MSVC remove section from binary - visual-studio

In my code, I have a special section and some data in it:
#pragma section("dead",read,discard)
__declspec(allocate("dead"))
static const char dead_str[] = "DEAD";
doSomething(dead_str);
That section may or may not be loaded with the program, but is still part of the binary image. What I want to do is completely remove it from the image so it's guaranteed to not be loaded, and so that it cannot be found in the binary. Basically, I want:
strings myprogram.exe | grep DEAD
to have no hits. I'm fine with the program crashing when I try to reference the string.
In GNU, I'd do:
objcopy --remove-section=dead myprogram.exe
and Cygwin's objcopy actually does that, but corrupts the executable so it can no longer load. editbin.exe from MSVC can just change the flags for the section, but it stays in the image. And linker optimizations will not remove dead_str because it is referenced in doSomething().
Is there some way (ideally as a linker flag) I can remove an entire section from PE/COFF files?

I was searching for a linker setting too, but it seems this is not possible at all with MSVC.
What you can do is either writing your own tool to strip sections from PE files, or use CFF Explorer for example.

Related

GCC Linker Script Ignore PHDR / PHDRS?

I'm trying to target a flat file for the output of my code, where I don't want PHDR. But it seems no matter how I set things up, in modern GCC versions, I can't avoid PHDR.
Either I get PHDR segment not covered by LOAD segment or if I define a PHDRS property as in my linker script as follows:
PHDRS
{
header PT_NULL FILEHDR;
text PT_NULL PHDRS;
data PT_NULL FILEHDR;
}
but throw it out, I get the error no sections assigned to phdrs
I can't seem to find any way to force GCC to just trust me and not emit the PHDRs. What can I put in my linker script to tell GCC that I really mean it.
EDIT
I found this: https://sourceware.org/bugzilla/show_bug.cgi?id=25585
If I add the following to my GCC invocation, it seems to output the binary anyway: -Wl,--noinhibit-exec
But, it now includes extra header data in the middle of the binary image.
If you want to generate a flat binary file, then you could just specify the output format to be “binary”.
Not sure it’s what you want
A long time a ago, when I was looking into bootloaders, I was generating the MBR using exactly that.
I found a solution!
Either have an empty PHDRS {...} definition at the top (or it seems maybe you don't need it).
Then, in your sections, be sure to discard phdr and contain all the troublesome sections.
/* If we're on a newer compiler */
/DISCARD/: {
*(.interp)
*(.dynsym)
*(.dynstr)
*(.hash)
*(.gnu.hash)
*(.header)
} : phdr

Using Linker Symbol from C++ code as a fixed constant (NOT relocated) in a shared library (DLL)

Sorry if the title is not very clear. I am using MinGW with GCC 6.3.0 to build a x86 32-bit DLL on Windows (so far). I'll spare you the details why I need hacky offsets amongst its sections accessible from code, so please do not ask if it's useful or not (because I don't want to bother explaining that).
So, if I can get the following testcase to work, I'm good. Here's my problem:
In a C++ file, I want to access a linker symbol as an absolute numeric value, not relocated, directly. Remember that I am building a 32-bit DLL which requires a .reloc section for relocations, but in this case I do NOT want relocation, in fact a relocation would screw it up completely.
Here's an example: retrieve the offset of say __imp__MessageBoxW#16 relative to __IAT_start__, in case you don't know what they are, __imp__MessageBoxW#16 is the relocated pointer to the actual function at runtime, and __IAT_start__ is a linker symbol in the default script file. Here's where it is defined:
.idata BLOCK(__section_alignment__) :
{
/* This cannot currently be handled with grouped sections.
See pe.em:sort_sections. */
KEEP (SORT(*)(.idata$2))
KEEP (SORT(*)(.idata$3))
/* These zeroes mark the end of the import list. */
LONG (0); LONG (0); LONG (0); LONG (0); LONG (0);
KEEP (SORT(*)(.idata$4))
__IAT_start__ = .;
KEEP (SORT(*)(.idata$5))
__IAT_end__ = .;
KEEP (SORT(*)(.idata$6))
KEEP (SORT(*)(.idata$7))
}
So far, no problem. Because GAS doesn't allow me to "subtract" two externally defined symbols (both symbols are defined in the linker), I have to define the symbol in the linker script, so at the end of the linker script I have this:
test_symbol = ABSOLUTE("__imp__MessageBoxW#16" - __IAT_start__);
Then in C++ I use this little inline asm to retrieve this relative difference which is supposed to be a fixed value once linked:
asm("movl $test_symbol, %0":"=r"(var));
Now var should contain that fixed number right? Wrong!
Because test_symbol is an "undefined" symbol as far as the assembler is concerned, it makes it relocated. Or I don't know why, but I tried so many things to force it to be an "absolute constant value symbol" instead of a "relocated symbol" to no avail. Even editing the linker script with many things like LD_FEATURE("SANE_EXPR") and others, doesn't work at all.
Its value is correct only if the DLL does not get relocated.
You see, either GNU LD or the assembler adds an entry in the .reloc section for that movl instruction, which is WRONG!
Is there a way to force it to treat an external/undefined symbol as a fixed CONSTANT and apply no relocation to it whatsoever? Basically, omit it from the .reloc section.
I am going crazy with this, please tell me there's something easy I overlooked, I searched for hours!
In other words, is there a way to use a Linker Symbol from within inline asm/C++ without having it relocated whatsoever? No entry to the .reloc section or anything, basically same as a constant like $1234. So if a DLL gets loaded into another base address, that constant would be the same everytime.
UPDATE: I forgot about this question but decided to bring an update, since it seems it's likely not possible as nobody even commented. For anyone else in the same boat as me, I presume this is a limitation of the COFF object format itself. In other words, external symbols are implicitly relocated, and it doesn't seem there's a way against this.
I didn't "fix" it the way I wanted, I did it in a very hacky way though. If anyone is interested, here's my ugly "hack":
First I put a special "custom" instruction in the inline assembly where I reference this external symbol from C++. This "custom" instruction holds a placeholder instruction that grabs the symbol (normal x86 asm instruction with a dummy constant, e.g. 1234) and a way to identify it. Then let GCC generate the assembly files (.S files), then I parse the assembly with a simple script and when I find that "custom" instruction I insert a label for the linker (make it .global) and at the same time add a directive to a custom "on-the-fly" generated linker script that gets included from my main linker script at the end.
This places data in a temporary section in the resulting DLL with absolute offsets to the custom instruction that I need, but without relocation.
Next, I parse the binary DLL itself, in particular that temporary section I added with all this hack. I take the offsets from there, convert them to file offsets, and modify the DLL's .text section directly where those offsets point (remember those placeholder instructions? it is replacing their immediate constants 1234 with the respective value from the linker's non-relocated constant). Then I strip the temporary section from the DLL, and it's done. Of course, all of this is done automatically by a helper program and script
It's an insane hack, but it works and it's fully automatic now that I got it going. If my assumption is correct that COFF doesn't support non-relocated external symbols, then it's really the only way to use linker constants from C++ without them being relocated, which would be a disaster.

how can I verify that dead code was stripped from the binary?

My c/obj-c code (an iOS app built with clang) has some functions excluded by #ifdefs. I want to make sure that code that gets called from those functions, but not from others (dead code) gets stripped out (eliminated) at link time.
I tried:
Adding a local literal char[] in a function that should be eliminated; the string is still visible when running strings on the executable.
Adding a function that should be eliminated; the function name is still visible when running strings.
Before you ask, I'm building for release, and all strip settings (including dead-code stripping, obviously) are enabled.
The question is not really xcode/apple/iOS specific; I assume the answer should be pretty much the same on any POSIX development platform.
(EDIT)
In binutils, ld has the --gc-sections option which does what you want for sections on object level. You have several options:
use gcc's flags -ffunction-sections and -fdata-sections to isolate each symbol into its own section, then use --gc-sections;
put all candidates for removal into a separate file and the linker will be able to strip the whole section;
disassemble the resulting binary, remove dead code, assemble again;
use strip with appropriate -N options to discard the offending symbols from the
symbol table - this will leave the code and data there, but it won't show up in the symbol table.

Is there a way to strip all functions from an object file that I am not using?

I am trying to save space in my executable and I noticed that several functions are being added into my object files, even though I never call them (the code is from a library).
Is there a way to tell gcc to remove these functions automatically or do I need to remove them manually?
If you are compiling into object files (not executables), then a compiler will never remove any non-static functions, since it's always possible you will link the object file against another object file that will call that function. So your first step should be declaring as many functions as possible static.
Secondly, the only way for a compiler to remove any unused functions would be to statically link your executable. In that case, there is at least the possibility that a program might come along and figure out what functions are used and which ones are not used.
The catch is, I don't believe that gcc actually does this type of cross-module optimization. Your best bet is the -Os flag to optimize for code size, but even then, if you have an object file abc.o which has some unused non-static functions and you link statically against some executable def.exe, I don't believe that gcc will go and strip out the code for the unused functions.
If you truly desperately need this to be done, I think you might have to actually #include the files together so that after the preprocessor pass, it results in a single .c file being compiled. With gcc compiling a single monstrous jumbo source file, you stand the best chance of unused functions being eliminated.
Have you looked into calling gcc with -Os (optimize for size.) I'm not sure if it strips unreached code, but it would be simple enough to test. You could also, after getting your executable back, 'strip' it. I'm sure there's a gcc command-line arg to do the same thing - is it --dead_strip?
In addition to -Os to optimize for size, this link may be of help.
Since I asked this question, GCC 4.5 was released which includes an option to combine all files so it looks like it is just 1 gigantic source file. Using that option, it is possible to easily strip out the unused functions.
More details here
IIRC the linker by default does what you want ins some specific cases. The short of it is that library files contain a bunch of object files and only referenced files are linked in. If you can figure out how to get GCC to emit each function into it's own object file and then build this into a library you should get what you are looking.
I only know of one compiler that can actually do this: here (look at the -lib flag)

Size of a library and the executable

I have a static library *.lib created using MSVC on windows. The size of library is say 70KB. Then I have an application which links this library. But now the size of the final executable (*.exe) is 29KB, less than the library. What i want to know is :
Since the library is statically linked, I was thinking it should add directly to the executable size and the final exe size should be more than that? Does windows exe format also do some compression of the binary data?
How is it for linux systems, that is how do sizes of library on linux (*.a/*.la file) relate with size of linux executable (*.out) ?
-AD
A static library on both Windows and Unix is a collection of .obj/.o files. The linker looks at each of these object files and determines if it is needed for the program to link. If it isn't needed, then the object file won't get included in the final executable. This can lead to executables that are smaller then the library.
EDIT: As MSalters points out, on Windows the VC++ compiler now supports generating object files that enable function-level linking, e.g., see here. In fact, edit-and-continue requires this, since the edit-and-continue needs to be able to replace the smallest possible part of the executable.
There is additional bookkeeping information in the .lib file that is not needed for the final executable. This information helps the linker find the code to actually link. Also, debug information may be stored in the .lib file but not in the .exe file (I don't recall where debug info is stored for objs in a lib file, it might be somewhere else).
The static library probably contains several functions which are never used. When the linker links the library with the main executable, it sees that certain functions are never used (and that their addresses are never taken and stored in function pointers), it just throws away the code. It can also do this recursively: if function A() is never called, and A() calls B(), but B() is never otherwise called, it can remove the code for both A() and B(). On Linux, the same thing happens.
A static library has to contain every symbol defined in its source code, because it might get linked into an executable which needs just that specific symbol. But once it is linked into an executable, we know exactly which symbols end up being used, and which ones don't. So the linker can trivially remove unused code, trimming the file size by a lot. Similarly, any duplicate symbols (anything that's defined in both the static library and the executable it's linked into gets merged into a single instance.
Disclaimer: It's been a long time since I dealt with static linking, so take my answer with a grain of salt.
You wrote: I was thinking it should add directly to the executable size and final exe size should be more than that?
Naive linkers work exactly this way - back when I was doing hobby development for CP/M systems (a LONG time ago), this was a real problem.
Modern linkers are smarter, however - they only link in the functions referenced by the original code, or as required.
Additionally to the current answers, the linker is allowed to remove function definitions if they have identical object code - this is intended to help reduce the bloating effects of templated code.
#All: Thanks for the pointers.
#Greg Hewgill - Your answer was a good pointer. Thanks.
The answer i found out was as follows:
1.)During Library building what happens is if the option "Keep Program debug databse" in MSVC (or something alike ) is ON, then library will have this debug info bloating its size.
but when i statically include that library and create a executable, the linker strips all that debug info from the library before geenrating the exe and hence the exe size is less than that of the library.
2.) When i disabled the option "Keep Program debug databse", i got an library whose size was smaller than the final executable, which was what i thought is nromal in most situations.
-AD

Resources