Fixing arguments when using pmap in Julia - parallel-processing

I have defined a function f(x, y, z) in Julia and I want to parallely compute f for many values of x, holding y and z fixed. What is the "best practices" way to do this using pmap?
It would be nice if it was something like pmap(f, x, y = 5, z = 8), which is how the apply family handles fixed arguments in R, but it doesn't appear to be as simple as that. I have devised solutions, but I find them inelegant and I doubt that they will generalize nicely for my purposes.
I can wrap f in a function g where g(x) = f(x, y = 5, z = 8). Then I simply call pmap(g, x). This is less parsimonious than I would like.
I can set 5 and 8 as default values for y and z when f is defined and then call pmap(f, x). This makes me uncomfortable in the case where I want to fix y at the value of some variable a, where a has (for good reason) not been defined at the time that f is defined, but will be by the time f is called. It works, but it kind of spooks me.

A good solution, which turns your apparently inflexible first option into a flexible one, is to use an anonymous function, e.g.
g(y, z) = x -> f(x, y, z)
pmap(g(5, 8), x)
or just
pmap(x -> f(x, 5, 8), x)
In Julia 0.4, anonymous functions have a performance penalty, but this will be gone in 0.5.

Related

lambda calculus example quenstion

(λy.x z)c
I think a answer about this problem is x z.
If it is correct, why (λy.x z)c = x c is incorrect?
In this case, I refer to (λy.x z) = (λy.x)z = x. So I calculate it in the parenthesis first.
(λy.x z) c is not a problem, it is a λ-term.
You refer to λy.x z = (λy.x) z but there is no way to move the parentheses, otherwise it would mean they were useless.
λy. x z
Means the function which takes y as argument and returns x applied to z.
While (λy.x) z means the function which takes y as argument and returns x, the whole thing applied to z. Why would those two things be the same?
(They are not.)

Order of unknowns in Prolog constraint logic programming (clpr)

I have:
:-use_module(library(clpr)).
comp(X, Y, Z):-
{X = Y * Z, Y = Z, Y > 0, Z > 0}.
Which with the query:
?-comp(X,3,Z).
Yields:
X = 9.0,
Z = 3.0
as expected. But why doesn't
comp(9,Y,Z).
also give me values for Y and Z? What I get is instead:
{Z>0.0,Y=Z,9-Y*Z=0.0},
{9-Y*Z=0.0},
{9-Y*Z=0.0}
Thanks!
Probably a weakness of the used CLP(R) that quadratic case doesn't work so well. After Y = Z, it is evident that X = Y**2, and then with X = 9 and Y > 0, you should easily get Y = 3. Which CLP(R) do you use?
A CLP(R) need not only support linear equalities and inequalities. Using for example Gröbner Basis algorithm a CLP(R) could do more, even algebraically. Some computer algebra system can do that easily.
So I guess its not a problem of Prolog per se, rather of the library. Strictly speaking CLP(X) only indicates a domain X. For the domain R of real numbers there is wide variety of potential equation and inequation solvers.
Better with constraints over finite domains using this module:
:-use_module(library(clpfd)).
comp(X, Y, Z):-
X #= Y * Z, Y #= Z, Y #> 0, Z #> 0.
With
comp(9,Y,Z).
I get:
Y = Z, Z = 3

Pseudocode to Logic[Predicate Logic in CS]

We try to translate a very simple program in pseudo-code to Predicate Logic.
The program is straightforward and does not contain loops. (sequential)
It only consists of assignments of variables and if-else statements.
Unfortunately we do not have any good information provided to solve the problem. It would be great if someone has some
examples "conversions" of simple 5liner code snippets or
links to sources for free information, which describe the topic on the surface level. ( We only do predicate and prepositional logic and do not want to dive much deeper in the logic space. )
Kind regards
UPDATE:
After enough research I found the solution and can share it inc. examples.
The trick is to think of the program state as a set of all our arbitrary variables inc. a program counter which stands for the current instruction to be executed.
x = input;
x = x*2;
if (y>0)
x = x∗y ;
else
x = y;
We will form the Predicate P(x,i,y,pc).
From here we can build promises e.g.:
∀i∀x∀y(P (x, i, y, 1) => P (i, i, y, 2))
∀i∀x∀y(P (x, i, y, 2) => P (x ∗ 2, i, y, 3))
∀i∀x∀y(P (x, i, y, 3) ∧ y > 0 =⇒ P (x ∗ y, i, y, 4))
∀i∀x∀y(P (x, i, y, 3) ∧ ¬y > 0 =⇒ P (y, i, y, 4))
By incrementing the Program counter we make sure that the promises follow in order. Now we are able to define make a proof when given a premise for the Input e.g. P(x,4,7,1).

Gradient of a function at specific x,y,z values in Mathematica

I'm looking for a way to find the gradient of a function and then evaluate the output at specific x,y,z values. Thus far, I have
Needs["VectorAnalysis`"]
Clear[x, y, z]
v1 = Grad[x^2 + y^2 + z^2 - 9, Cartesian[x, y, z]]
which outputs
{2 x, 2 y, 2 z}. How could I evaluate this at x=2,y=2, and z=1, for instance? This seems trivial for the function above, but it would be immensely useful for more complicated functions. Thank you very much for any advice.
You can Replace the variables by values using Rule:
v1/.{x->2,y->2,z->1}

prolog function returning memory locations instead of values

just started programming with prolog and I'm having a few issues. The function I have is supposed to take a value X and copy it N number of times into M. My function returns a list of N number of memory locations. Here's the code, any ideas?
duple(N,_,M):- length(M,Q), N is Q.
duple(N,X,M):- append(X,M,Q), duple(N,X,Q).
Those are not memory adresses. Those are free variables. What you see is their internal names in your prolog system of choice. Then, as #chac pointed out (+1 btw), the third clause is not really making sense! Maybe you can try to tell us what you meant so that we can bring light about how to do it correctly.
I'm going to give you two implementations of your predicate to try to show you correct Prolog syntax:
duple1(N, X, L) :-
length(L, N),
maplist(=(X), L).
Here, in your duple1/3 predicate, we tell prolog that the length of the resulting list L is N, and then we tell it that each element of L should be unified with X for the predicate to hold.
Another to do that would be to build the resulting list "manually" through recursion:
duple2(0, _X, []).
duple2(N, X, [X|L]) :-
N > 0,
NewN is N - 1,
duple1(NewN, X, L).
Though, note that because we use >/2, is and -/2, ie arithmetic, we prevent prolog from using this predicate in several ways, such as:
?- duple1(X, Y, [xyz, xyz]).
X = 2,
Y = xyz.
This worked before, in our first predicate!
Hope this was of some help.
I suppose you call your predicate, for instance, in this way:
?- duple(3,xyz,L).
and you get
L = [_G289, _G292, _G295] ;
ERROR: Out of global stack
If you try
?- length(X,Y).
X = [],
Y = 0 ;
X = [_G299],
Y = 1 ;
X = [_G299, _G302],
Y = 2 ;
X = [_G299, _G302, _G305],
Y = 3 ;
X = [_G299, _G302, _G305, _G308],
Y = 4 .
...
you can see what's happening:
your query will match the specified *M*, displaying a list of M uninstantiated variables (memory locations), then continue backtracking and generating evee longer lists 'til there is stack space. Your second rule will never fire (and I don't really understand its purpose).
A generator is easier to write in this way:
duple(N,X,M) :- findall(X,between(1,N,_),M).
test:
?- duple(3,xyz,L).
L = [xyz, xyz, xyz].

Resources