What is the role of clock for a UART - linux-kernel

I'm busy writing a driver for a UART. The, struct uart_port has a field uartclk see this link. According to a slide set I found from free-electrons, this is among the most important fields to initialize. Yet, the Xilinx AXI UART Lite, which I'm writing a driver for, doesn't initialize this member see this link to see.
I'm wondering about the importance of this field. What is this in relation to a UART? Why is it important? What role does it play in the serial core?
Thanks
P.S. I know there's a driver existing. However, this driver assumes the UART Lite is to be used in an embedded environment. In the application I'm writing to, this is not the case.

The UART like any other IP in the system has to have functional and interface clocks. In some IPs it might be same clock, in some it might be more interface or functional clocks. The uartclk field reflects the actual frequency on the input to baudrate generator (don't be confused by the frequency of functional clock which most of the time is constant). When user calls termios to set a desired baudrate the UART driver for actual hardware recalculates uartclk, if needed, and bottom layer, if used, configures the registers. That's how 8250 works. In other cases it might be left unused, if, for example, serial hw driver does everything on its own.

Related

Where to find device-tree?

Coming form this question yesterday, I decided to port this library to my board. I was aware that I needed to change something, so I compiled the library, call it on a small program and see what happens. The 1st problem is here:
// Check for GPIO and peripheral addresses from device tree.
// Adapted from code in the RPi.GPIO library at:
// http://sourceforge.net/p/raspberry-gpio-python/
FILE *fp = fopen("/proc/device-tree/soc/ranges", "rb");
if (fp == NULL) {
return MMIO_ERROR_OFFSET;
}
This lib is aimed for Rpi, os the structure of the system on my board is not the same. So I was wondering if somebody could tell me where I could find this file or how it looks like so I can find it by my self in order to proceed the job.
Thanks.
You don't necessarily want that "file" (or more precisely /proc node).
The code this is found in is setting up to do direct memory mapped I/O using what appears to be a pi-specific gpio-flavored version of the /dev/mem type of device driver for exposing hardware special function registers to userspace.
To port this to your board, you would need to first determine if there is a /dev/mem or similar capability in your kernel which you can activate. Then you would need to determine the appropriate I/O registers for GPIO pins. The pi-specific code is reading the Device Tree to figure this out, but there are other ways, for example you can manually read the programmer's manual of the SoC on which you are running.
Another approach you can consider is adding some small microcontroller (or yes, barebones ***duino) to the system, and using that to collect information from various sensors and peripherals. This can then be forwarded to the SoC over a UART link, or queried out via I2C or similar - add a small amount of cost and some degree of bottleneck, but also means that the software on the SoC then becomes very portable - to a different comparable chip, or perhaps even to run on a desktop PC during development.

Any example useage of a BSCANE2 primitive in Xilinx 7 series? (using the JTAG port to configure user design)

I've looked over the info on BSCANE2 in http://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf (pg 169 7 Series FPGA Configuration Guide) and I can't quite figure out how to use it based on that descriptions.
I want to be able to use the JTAG port on the KC705 board to shift in some configuration data for our design. I think (based on the description there in the user guide linked above) that the BSCANE2 is what I need to do that... but I really don't understand why all of the pins of the BSCANE2 component seem to have the wrong direction (TDO is an input while all of the other JTAG control sigs like TCK, RESET, TDI are outputs). Initially I had thought that there was an implicit connection from the signals of the JTAG port of the FPGA to the instantiated BSCANE2 component, but that doesn't appear to be the case based on the port directions. I suspect I'm missing some information somewhere and while I have read the docs it's still not clear to me how to actually use the BSCANE2 to do what I'm trying to do.
Any example usage of a BSCANE2 component would be appreciated.
NOTE: the description of the BSCANE2 in the user guide linked above says:
The BSCANE2 primitive allows access between the internal FPGA logic and the JTAG Boundary Scan logic controller. This allows for communication between the internal running design and the dedicated JTAG pins of the FPGA
This sounds exactly like what I need.
Xilinx offers a 8 bit CPU called PicoBlaze that uses a JTAGLoader module to reconfigure the PicoBlaze's instruction ROM at runtime. The JTAGLoader is provided in VHDL for Spartans and Series-7 devices.
But I think JTAG is not a good protocol for data transfer. Especially the JTAG software API is a mess.
What about UART? Most boards have a USB-UART bridge like CP2103 that supports up to 1 MBoud.

what is the use of Flattened device tree - Linux Kernel

I am going through the Uboot & kernel startup process. What exactly is the use of the FDT (Flat device tree) ?
Many link i have read they state that uboot pass the board & SOC configuration information to Kernel in the form of FDT
https://wiki.freebsd.org/FlattenedDeviceTree
Why kernel need the board configuration information ?
I am asking this question because when ever we make device driver in linux we use to initialize the device at probe() or module_init() call & use request_mem_region() & ioremap() function to get the range of address
& then set the clock & other register of the driver.
What does request_mem_region() actually do and when it is needed?
Now if my device drivers for onchip & offchip devices are doing the full board initialisation.
Then what is the use of flattened device tree for the kernel ?
You are right in assuming that the board files and device-trees are required for initialisation of on-chip blocks and off-chip peripherals.
While booting-up, the respective drivers for all on-chip blocks of an SoC and off-chip peripherals interfaced to it need to be "probed" i.e. loaded and called. On bus-es like USB and PCI, the peripherals can be detected physically and enumerated and their corresponding driver probed. However in general such a facility is NOT available is case of the rest of the peripherals on the rest of the buses like I2C, SPI etc.
In addition to above, when the device-driver is probed, one also needs to provide some information to it about the way in which we intend to configure and utilise the hardware. This varies depending upon the use case. For example the baud-rate at which we would like to operate an UART port.
Both the above classes of information i.e.
Physical Topology of the hardware.
Configuration options of the hardware.
were usually defined as structs within the "board" file.
However using the board-file approach required one to re-build the kernel even to simply modify a configurable option to a different value during initialisation. Also when several physical boards differing slightly in their topology/configuration exist, the "board" file approach becomes too cumbersome to maintain.
Hence the interest in maintaining this information separately in a device-tree. Any device-driver can parse the relevant branches and leaves of the device-tree to obtain the information it requires.
When developing your own device-driver, if your platform supports the device-tree, then you are encouraged to utilise the device tree to store the "platform data" required by your device-driver. This should help you clearly separate :
the generic driver code for your device in the <driver.c> file and
the device's config options specific to this platform into the device-tree.
A step-by-step approach to porting the Linux kernel to a board/SoC should help you appreciate the nuances involved and the advantages of using a device-tree.

bypassing tty layer and copy to user

I would like to copy data to user space from kernel module which receives data from serial port and transfers it to DMA, which in turn forwards the data to tty layer and finally to user space.
the current flow is
serial driver FIFO--> DMA-->TTY layer -->User space (the data to tty layer is emptied from DMA upon expiration of timer)
What I want to achieve is
serial driver FIFO-->DMA-->user space. (I am OK with using timer to send the data to user space, if there is a better way let me know)
Also the kernel module handling the serialFIFO->DMA is not a character device.
I would like to bypass tty layer completely. what is the best way to achieve so?
Any pointers/code snippet would be appreciated.
In >=3.10.5 the "serial FIFO" that you refer to is called a uart_port. These are defined in drivers/tty/serial.
I assume that what you want to do is to copy the driver for your UART to a new file, then instead of using uart_insert_char to insert characters from the UART RX FIFO, you want to insert the characters into a buffer that you can access from user space.
The way to do this is to create a second driver, a misc class device driver that has file operations, including mmap, and that allocates kernel memory that the driver's mmap file operation function associates with the userspace mapped memory. There is a good example of code for this written by Maxime Ripard. This example was written for a FIQ handled device, but you can use just the probe routine's dma_zalloc_coherent call and the mmap routine, with it's call to remap_pfn_range, to do the trick, that is, to associate a user space mmap on the misc device file with the alloc'ed memory.
You need to connect the memory that you allocated in your misc driver to the buffer that you write to in your UART driver using either a global void pointer, or else by using an exported symbol, if your misc driver is a module. Initialize the pointer to a known invalid value in the UART driver and test it to make sure the misc driver has assigned it before you try to insert characters to the address to which it points.
Note that you can't add an mmap function to the UART driver directly because the UART driver class does not support an mmap file operation. It only supports the operations defined in the include/linux/serial_core.h struct uart_ops.
Admittedly this is a cumbersome solution - two device drivers, but the alternative is to write a new device class, a UART device that has an mmap operation, and that would be a lot of work compared with the above solution although it would be elegant. No one has done this to date because as Jonathan Corbet say's "...not every device lends itself to the mmap abstraction; it makes no sense, for instance, for serial ports and other stream-oriented devices", though this is exactly what you are asking for.
I implemented this solution for a polling mode UART driver based on the mxs-auart.c code and Maxime's example. It was non-trivial effort but mostly because I am using a FIQ handler for the polling timer. You should allow two to three weeks to get the whole thing up and running.
The DMA aspect of your question depends on whether the UART supports DMA transfer mode. If so, then you should be able to set it using the serial flags. The i.MX28's PrimeCell auarts support DMA transfer but for my application there was no advantage over simply reading bytes directly from the UART RX FIFO.

CAN Bus Protocol Implementation

I want to learn and implement CAN BUS protocol. I have implemented UART,SPI,I2C and One Wire Bus protocol using MSP430 Launchpad in software. Now I want to learn about CAN Bus protocol. I have mBed LPC 1768 Cortex M3 Development board. mBed has Can Bus Library but I want to write my own library so that I can learn it in detail, i.e. the way I did for other communication protocols.
I am not able to find suitable resources to start with and the material appears to be scattered on net. Can any one guide how do i write and implement CAN Bus protocol with the development boards available with me.
Thanks
Developing CAN library is relatively easy as compared to I2C or SPI. This is because CAN Controller of your Cortex will take care of most of complex things.
To transmit the data, You have to write ID and Data in designated registers and set bit to transmit data.
This Application note from NXP can be very useful for you.
I would recommend you to implement following functions:
InitCAN - This should set specified Baud Rate of CAN.
SetFilters - Most CAN Controllers come with Acceptance Filters, So it's good to have that
SendData - Make sure you accept Parameters like ID_Type and RTRs etc.
RecieveData - This can be blocking or Interrupt based.
Before beginning, do read CAN Basics to understand. Application notes AN713 and AN754 from Microchip is a good source. Also Vector's site and Wikipedia Article.
Plus, You can always post your doubts here or on Electronics.StackExchange.com :)
Okay so this post is quite old but people may look at it again so:
First of all Can bus is not user friendly protocol like USART or IC2 at all so you have to be very precise about your can bit timing there are tools for that but I suggest you to calculate them by hand. For a microcontroller I would suggest STM32 and be away from PIC series in my opinion. If it's only CAN-BUS without higher level protocols such as SAE J1939, steps are pretty simple and straight forward:
1)Initialize Can
2)Put CAN to configuration mode and remember that you can set baudrate, mask and filters only in configuration mode!
3) Set the baud rate registers.
4) Set the mask and filters. If you need to receive all messages just simply set mask to 0x00. Then filter will be do not care.
5) Set the CAN to the normal or loopback mode. (loopback mode is used for debugging purposes mostly.)
Some remarkable points people try to implement can at the beginning may miss:
*** You need at least 2 working CAN nodes for successfull transmission. (of course with matching baud rate). So if you want to send some data via CAN with 1 node it will not be succesfull. Because your transmitter node will not receive ACK.
*** Most likely you will need a CAN tranciever. Do not forget to put a 100 ohm or similar value resistor between Tx and Rx pins of your tranciever.
I used the software canking to talk to a mcp25050 when I learned how to implement can protocol using an hcs12 dragonboard. It helped a lot because canking will initialize everything for you when u go on the bus and all you have to do is learn how to write and recieve. If you want to learn how to initialize the steps are:
Enables can bus by setting bit on CAN Control Register 1
Enable can initialization Control Register 0
wait until can bus is in initialization mode by checking control register 1 bit
Enables can bus by setting bit on CAN Control Register 1 again and set clock source - Ethier bus clock or eclock
set prescaler baudrate and Tq with Bus timing register
set sample time and prop_seg1, prop_seg2, and phase_seg
set acceptance id on Identifier acceptance register 0-3 or 0-7 - to set your can to recieve everything set those to 00 because when doing a compare the can bus does a ones complement compare with the id coming in
set Identifier mask register 0-3 or 0-7, if you want to not care about any of the bits set them all to FF
set identifier acceptance control register to 32 bit extended or 11 bit - i use 32
set Control Register 0 back to normal mode
wait until bus is normal mode by checking Control Register 1
after this you can start changing registers or reading data to do this you must select the empty can buffer, write your id to write or request data, and then input the address, mask, and value in the 3 transmitter registers if writing and then specify the dlc (3 if writing and 8-1 if reading). to transmit the id and data you then have to set the can transmit flag to equal the can Transmit buffer selection.
** depending on what id you use bit shifting can be tedious so if you are having a problem I would suggest debugging and looking at what your Transmit buffer selection registers are holding. I had this error because i did not shift correctly when i was sending messages to the mcp25050
If your MCU supports CAN Bus, you should start from the related datasheet.

Resources