Interface fulfilled by struct embedding - go

I'm confused by my experiments with the following program, related to fulfilling interface with struct embedding, with named types and pointer receivers, respectively:
package main
import "fmt"
type MyInt interface {
mytest()
}
type Base struct {
}
func (b *Base) mytest() {
fmt.Println("From base")
}
type Derived struct {
Base
}
type Derived2 struct {
*Base
}
func main() {
// Only this one has problem
// However, if we change mytest's receiver from *Base to Base, all the four assignments are OK
var _ MyInt = Derived{}
// OK
var _ MyInt = &Derived{}
var _ MyInt = Derived2{}
var _ MyInt = &Derived2{}
}
See the comments in the code for my confusions. Are there any principal ways to explain them?

From the Go language specification:
Given a struct type S and a type named T, promoted methods are
included in the method set of the struct as follows:
If S contains an anonymous field T, the method sets of S and *S both
include promoted methods with receiver T.
The method set of *S also
includes promoted methods with receiver *T.
If S contains an anonymous
field *T, the method sets of S and *S both include promoted methods
with receiver T or *T.
The case that doesn't work in your code:
var _ MyInt = Derived{}
Here the method set of Derived (which contains an anonymous field Base) includes methods of Base by rule 1. Since mytest is a method of *Base and not Base, it's promoted to a method of *Derived (by the second rule), but not of Derived.
Why is it like that? Well, it's similar to the rule for method sets of structs: methods of T are also methods of T*, but not vice-versa. That's because a method of a pointer receiver can expect to be able to mutate its receiver, but a method of a non-pointer receiver can't.

As per your code function mytest can be called on receiver which pointer to Base.
Struct Derived inherits/embeds Base and Derived2 inherits/embeds *Base i.e. pointer to base.
For
var _MyInt = &Derived2{}: Here pointer of Derived2 is created and since Dervied2 inherits from *Base calling mytest on _MyInt will work
var _MyInt = Derived2{}: Instance of Derived2 is created and since Dervied2 inherits from *Base calling mytest on _MyInt will work
var _MyInt = &Derived{}: Here pointer of Derived is created and since Dervied inherits from Base calling mytest on _MyInt will work
var _MyInt = Derived{}: Instance of Derived is created and since Dervied inherits from Base calling mytest on _MyInt will not work has pointer to Base is expected.
You rightly pointed out that changing receiver from *Base to Base will work because Go will be able recognize Object from pointer and will be able to call mytest.
As per golang specification
A type may have a method set associated with it. The method set of an interface type is its interface. The method set of any other type T consists of all methods declared with receiver type T. The method set of the corresponding pointer type *T is the set of all methods declared with receiver *T or T (that is, it also contains the method set of T).
Hope this helps

Related

Question regarding Golang interfaces and Composite struct [duplicate]

There are already several Q&As on this "X does not implement Y (... method has a pointer receiver)" thing, but to me, they seems to be talking about different things, and not applying to my specific case.
So, instead of making the question very specific, I'm making it broad and abstract -- Seems like there are several different cases that can make this error happen, can someone summary it up please?
I.e., how to avoid the problem, and if it occurs, what are the possibilities? Thx.
This compile-time error arises when you try to assign or pass (or convert) a concrete type to an interface type; and the type itself does not implement the interface, only a pointer to the type.
Short summary: An assignment to a variable of interface type is valid if the value being assigned implements the interface it is assigned to. It implements it if its method set is a superset of the interface. The method set of pointer types includes methods with both pointer and non-pointer receiver. The method set of non-pointer types only includes methods with non-pointer receiver.
Let's see an example:
type Stringer interface {
String() string
}
type MyType struct {
value string
}
func (m *MyType) String() string { return m.value }
The Stringer interface type has one method only: String(). Any value that is stored in an interface value Stringer must have this method. We also created a MyType, and we created a method MyType.String() with pointer receiver. This means the String() method is in the method set of the *MyType type, but not in that of MyType.
When we attempt to assign a value of MyType to a variable of type Stringer, we get the error in question:
m := MyType{value: "something"}
var s Stringer
s = m // cannot use m (type MyType) as type Stringer in assignment:
// MyType does not implement Stringer (String method has pointer receiver)
But everything is ok if we try to assign a value of type *MyType to Stringer:
s = &m
fmt.Println(s)
And we get the expected outcome (try it on the Go Playground):
something
So the requirements to get this compile-time error:
A value of non-pointer concrete type being assigned (or passed or converted)
An interface type being assigned to (or passed to, or converted to)
The concrete type has the required method of the interface, but with a pointer receiver
Possibilities to resolve the issue:
A pointer to the value must be used, whose method set will include the method with the pointer receiver
Or the receiver type must be changed to non-pointer, so the method set of the non-pointer concrete type will also contain the method (and thus satisfy the interface). This may or may not be viable, as if the method has to modify the value, a non-pointer receiver is not an option.
Structs and embedding
When using structs and embedding, often it's not "you" that implement an interface (provide a method implementation), but a type you embed in your struct. Like in this example:
type MyType2 struct {
MyType
}
m := MyType{value: "something"}
m2 := MyType2{MyType: m}
var s Stringer
s = m2 // Compile-time error again
Again, compile-time error, because the method set of MyType2 does not contain the String() method of the embedded MyType, only the method set of *MyType2, so the following works (try it on the Go Playground):
var s Stringer
s = &m2
We can also make it work, if we embed *MyType and using only a non-pointer MyType2 (try it on the Go Playground):
type MyType2 struct {
*MyType
}
m := MyType{value: "something"}
m2 := MyType2{MyType: &m}
var s Stringer
s = m2
Also, whatever we embed (either MyType or *MyType), if we use a pointer *MyType2, it will always work (try it on the Go Playground):
type MyType2 struct {
*MyType
}
m := MyType{value: "something"}
m2 := MyType2{MyType: &m}
var s Stringer
s = &m2
Relevant section from the spec (from section Struct types):
Given a struct type S and a type named T, promoted methods are included in the method set of the struct as follows:
If S contains an anonymous field T, the method sets of S and *S both include promoted methods with receiver T. The method set of *S also includes promoted methods with receiver *T.
If S contains an anonymous field *T, the method sets of S and *S both include promoted methods with receiver T or *T.
So in other words: if we embed a non-pointer type, the method set of the non-pointer embedder only gets the methods with non-pointer receivers (from the embedded type).
If we embed a pointer type, the method set of the non-pointer embedder gets methods with both pointer and non-pointer receivers (from the embedded type).
If we use a pointer value to the embedder, regardless of whether the embedded type is pointer or not, the method set of the pointer to the embedder always gets methods with both the pointer and non-pointer receivers (from the embedded type).
Note:
There is a very similar case, namely when you have an interface value which wraps a value of MyType, and you try to type assert another interface value from it, Stringer. In this case the assertion will not hold for the reasons described above, but we get a slightly different runtime-error:
m := MyType{value: "something"}
var i interface{} = m
fmt.Println(i.(Stringer))
Runtime panic (try it on the Go Playground):
panic: interface conversion: main.MyType is not main.Stringer:
missing method String
Attempting to convert instead of type assert, we get the compile-time error we're talking about:
m := MyType{value: "something"}
fmt.Println(Stringer(m))
To keep it short and simple, let say you have a Loader interface and a WebLoader that implements this interface.
package main
import "fmt"
// Loader defines a content loader
type Loader interface {
load(src string) string
}
// WebLoader is a web content loader
type WebLoader struct{}
// load loads the content of a page
func (w *WebLoader) load(src string) string {
return fmt.Sprintf("I loaded this page %s", src)
}
func main() {
webLoader := WebLoader{}
loadContent(webLoader)
}
func loadContent(loader Loader) {
loader.load("google.com")
}
The above code will give you this compile time error
./main.go:20:13: cannot use webLoader (type WebLoader) as type Loader
in argument to loadContent:
WebLoader does not implement Loader (Load method has pointer receiver)
To fix it you only need to change webLoader := WebLoader{} to following:
webLoader := &WebLoader{}
Why this will fix the issue? Because you defined this function func (w *WebLoader) Load to accept a pointer receiver. For more explanation please read #icza and #karora answers
Another case when I have seen this kind of thing happening is if I want to create an interface where some methods will modify an internal value and others will not.
type GetterSetter interface {
GetVal() int
SetVal(x int) int
}
Something that then implements this interface could be like:
type MyTypeA struct {
a int
}
func (m MyTypeA) GetVal() int {
return a
}
func (m *MyTypeA) SetVal(newVal int) int {
int oldVal = m.a
m.a = newVal
return oldVal
}
So the implementing type will likely have some methods which are pointer receivers and some which are not and since I have quite a variety of these various things that are GetterSetters I'd like to check in my tests that they are all doing the expected.
If I were to do something like this:
myTypeInstance := MyType{ 7 }
... maybe some code doing other stuff ...
var f interface{} = myTypeInstance
_, ok := f.(GetterSetter)
if !ok {
t.Fail()
}
Then I won't get the aforementioned "X does not implement Y (Z method has pointer receiver)" error (since it is a compile-time error) but I will have a bad day chasing down exactly why my test is failing...
Instead I have to make sure I do the type check using a pointer, such as:
var f interface{} = new(&MyTypeA)
...
Or:
myTypeInstance := MyType{ 7 }
var f interface{} = &myTypeInstance
...
Then all is happy with the tests!
But wait! In my code, perhaps I have methods which accept a GetterSetter somewhere:
func SomeStuff(g GetterSetter, x int) int {
if x > 10 {
return g.GetVal() + 1
}
return g.GetVal()
}
If I call these methods from inside another type method, this will generate the error:
func (m MyTypeA) OtherThing(x int) {
SomeStuff(m, x)
}
Either of the following calls will work:
func (m *MyTypeA) OtherThing(x int) {
SomeStuff(m, x)
}
func (m MyTypeA) OtherThing(x int) {
SomeStuff(&m, x)
}
Extend from above answers (Thanks for all of your answers)
I think it would be more instinctive to show all the methods of pointer / non pointer struct.
Here is the playground code.
https://play.golang.org/p/jkYrqF4KyIf
To summarize all the example.
Pointer struct type would include all non pointer / pointer receiver methods
Non pointer struct type would only include non pointer receiver methods.
For embedded struct
non pointer outer struct + non pointer embedded struct => only non pointer receiver methods.
non pointer outer struct + pointer embedded struct / pointer outer struct + non pointer embedded struct / pointer outer struct + pointer embedded struct => all embedded methods

Pass pointer as an interface type to the function

I am a new to Go and the behavior below confuses me:
package main
type Contractor struct{}
func (Contractor) doSomething() {}
type Puller interface {
doSomething()
}
func process(p Puller) {
//some code
}
func main() {
t := Contractor{}
process(&t) //why this line of code doesn't generate error
}
In Go some type and pointer to this time conform to the interface? So in my example t and &t are both Pullers?
From the Go spec:
A type may have a method set associated with it. The method set of an
interface type is its interface. The method set of any other type T
consists of all methods declared with receiver type T. The method set
of the corresponding pointer type *T is the set of all methods
declared with receiver *T or T (that is, it also contains the method
set of T).
In your case the method set of &t (which is of type *Contractor) is the set of all methods declared with receiver *Contractor or Contractor, so it contains the method doSomething().
This is also discussed in the Go FAQ, and in Go code review comments. Finally, this is covered by many past Stack Overflow questions like this one or that one.

Anonymous/explicitly embedded a interface in struct

type A interface {
f()
}
type B struct {
A
}
type C struct {
Imp A
}
func main() {
b := B{}
c := C{}
//b can be directly assigned to the A interface, but c prompts that it cannot be assigned
var ab A = b
//Cannot use 'c' (type C) as type A in assignment Type does not implement 'A' as some methods are missing: f()
var ac A = c
}
what's the different between in the B struct and C struct?
in Go sheet
A field declared with a type but no explicit field name is called an embedded field. An embedded field must be specified as a type name T or as a pointer to a non-interface type name *T, and T itself may not be a pointer type. The unqualified type name acts as the field name.
If you continue reading the same section of the spec of the spec, you will notice the following:
Given a struct type S and a defined type T, promoted methods are
included in the method set of the struct as follows:
If S contains an embedded field T, the method sets of S and *S both
include promoted methods with receiver T. The method set of *S also
includes promoted methods with receiver *T.
If S contains an embedded
field *T, the method sets of S and *S both include promoted methods
with receiver T or *T.
Your struct B has no methods explicitly defined on it, but B's method set implicitly includes the promoted methods from the embedded field. In this case, the embedded field is an interface with method f(). You can use any object that satisfies that interface and its f() method will automatically be part of the method set for B.
On the other hand, your C struct has a named field. The methods on Imp do not get automatically added to C's method set. Instead, to access the f() method from Imp, you would need to specifically call C.Imp.f().
Finally: the fact that you're using an interface as the (embedded or not) field does not matter, it could easily be another struct that has a f() method. The important part is whether f() becomes part of the parent struct's method set or not, which will allow it to implement A or not.

Can interface type and value be a type that does not implement the interface and its value?

Here is the link to the code and description I was looking at: https://tour.golang.org/methods/11
I change method M of type *T to T, that is changing from a pointer receiver to a value receiver as below.
package main
import (
"fmt"
"math"
)
type I interface {
M()
}
type T struct {
S string
}
func (t T) M() {
fmt.Println(t.S)
}
type F float64
func (f F) M() {
fmt.Println(f)
}
func main() {
var i I
i = &T{"Hello"}
describe(i)
i.M()
i = F(math.Pi)
describe(i)
i.M()
}
func describe(i I) {
fmt.Printf("(%v, %T)\n", i, i)
}
However, the change above gave me the same result as it was still a pointer receiver.
(&{Hello}, *main.T)
Hello
(3.141592653589793, main.F)
3.141592653589793
I am not sure I got this concept right. From my understanding since interface variable i got assign a pointer to an instance of struct T, the type of that interface variable should be a pointer to struct T, and since pointer to struct T does not implement method M, it will cause a panic.
Spec: Method sets:
The method set of the corresponding pointer type *T is the set of all methods declared with receiver *T or T (that is, it also contains the method set of T).
[...] The method set of a type determines the interfaces that the type implements and the methods that can be called using a receiver of that type.
So all methods you declare with value receiver will also belong to the method set of the corresponding pointer type, and thus all interfaces a non-pointer type implements will also be implemented by the pointer type too (and possibly more).
Go has some shortcuts. For example:
a.Method()
a.Field
is the same as
(*a).Method()
(*a).Field
is similar to the concept here https://tour.golang.org/moretypes/4

Address of composite literal used as interface

The address of a composite literal is evaluated as the literal itself when used as an interface. Can somebody please point to the part of the ref spec which deals with this ?
package main
import "fmt"
type ntfc interface {
rx() int
}
type cncrt struct {
x int
}
func (c cncrt) rx() int{
return c.x
}
func rtrnsNtfca() ntfc {
return &cncrt{3}
}
func rtrnsNtfc() ntfc {
return cncrt{3}
}
func rtrnsCncrt() *cncrt {
return &cncrt{3}
}
func main() {
fmt.Println(rtrnsNtfca().rx())
fmt.Println(rtrnsNtfc().rx())
fmt.Println(rtrnsCncrt().rx())
}
Also here. For future ref., is it acceptable to just link to the playground without including the code here?
Spec: Method sets:
A type may have a method set associated with it. The method set of an interface type is its interface. The method set of any other type T consists of all methods declared with receiver type T. The method set of the corresponding pointer type *T is the set of all methods declared with receiver *T or T (that is, it also contains the method set of T).
So the method set of *cncrt includes the methods set of cncrt. Since rx() is an element of cncrt's method set, it will also be in *cncrt's method set. Which means both cncrt and *cncrt types implement the ntfc interface.
If you have a pointer value (*cncrt) and you call rx() on it, the pointer will automatically be dereferenced which will be the receiver of the rx() method.
In your rtnsNtfca() and rtnsNtfc() functions an interface value of ntfc will automatically be created and returned. Interface values in Go are represented as (type;value) pairs (for more details: The Laws of Reflection #The representation of an interface). So both rtnsNtfca() and rtnsNtfc() return an interface value, but the first one holds a dynamic value of type *cncrt and the latter one holds a dynamic value of type cncrt.
And your 3rd method rtrnsCncrt() returns a concrete type (*cncrt), there is no interface wrapping involved there.
Note: "The other way around"
Spec: Calls:
If x is addressable and &x's method set contains m, x.m() is shorthand for (&x).m().
This means if you would have declared rx() to have a pointer receiver, and you have a variable of type cncrt (note: not pointer), you could still call the rx() method on it if it is addressable, and the address would be taken automatically and used as the receiver.

Resources