:
count_occ([], []).
count_occ([H|T], R) :-
count_occ(T, Temp),
increment(Temp, H, R).
This is Prolog's run-of-the-mill recursive predicate, with a trivial base clause and a recursive call that processes the tail, and then uses increment to account for the head element of the list.
Demo.
You have gotten answers. Prolog is a language which often offers multiple "correct" ways to approach a problem. It is not clear from your answer if you insist on any sort of order in your answers. So, ignoring order, one way to do it would be:
Sort the list using a stable sort (one that does not drop duplicates)
Apply a run-length encoding on the sorted list
The main virtue of this approach is that it deconstructs your problem to two well-defined (and solved) sub-problems.
The first is easy: msort(List, Sorted)
The second one is a bit more involved, but still straight forward if you want the predicate to only work one way, that is, List --> Encoding. One possibility (quite explicit):
list_to_rle([], []).
list_to_rle([X|Xs], RLE) :-
list_to_rle_1(Xs, [[X, 1]], RLE).
list_to_rle_1([], RLE, RLE).
list_to_rle_1([X|Xs], [[Y, N]|Rest], RLE) :-
( dif(X, Y)
-> list_to_rle_1(Xs, [[X, 1],[Y, N]|Rest], RLE)
; succ(N, N1),
list_to_rle_1(Xs, [[X, N1]|Rest], RLE)
).
So now, from the top level:
?- msort([a,b,c,a,b,c,d], Sorted), list_to_rle(Sorted, RLE).
Sorted = [a, a, b, b, c, c, d],
RLE = [[d, 1], [c, 2], [b, 2], [a, 2]].
On a side note, it is almost always better to prefer "pairs", as in X-N, instead of lists with two elements exactly, as in [X, N]. Furthermore, you should keep the original order of the elements in the list, if you want to be correct. From this answer:
rle([], []).
rle([First|Rest],Encoded):-
rle_1(Rest, First, 1, Encoded).
rle_1([], Last, N, [Last-N]).
rle_1([H|T], Prev, N, Encoded) :-
( dif(H, Prev)
-> Encoded = [Prev-N|Rest],
rle_1(T, H, 1, Rest)
; succ(N, N1),
rle_1(T, H, N1, Encoded)
).
Why is it better?
we got rid of 4 pairs of unnecessary brackets in the code
we got rid of clutter in the reported solution
we got rid of a whole lot of unnecessary nested terms: compare .(a, .(1, [])) to -(a, 1)
we made the intention of the program clearer to the reader (this is the conventional way to represent pairs in Prolog)
From the top level:
?- msort([a,b,c,a,b,c,d], Sorted), rle(Sorted, RLE).
Sorted = [a, a, b, b, c, c, d],
RLE = [a-2, b-2, c-2, d-1].
The presented run-length encoder is very explicit in its definition, which has of course its pros and cons. See this answer for a much more succinct way of doing it.
refining joel76 answer:
count_occurrences(L, R) :-
foldl(\X^Y^Z^(select([X,N], Y, [X,N1], Z)
-> N1 is N+1
; Z = [[X,1] | Y]),
L, [], R).
Basically, I need to write a predicate, even_elts(L,M), such that L is a new list generated that contains only the even indexed elements from M (0th, 2nd, 4th, etc)
add_tail([X],[],X).
add_tail([H|NewT],[H|T],X) :-
add_tail(NewT,T,X).
even_elts(L,[]) :- L = [].
even_elts(L,M) :- even_elts2(L,M,1).
even_elts2(L,[H2|T2],Ct) :-
Ct2 is Ct + 1,
((Ct2 mod 2) =:= 0, add_tail(L,L2,H2), even_elts2(L2,T2,Ct2); even_elts2(L,T2,Ct2)).
even_elts2(_,[],_) :- !.
This works if M is empty or contains 1 or 2 elements. But, it only gets the first even indexed element from M, not the rest. Any pointers
EDIT: Solved the problem a different way, by removing the odd indexed elements rather than trying to create a new list and copying the data over. But, if someone can figure out a solution for my original code, I would be interested to see.
You're making this much more complicated than it is. You can use pattern matching to get each even element out, then collect those in the second (output) argument.
% an empty list does not have even elements
even_elts([], []).
% for all other lists, skip the second element (_),
% add the first to the output, recurse
even_elts([X, _ | L], [X | R]) :-
even_elts(L, R).
Just another approach with accumulator:
even_elts(L,M) :-
even_elts(M,0,[],L).
even_elts([H|T],I,Acc,Ans) :-
( I mod 2 =:= 0, append(Acc,[H], AccNew)
; I mod 2 =:= 1, AccNew = Acc
),
Inew is I + 1,
even_elts(T,Inew,AccNew,Ans).
even_elts([],_,Acc,Acc).
And
?- even_elts(X,[1,2,3,4,5]).
X = [1, 3, 5] ;
evens([A,B|C], [A|D]):- !, .....
evens(X, X).
is all you need. Fill in the blanks. :)