An efficient solution to find if n vertex disjoint path exist - algorithm

You have been given an r x c grid. The vertices in i row and j column is denoted by (i,j). All vertices in grid have exactly four neighbors except boundary ones which are denoted by (i,j) if i = 1, i = r , j = 1 or j = c. You are given n starting points. Determine whether there are n vertex disjoint paths from starting points to n boundary points.
My Solution
This can be modeled as a max-flow problem. The starting points will be sources, boundary targets and each edge and vertex will have capacity of 1. This can be further reduced to generic max flow problem by making each vertex split in two, with capacity of 1 in edge between them, and having a supersource and a supersink connected with sources and targets be edge of capacity one respectively.
After this I can simply check whether there exists a flow in each edge (s , si) where s is supersource and si is ith source in i = 1 to n. If it does then the method returns True otherwise False.
Problem
But it seems like using max-flow in this is kind of overkill. It would take some time in preprocessing the graph and the max-flow takes about O(V(E1/2)).
So I was wondering if there exists an more efficient solution to compute it?

Related

How to find maximal subgraph of bipartite graph with valence constraint?

I have a bipartite graph. I'll refer to red-nodes and black-nodes of the respective disjoint sets.
I would like to know how to find a connected induced subgraph that maximizes the number of red-nodes while ensuring that all black nodes in the subgraph have new valences less than or equal to 2. Where "induced" means that if two nodes are connected in the original graph and both exist in the subgraph then the edge between them is automatically included. Eventually I'd like to introduce non-negative edge-weights.
Can this be reduced to a standard graph algorithm? Hopefully one with known complexity and simple implementation.
It's clearly possible to grow a subgraph greedily. But is this best?
I'm sure that this problem belongs to NP-complete class, so there is no easy way to solve it. I would suggest you using constraint satisfaction approach. There are quite a few ways to formulate your problem, for example mixed-integer programming, MaxSAT or even pseudo-boolean constraints.
For the first try, I would recommend MiniZinc solver. For example, consider this example of defining and solving graph problems in MiniZinc.
Unfortunately this is NP-hard, so there are probably no polynomial-time algorithms to solve it. Here is a reduction from the NP-hard problem Independent Set, where we are given a graph G = (V, E) (with n = |V| and m = |E|) and an integer k, and the task is to determine whether it is possible to find a set of k or more vertices such that no two vertices in the set are linked by an edge:
For every vertex v_i in G, create a red vertex r_i in H.
For every edge (v_i, v_j) in G, create the following in H:
a black vertex b_ij,
n+1 red vertices t_ijk (1 <= k <= n+1),
n black vertices u_ijk (1 <= k <= n),
n edges (t_ijk, u_ijk) (1 <= k <= n)
n edges (t_ijk, u_ij{k-1}) (2 <= k <= n+1)
the three edges (r_i, b_ij), (r_j, b_ij), and (t_ij1, b_ij).
For every pair of vertices v_i, v_j, create the following:
a black vertex c_ij,
the two edges (r_i, c_ij) and (r_j, c_ij).
Set the threshold to m(n+1)+k.
Call the set of all r_i R, the set of all b_ij B, the set of all c_ij C, the set of all t_ij T, and the set of all u_ij U.
The general idea here is that we force each black vertex b_ij to choose at most 1 of the 2 red vertices r_i and r_j that correspond to the endpoints of the edge (i, j) in G. We do this by giving each of these b_ij vertices 3 outgoing edges, of which one (the one to t_ij1) is a "must-have" -- that is, any solution in which a t_ij1 vertex is not selected can be improved by selecting it, as well as the n other red vertices it connects to (via a "wiggling path" that alternates between vertices in t_ijk and vertices in u_ijk), getting rid of either r_i or r_j to restore the property that no black vertex has 3 or more neighbours in the solution if necessary, and then finally restoring connectedness by choosing vertices from C as necessary. (The c_ij vertices are "connectors": they exist only to ensure that whatever subset of R we include can be made into a single connected component.)
Suppose first that there is an IS of size k in G. We will show that there is a connected induced subgraph X with at least m(n+1)+k red nodes in H, in which every black vertex has at most 2 neighbours in X.
First, include in X the k vertices from R that correspond to the vertices in the IS (such a set must exist by assumption). Because these vertices form an IS, no vertex in B is adjacent to more than 1 of them, so for each vertex b_ij, we may safely add it, and the "wiggling path" of 2n+1 vertices beginning at t_ij1, into X as well. Each of these wiggling paths contains n+1 red vertices, and there are m such paths (one for each edge in G), so there are now m(n+1)+k red vertices in X. Finally, to ensure that X is connected, add to it every vertex c_ij such that r_i and r_j are both in X already: notice that this does not change the total number of red vertices in X.
Now suppose that there is a connected induced subgraph X with at least m(n+1)+k red nodes in H, in which every black vertex has at most 2 neighbours in X. We will show that there is an IS in G of size k.
The only red vertices in H are those in R and those in T. There are only n vertices in R, so if X does not contain all m wiggly paths, it must have at most (m-1)(n+1)+n = m(n+1)-1 red vertices, contradicting the assumption that it has at least m(n+1)+k red vertices. Thus X must contain all m wiggly paths. This leaves k other red vertices in X, which must be from R. No two of these vertices can be adjacent to the same vertex in B, since that B-vertex would then be adjacent to 3 vertices: thus, these k vertices correspond to an IS in G.
Since a YES-instance of IS implies a YES-instance to the constructed instance of your problem and vice versa, the solution to the constructed instance of your problem corresponds exactly to the solution to the IS instance; and since the construction is clearly polynomial-time, this establishes that your problem is NP-hard.

K edge disjoint paths in a directed graph

Give two vertices u and v in G = (V,E) and a positive integer k, describe an algorithm to decide if there exists a k edge disjoint paths from u to v. If the answer to the decision problem is yes, describe how to compute a set of k edge disjoint paths.
Solution : Run max flow from u to v (giving all edges in the Graph G a weight of 1 so that one edge can be part of only one path from u to v) and get the value of flow. If the value of the flow is k then we have the answer to the decision problem as yes.
Now for finding all such paths find the min cut by doing BFS from u and hence I will have the partition of vertices which will separate the vertices into 2 sets one on each side of min cut.
Then do I need to again do a DFS from u to v looking for all the paths which have only these vertices which are there in the two partition set that I got from the min cut.
Or is there any other cleaner way ? to get all the k edge disjoint paths.
Once you have the flow you can extract the edge disjoint paths by following the flow.
The start node will have a flow of k leaving u along k edges.
For each of these edges you can keep moving in the direction of outgoing flow to extract the path until you reach v. All you need to do is to mark the edges you have already used to avoid duplicating edges.
Repeat for each of the k units of flow leaving u to extract all k paths.
Pseudocode
repeat k times:
set x to start node
set path to []
while x is not equal to end node:
find a edge from x which has flow>0, let y be the vertex at the far end
decrease flow from x->y by 1 unit
append y to path
set x equal to y
print path

Code on Weighted, Acyclic Graph

We have a Code on Weighted, Acyclic Graph G(V, E) with positive and negative edges. we change the weight of this graph with following code, to give a G without negative edge (G'). if V={1,2...,n} and G_ij be a weight of edge i to edge j.
Change_weight(G)
for t=1 to n
for j=1 to n
G_i=min G_ij for All K
if G_i < 0 (we have a bar on G)
G_ij = G_ij+G_i for all j
G_ki = G_ki+G_i for all k
We have two axioms:
1) the shortest path between every two vertex in G is the same as G'.
2) the length of shortest path between every two vertex in G is the same as G'.
i read one pdf that has low quality, i'm not sure the code exactly mentioned, and add the picture. in this book he say the above axioms is false, anyone could help me? i think these are true?
i think two is false as following counter example, the original graph is given in left, and after the algorithm is run, the result is in right the shortest path between 1 to 3 changed, it passed from vertex 2 but after the algorithm is run it never passed from vertex 2.
Algorithm
My reading of the PDF is:
Change_weight(G)
for i=i to n
for j=1 to n
c_i=min c_ij for all j
if c_i < 0
c_ij = c_ij-c_i for all j
c_ki = c_ki+c_i for all k
The interpretation is that for each vertex we increase its outgoing edges by c_i, and decrease the incoming edges by c_i, where c_i is chosen such that all outgoing edges become non-negative.
Claim 1
"the shortest path between every two vertex in G is the same as G'"
With my reading of the pdf, this claim is true because every path between vertices i and j is changed by the same amount (c_i-c_j) and so the relative order of paths is unchanged. (Note that the path may go via intermediate vertices, but the net effect is 0 because for each intermediate vertex k we decrease the length by c_k when entering, but increase by c_k when exiting.)
Claim 2
"the length of shortest path between every two vertex in G is the same as G'".
This cannot be true - suppose we start with an original graph which has a single edge A to B with weight -1.
In the modified graph this weight will become 0.
Therefore the length of the shortest path has changed from -1 in G to 0 in G' so the statement is false.
Example
Shown below is what would happen to your graph as you applied this algorithm to node 1, followed by node 2:
Topological sort
Note that as shown in the example, we still end up with some negative weights which is probably unintended. This is because the weights of incoming edges are reduced.
However, if we work backwards through the graph (e.g. by using a topological sort), then we will always end up with non-negative weights everywhere.
In the given example, working backwards means we first update 2, and then 1 as shown below:

Shortest Path Algorithm with Fuel Constraint and Variable Refueling

Suppose you have an undirected weighted graph. You want to find the shortest path from the source to the target node while starting with some initial "fuel". The weight of each edge is equal to the amount of "fuel" that you lose going across the edge. At each node, you can have a predetermined amount of fuel added to your fuel count - this value can be 0. A node can be visited more than once, but the fuel will only be added the first time you arrive at the node. **All nodes can have different amounts of fuel to provide.
This problem could be related to a train travelling from town A to town B. Even though the two are directly connected by a simple track, there is a shortage of coal, so the train does not have enough fuel to make the trip. Instead, it must make the much shorter trip from town A to town C which is known to have enough fuel to cover the trip back to A and then onward to B. So, the shortest path would be the distance from A to C plus the distance from C to A plus the distance from A to B. We assume that fuel cost and distance is equivalent.
I have seen an example where the nodes always fill the "tank" up to its maximum capacity, but I haven't seen an algorithm that handles different amounts of refueling at different nodes. What is an efficient algorithm to tackle this problem?
Unfortunately this problem is NP-hard. Given an instance of traveling salesman path from s to t with decision threshold d (Is there an st-path visiting all vertices of length at most d?), make an instance of this problem as follows. Add a new destination vertex connected to t by a very long edge. Give starting fuel d. Set the length of the new edge and the fuel at each vertex other than the destination so that (1) the total fuel at all vertices is equal to the length of the new edge (2) it is not possible to use the new edge without collecting all of the fuel. It is possible to reach the destination if and only if there is a short traveling salesman path.
Accordingly, algorithms for this problem will resemble those for TSP. Preprocess by constructing a complete graph on the source, target, and vertices with nonzero fuel. The length of each edge is equal to the distance.
If there are sufficiently few special vertices, then exponential-time (O(2^n poly(n))) dynamic programming is possible. For each pair consisting of a subset of vertices (in order of nondecreasing size) and a vertex in that subset, determine the cheapest way to visit all of the subset and end at the specified vertex. Do this efficiently by using the precomputed results for the subset minus the vertex and each possible last waypoint. There's an optimization that prunes the subsolutions that are worse than a known solution, which may help if it's not necessary to use very many waypoints.
Otherwise, the play may be integer programming. Here's one formulation, quite probably improvable. Let x(i, e) be a variable that is 1 if directed edge e is taken as the ith step (counting from the zeroth) else 0. Let f(v) be the fuel available at vertex v. Let y(i) be a variable that is the fuel in hand after i steps. Assume that the total number of steps is T.
minimize sum_i sum_{edges e} cost(e) x(i, e)
subject to
for each i, for each vertex v,
sum_{edges e with head v} x(i, e) - sum_{edges e with tail v} x(i + 1, e) =
-1 if i = 0 and v is the source
1 if i + 1 = T and v is the target
0 otherwise
for each vertex v, sum_i sum_{edges e with head v} x(i, e) <= 1
for each vertex v, sum_i sum_{edges e with tail v} x(i, e) <= 1
y(0) <= initial fuel
for each i,
y(i) >= sum_{edges e} cost(e) x(i, e)
for each i, for each vertex v,
y(i + 1) <= y(i) + sum_{edges e} (-cost(e) + f(head of e)) x(i, e)
for each i, y(i) >= 0
for each edge e, x(e) in {0, 1}
There is no efficient algorithm for this problem. If you take an existing graph G of size n you can give each edge a weight of 1, each node a deposit of 5, and then add a new node that you are trying to travel to connected to each node with a weight of 4 * (n -1). Now the existence of a path from the source to the target node in this graph is equivalent to the existence of a Hamiltonian path in G, which is a known np-complete problem. (See http://en.wikipedia.org/wiki/Hamiltonian_path for details.)
That said, you can do better than a naive recursive solution for most graphs. First do a breadth first search from the target node so that every node's distance to the target is known. Now you can borrow the main idea of Dijkstra's A* search. Do a search of all paths from the source, using a priority queue to always try to grow a path whose current distance + the minimum to the target is at a minimum. And to reduce work you probably also want to discard all paths that have returned to a node that they have previously visited, except with lower fuel. (This will avoid silly paths that travel around loops back and forth as fuel runs out.)
Assuming the fuel consumption as positive weight and the option to add the fuel as negative weight and additionally treating the initial fuel available as another negative weighted edge, you can use Bellman Ford to solve it as single source shortest path.
As per this answer, elsewhere, undirected graphs can be addressed by replacing each edge with two in both directions. The only constraint I'm not sure about is the part where you can only refuel once. This may be naturally addressed, by the the algorithm, but I'm not sure.

How can I get the antichain elements in SPOJ-DIVREL?

Problem: http://www.spoj.com/problems/DIVREL
In question, we just need to find the maximum number of elements which are not multiples (a divisible by b form) from a set of elements given. If we just make an edge from an element to its multiple and construct a graph it will be a DAG.
Now the question just changes to finding the minimum number of chains which contain all the vertices which equals the antichain cardinality using Dilworth's theorem as it is a partially ordered set.
Minimum chains can be found using bipartite matching (How: It is minimum path cover) but now I am unable to find the antichain elements themselves?
To compute the antichain you can:
Compute the maximum bipartite matching (e.g. with a maximum flow algorithm) on a new bipartite graph D which has an edge from LHS a to RHS b if and only if a divides b.
Use the matching to compute a minimal vertex cover (e.g. with the algorithm described in the proof of Konig's theorem
The antichain is given by all vertices not in the vertex cover
There cannot be an edge between two such elements as otherwise we would have discovered an edge that is not covered by a vertex cover resulting in a contradiction.
The algorithm to find the min vertex cover is (from the link above):
Let S0 consist of all vertices unmatched by M.
For integer j ≥ 0, let S(2j+1) be the set of all vertices v such that v is adjacent via some edge in E \ M to a vertex in S(2j) and v has not been included in any
previously-defined set Sk, where k < 2j+1. If there is no such vertex,
but there remain vertices not included in any previously-defined set
Sk, arbitrarily choose one of these and let S(2j+1) consist of that
single vertex.
For integer j ≥ 1, let S(2j) be the set of all vertices u
such that u is adjacent via some edge in M to a vertex in S(2j−1). Note
that for each v in S(2j−1) there is a vertex u to which it is matched
since otherwise v would have been in S0. Therefore M sets up a
one-to-one correspondence between the vertices of S(2j−1) and the
vertices of S(2j).
The union of the odd indexed subsets is the vertex cover.

Resources