A language that is RE complete with respect to polynomial-time reductions? - computation-theory

Is there any language in RE that is complete with regard to polynomial-time reductions?
I think that A_TM will be a good example,but I'm not sure...

Yes, ATM is RE-complete with respect to polynomial-time reductions. Given any RE language L, let M be a recognizer for it. Then the function f(w) = can be computed in polynomial time (for some reasonable representation of tuples) because M is a fixed machine and the length of w in the encoded version should certainly be at most polynomially larger than the original input w. We also have that w ∈ L if and only if M accepts w if and only if ∈ ATM, so f is a polynomial-time reduction from an arbitrary RE language L to ATM, making ATM RE-complete with respect to polynomial-time reductions.
I'm not sure why you'd be interested in this particular notion of RE-completeness, since RE is mostly useful for notions of computability (can you solve this problem at all?) while polynomial-time reductions are usually for complexity (can you solve this problem efficiently?) If you do have an interesting use case for them, though, I'd love to hear about it!

Related

Is polynomial reduction reversible?

Is this statement true or false : "If a problem A is polynomially reducible to a problem B, then problem B must also be polynomially reducible to A".
This is wrong, consider the reducible to relationship as its hardness is less than or equal. For example, if A is polynomially reducible to B, it means that A <= B in terms of hardness (amount of computation needed to solve it). If A is reducible to B it means that A is simpler than (or as hard as) B, which means if you can solve B you can solve A, as well.
Some supplementary information:
Any problem in P, which are problems that are simple and can be solved in polynomial time, is reducible to any problem in NP-complete (e.g. SAT). This means that problems in P are simpler than problems in NP-complete. Now, if your statement was true then problems in NP-complete would have been solved in polynomial time, which is seemingly impossible (no one has proved or disproved it). And if anybody solves it there will be chaos!!!
https://en.wikipedia.org/wiki/P_versus_NP_problem
SAT problem
A world with P=NP
Here is a (slightly edited) illustration from a very well-known graduate text on Complexity Theory (C.H. Papadimitriou, Computational Complexity). It shows what a reduction from A to B is.
A reduction from A to B is an algorithm for solving A that is composed of a translation R that maps every instance of A into an instance of B, and an algorithm for B. The translation must ensure that the answer for A(x) and for B(R(x)) is the same.
The existence of a such a translation does not guarantee that the inverse translation also exists. Intuitively the images of instances of A might form a subset of easy instances of B.
Anyone can easily suggest simple examples of problems where reduction in one direction does not guarantee a reduction in the other direction. For instance, 2-SAT is trivially reducible to SAT, yet 2-SAT is solvable in polynomial time, while SAT is NP-complete.
This is false. Consider the following problem:
Given a finite automaton, does it halt on a given input?
The answer to this problem happens always to be yes since all deterministic finite automata halt on all inputs. However, this problem is polynomial-time reducible to the following problem:
Given a Turing machine, does it halt on a given input?
The answer to this problem happens to be undecidable in the general case. This is the halting problem. However, if we had an oracle for this problem, we could certainly use it to answer the first question, albeit much less efficiently:
Produce a Turing machine equivalent to the DFA
Use the oracle to determine whether the Turing machine halts.
The halting problem for Turing machines, however, is not polynomial-time reducible to the halting problem for DFAs.

Non deterministic Polynomial(NP) vs Polynomial(P)?

I am actually looking for description what NP alogrithm actually means and what kind of algo/problem can be classified as NP problem
I have read many resources on net . I liked
https://www.quora.com/What-are-P-NP-NP-complete-and-NP-hard
What are the differences between NP, NP-Complete and NP-Hard?
Non deterministic Turing machine
What are NP problems?
What are NP and NP-complete problems?
Polynomial problem :-
If the running time is some polynomial function of the size of the input**, for instance if the algorithm runs in linear time or quadratic time or cubic time, then we say the algorithm runs in polynomial time . Example can be binary search
Now I do understand Polynomial problem . But not able to contrast it with NP.
NP(nondeterministic polynomial Problem):-
Now there are a lot of programs that don't (necessarily) run in polynomial time on a regular computer, but do run in polynomial time on a nondeterministic Turing machine. These programs solve problems in NP, which stands for nondeterministic polynomial time.
I am not able to to understand/think of example that does not run in polynomial time on a regular computer. Per mine current understanding, Every problem/algo can be solved
in some polynomial function of time which can or can't be proportional to time. I know i am missing something here but really could not grasp this concept. Could someone
give example of problem which can not be solved in polynomial time on regular computer but can be verified in polynomial time ?
One of the example given at second link mentioned above is Integer factorization is in NP. This is the problem that given integers n and m, is there an integer f with 1 < f < m, such that f divides n (f is a small factor of n)? why this can't be solved in some polynomial time on regular computer ? we can check for all number from 1 to n if they divide n or not. Right ?
Also where verification part come here(i mean if it can be solved in polynomial time but then how the problem solution can be verified in polynomial time)?
Your question touches several points.
First, in the sense relevant to your question, the size of a problem is defined to be the size of the representation of the problem. So, for example, when you write about the problem of a divisor of n. What is the representation of n? It is a series of characters of length q (I don't want to be more specific than that). In general, n is exponential in q. So when you talk about a simple loop from 1 to n, you're talking about something that is exponential in the size of the input. For example, the number "999999999999999" represents the number 999999999999999. That is quite a large number, but it is represented by 12 characters here.
Second, while there is more than a single way to define the class NP, perhaps the simplest one for decision problems (which is the type you raise in your question, namely is something true or not) is that if the answer is true, then there is an "certificate" that can be verified in polynomial time. For example, consider the Hamilton Path Problem. This is (probably) a hard problem to solve, but, if you are given a hamilton path as an answer, it is very easy to verify that it is so; specifically, it can be done in polynomial time. For the Hamilton Path Problem, the path is a polynomial-time verifiable certificate, and therefore this problem is NP.
It's probably worth noting how the idea of "checking a solution in polynomial time" relates to a nondeterministic Turing Machine solving a problem: in a normal (deterministic) Turing Machine, there is a well-defined set of instructions telling the machine exactly what to do in any situation ("if you're in state 3 and see an 'a', move left, if you're in state 7 and see a 'c', overwrite it with a 'b', etc.") whereas in a nondeterministic Turing Machine there is more than one option for what to do in some situations ("if you're in state 3 and see an 'a', either move right or overwrite it with a 'b'"). In terms of algorithms, this lets us "guess" solutions in the sense that if we can encode a problem into a language on an alphabet* then we can use a nondeterministic Turing Machine to generate strings on this alphabet, and then use a standard (deterministic) Turing Machine to ensure that it is correct. If we assume that we always make the right guess, then the runtime of our algorithm is simply the runtime of the deterministic checking part, which for NP problems runs in polynomial time. This is what it means for a problem to be 'decidable in polynomial time on a nondeterministic Turing Machine', and why it is often simply phrased as 'checking a solution/ certificate in polynomial time'.
*
Example: The Hamiltonian Path problem could be encoded as follows:
Label the vertices of the graph 1 through n, where n is the number of vertices. Our alphabet is then the numbers 1 through n, and our language consists of all words such that
a) every integer from 1 to n appears exactly once
and
b) for every consecutive pair of integers in a word, the vertices with those labels are connected
Polynomial Time :- Problem which can be solved in polynomial time of input size is called polynomial problem. In plain simple words :- Here Solution to problem is fast. For
example sorting, binary search
Non deterministic polynomial :- Theoretically the problems which can be verified in polynomial time irrespective of actual solution time complexity (which can be polynomial or not polynomial). So some problem which are P can also be NP.
But Informally people while conversation/posts use the NP term in below sense
Problem which can not be solved in polynomial time of input size is called polynomial problem. In plain simple words :- Here Solution to problem is not fast. You may have to try different permutation/combination or guessing work. But Verification part is fast and can be done in polynomial time. Like
input some numbers X and divide the numbers into two groups that difference in their sum is minimum
I really liked the Alex Flint answer at https://www.quora.com/What-are-P-NP-NP-complete-and-NP-hard .Above is just gist of that.

Understanding Polynomial TIme Approximation Scheme

Is an approximation algorithm the same as a Polynomial Time Approximation Algorithm (PTAS)? E.g. It can be shown that A(I) <= 2 * OPT(I) for vertex cover. Does it mean that Vertex Cover has a 2-polynomial time approximation algorithm or a PTAS?
Thanks!
Note: The text in Italics is the edit I made after I posted my question.
No, this isn't necessarily the case. A PTAS is an algorithm where given any ε > 0, you can approximate the answer to a factor of (1 + ε) in polynomial time. In other words, you can get arbitrarily good approximations.
Some problems are known (for example, MAX-3SAT) that have approximation algorithms for specific factors (for example, 5/8), but where it's known that unless P = NP there is a hard limit to how well the problem can be approximated in polynomial time. For example, the PCP theorem says that MAX-3SAT doesn't have a polynomial-time 7/8 approximation unless P = NP. It's therefore possible that MAX-3SAT has a PTAS, but only if P = NP.
Hope this helps!
Vertex cover having 2-approximation algorithm is not same as having a PTAS algorithm. Sometimes, there are problems where much better approximation is possible. These problems then admit PTAS.
Such algorithms take an instance of the problem as input, with another input parameter epsilon>0. And it gives an output whose value is at most (1+epsilon).OPT for minimisation problem; and (1/(1+epsilon)).OPT for maximisation problem.
Run time of a PTAS algorithm is polynomial in n (size of problem instance). Sometimes, the runtime is also polynomial in epsilon, then its called to admit FPTAS(fully PTAS).
Example:
Dynamic programming algorithm for KNAPSACK with integer-profits gives optimal solution.
While, KNAPSACK problem with real-valued profits do not admit polynomial-time algorithm. But it admits a FPTAS, where real-value profits are converted into integer profits; and DP algorithm is used to calculate the solution with "rounded" profits.
Another example, Max Independent Set does not admit a PTAS or FPTAS. Because, in this case, we can set a value for epsilon, which will always give optimal solution for any graph using that PTAS algorithm; which is not possible until P=NP.

Np completeness - Need some clarification in reduction

I wanted some clarification in a concept.
For proving that a problem is NP complete, we use reductions.
Now suppose I have L<=L'. has the reduction to be from L to L' or can I do it it the reverse way also? i.e Can I show that if L can be solved using L', then L' is NP-complete??
I am pretty confused regarding this.
For example. for a reduction from ham cycle to ham path, we so it the backward way.
Also, I am not able to solve the problem that I have to show that "is there a path from s to t in a graph with at least k edges" by reduction from ham cycle.
Please give me a clarification and guide me with the above problem. Thanks
To show that a language L is NP-complete you actually need to prove two things, L is in NP and L is NP-hard. Usually, proving L is in NP is easy, but don't forget to do it.
The normal way of showing L is NP-hard is to show, in effect, that a polynomial-time decider for L could be used to build a polynomial-time decider for a language L' that has been proved to be NP-complete.
It has to be that way round. There are many cases of a polynomial-time decidable language L for which a polynomial time decider could be built from a polynomial time decider for an NP-complete language. For example, consider the polynomial time decidable problem of coloring a graph with two colors, vs. the NP-complete general graph coloring problem.
I gave you a hint in a comment on your question about Hamiltonian Cycle. Have you read the hint and thought about it? If so, please respond in that question.

looking for 3-SAT special cases

I'm looking for 3-SAT special cases which are solved in Polynomial time and their algorithms.
any links?
Thanks.
Read the excellent (but a bit hard to read) paper by Thomas J Schaeffer: The Complexity of Satisfiable Problems which generalizes satisfiability problems to an infinite class of problems like 3SAT, Not all Equal 3Sat etc, and shows that each problem is either in P or NP-Complete.
The paper also determines necessary and sufficient conditions to determine if a particular problem is in P or NP-Complete (called the Dichotomy Theorem).
I suppose you will also find an P time algorithm in there (not very sure) for the problems which are in P.
Hope that helps.
2-SAT is in P (but MAX-2-SAT isn't, funnily enough), I'm not sure about monotone 3-SAT. Almost all occurence restrictions are still NPC.
As always in these matters, Garey/Johnson's Computers and Intractability is your friend.

Resources