Exponent calculation speed - algorithm

I am currently testing Julia (I've worked with Matlab)
In matlab the calculation speed of N^3 is slower than NxNxN. This doesn't happen with N^2 and NxN. They use a different algorithm to calculate higher-order exponents because they prefer accuracy rather than speed.
I think Julia do the same thing.
I wanted to ask if there is a way to force Julia to calculate the exponent of N using multiplication instead of the default algorithm, at least for cube exponents.
Some time ago a I did a few test on matlab of this. I made a translation of that code to julia.
Links to code:
http://pastebin.com/bbeukhTc
(I cant upload all the links here :( )
Results of the scripts on Matlab 2014:
Exponente1
Elapsed time is 68.293793 seconds. (17.7x times of the smallest)
Exponente2
Elapsed time is 24.236218 seconds. (6.3x times of the smallests)
Exponente3
Elapsed time is 3.853348 seconds.
Results of the scripts on Julia 0.46:
Exponente1
18.423204 seconds (8.22 k allocations: 372.563 KB) (51.6x times of the smallest)
Exponente2
13.746904 seconds (9.02 k allocations: 407.332 KB) (38.5 times of the smallest)
Exponente3
0.356875 seconds (10.01 k allocations: 450.441 KB)
In my tests julia is faster than Matlab, but i am using a relative old version. I cant test other versions.

Checking Julia's source code:
julia/base/math.jl:
^(x::Float64, y::Integer) =
box(Float64, powi_llvm(unbox(Float64,x), unbox(Int32,Int32(y))))
^(x::Float32, y::Integer) =
box(Float32, powi_llvm(unbox(Float32,x), unbox(Int32,Int32(y))))
julia/base/fastmath.jl:
pow_fast{T<:FloatTypes}(x::T, y::Integer) = pow_fast(x, Int32(y))
pow_fast{T<:FloatTypes}(x::T, y::Int32) =
box(T, Base.powi_llvm(unbox(T,x), unbox(Int32,y)))
We can see that Julia uses powi_llvm
Checking llvm's source code:
define double #powi(double %F, i32 %power) {
; CHECK: powi:
; CHECK: bl __powidf2
%result = call double #llvm.powi.f64(double %F, i32 %power)
ret double %result
}
Now, the __powidf2 is the interesting function here:
COMPILER_RT_ABI double
__powidf2(double a, si_int b)
{
const int recip = b < 0;
double r = 1;
while (1)
{
if (b & 1)
r *= a;
b /= 2;
if (b == 0)
break;
a *= a;
}
return recip ? 1/r : r;
}
Example 1: given a = 2; b = 7:
- r = 1
- iteration 1: r = 1 * 2 = 2; b = (int)(7/2) = 3; a = 2 * 2 = 4
- iteration 2: r = 2 * 4 = 8; b = (int)(3/2) = 1; a = 4 * 4 = 16
- iteration 3: r = 8 * 16 = 128;
Example 2: given a = 2; b = 8:
- r = 1
- iteration 1: r = 1; b = (int)(8/2) = 4; a = 2 * 2 = 4
- iteration 2: r = 1; b = (int)(4/2) = 2; a = 4 * 4 = 16
- iteration 3: r = 1; b = (int)(2/2) = 1; a = 16 * 16 = 256
- iteration 4: r = 1 * 256 = 256; b = (int)(1/2) = 0;
Integer power is always implemented as a sequence multiplications. That's why N^3 is slower than N^2.
jl_powi_llvm (called in fastmath.jl. "jl_" is concatenated by macro expansion), on the other hand, casts the exponent to floating-point and calls pow(). C source code:
JL_DLLEXPORT jl_value_t *jl_powi_llvm(jl_value_t *a, jl_value_t *b)
{
jl_value_t *ty = jl_typeof(a);
if (!jl_is_bitstype(ty))
jl_error("powi_llvm: a is not a bitstype");
if (!jl_is_bitstype(jl_typeof(b)) || jl_datatype_size(jl_typeof(b)) != 4)
jl_error("powi_llvm: b is not a 32-bit bitstype");
jl_value_t *newv = newstruct((jl_datatype_t*)ty);
void *pa = jl_data_ptr(a), *pr = jl_data_ptr(newv);
int sz = jl_datatype_size(ty);
switch (sz) {
/* choose the right size c-type operation */
case 4:
*(float*)pr = powf(*(float*)pa, (float)jl_unbox_int32(b));
break;
case 8:
*(double*)pr = pow(*(double*)pa, (double)jl_unbox_int32(b));
break;
default:
jl_error("powi_llvm: runtime floating point intrinsics are not implemented for bit sizes other than 32 and 64");
}
return newv;
}

Lior's answer is excellent. Here is a solution to the problem you posed: Yes, there is a way to force usage of multiplication, at cost of accuracy. It's the #fastmath macro:
julia> #benchmark 1.1 ^ 3
BenchmarkTools.Trial:
samples: 10000
evals/sample: 999
time tolerance: 5.00%
memory tolerance: 1.00%
memory estimate: 16.00 bytes
allocs estimate: 1
minimum time: 13.00 ns (0.00% GC)
median time: 14.00 ns (0.00% GC)
mean time: 15.74 ns (6.14% GC)
maximum time: 1.85 μs (98.16% GC)
julia> #benchmark #fastmath 1.1 ^ 3
BenchmarkTools.Trial:
samples: 10000
evals/sample: 1000
time tolerance: 5.00%
memory tolerance: 1.00%
memory estimate: 0.00 bytes
allocs estimate: 0
minimum time: 2.00 ns (0.00% GC)
median time: 3.00 ns (0.00% GC)
mean time: 2.59 ns (0.00% GC)
maximum time: 20.00 ns (0.00% GC)
Note that with #fastmath, performance is much better.

Related

How to reduce the allocations in Julia?

I am starting to use Julia mainly because of its speed. Currently, I am solving a fixed point problem. Although the current version of my code runs fast I would like to know some methods to improve its speed.
First of all, let me summarize the algorithm.
There is an initial seed called C0 that maps from the space (b,y) into an action space c, then we have C0(b,y)
There is a formula that generates a rule Ct from C0.
Then, using an additional restriction, I can obtain an updating of b [let's called it bt]. Thus,it generates a rule Ct(bt,y)
I need to interpolate the previous rule to move from the grid bt into the original grid b. It gives me an update for C0 [let's called that C1]
I will iterate until the distance between C1 and C0 is below a convergence threshold.
To implement it I created two structures:
struct Parm
lC::Array{Float64, 2} # Lower limit
uC::Array{Float64, 2} # Upper limit
γ::Float64 # CRRA coefficient
δ::Float64 # factor in the euler
γ1::Float64 #
r1::Float64 # inverse of the gross interest rate
yb1::Array{Float64, 2} # y - b(t+1)
P::Array{Float64, 2} # Transpose of transition matrix
end
mutable struct Upd1
pol::Array{Float64,2} # policy function
b::Array{Float64, 1} # exogenous grid for interpolation
dif::Float64 # updating difference
end
The first one is a set of parameters while the second one stores the decision rule C1. I also define some functions:
function eulerm(x::Upd1,p::Parm)
ct = p.δ *(x.pol.^(-p.γ)*p.P).^(-p.γ1); #Euler equation
bt = p.r1.*(ct .+ p.yb1); #Endeogenous grid for bonds
return ct,bt
end
function interp0!(bt::Array{Float64},ct::Array{Float64},x::Upd1, p::Parm)
polold = x.pol;
polnew = similar(x.pol);
#inbounds #simd for col in 1:size(bt,2)
F1 = LinearInterpolation(bt[:,col], ct[:,col],extrapolation_bc=Line());
polnew[:,col] = F1(x.b);
end
polnew[polnew .< p.lC] .= p.lC[polnew .< p.lC];
polnew[polnew .> p.uC] .= p.uC[polnew .> p.uC];
dif = maximum(abs.(polnew - polold));
return polnew,dif
end
function updating!(x::Upd1,p::Parm)
ct, bt = eulerm(x,p); # endogeneous grid
x.pol, x.dif = interp0!(bt,ct,x,p);
end
function conver(x::Upd1,p::Parm)
while x.dif>1e-8
updating!(x,p);
end
end
The first formula implements steps 2 and 3. The third one makes the updating (last part of step 4), and the last one iterates until convergence (step 5).
The most important function is the second one. It makes the interpolation. While I was running the function #time and #btime I realized that the largest number of allocations are in the loop inside this function. I tried to reduce it by not defining polnew and goes directly to x.pol but in this case, the results are not correct since it only need two iterations to converge (I think that Julia is thinking that polold is exactly the same than x.pol and it is updating both at the same time).
Any advice is well received.
To anyone that wants to run it by themselves, I add the rest of the required code:
function rouwen(ρ::Float64, σ2::Float64, N::Int64)
if (N % 2 != 1)
return "N should be an odd number"
end
sigz = sqrt(σ2/(1-ρ^2));
zn = sigz*sqrt(N-1);
z = range(-zn,zn,N);
p = (1+ρ)/2;
q = p;
Rho = [p 1-p;1-q q];
for i = 3:N
zz = zeros(i-1,1);
Rho = p*[Rho zz; zz' 0] + (1-p)*[zz Rho; 0 zz'] + (1-q)*[zz' 0; Rho zz] + q *[0 zz'; zz Rho];
Rho[2:end-1,:] = Rho[2:end-1,:]/2;
end
return z,Rho;
end
#############################################################
# Parameters of the model
############################################################
lb = 0; ub = 1000; pivb = 0.25; nb = 500;
ρ = 0.988; σz = 0.0439; μz =-σz/2; nz = 7;
ϕ = 0.0; σe = 0.6376; μe =-σe/2; ne = 7;
β = 0.98; r = 1/400; γ = 1;
b = exp10.(range(start=log10(lb+pivb), stop=log10(ub+pivb), length=nb)) .- pivb;
#=========================================================
Algorithm
======================================================== =#
(z,Pz) = rouwen(ρ,σz, nz);
μZ = μz/(1-ρ);
z = z .+ μZ;
(ee,Pe) = rouwen(ϕ,σe,ne);
ee = ee .+ μe;
y = exp.(vec((z .+ ee')'));
P = kron(Pz,Pe);
R = 1 + r;
r1 = R^(-1);
γ1 = 1/γ;
δ = (β*R)^(-γ1);
m = R*b .+ y';
lC = max.(m .- ub,0);
uC = m .- lb;
by1 = b .- y';
# initial guess for C0
c0 = 0.1*(m);
# Set of parameters
pp = Parm(lC,uC,γ,δ,γ1,r1,by1,P');
# Container of results
up1 = Upd1(c0,b,1);
# Fixed point problem
conver(up1,pp)
UPDATE As it was reccomend, I made the following changes to the third function
function interp0!(bt::Array{Float64},ct::Array{Float64},x::Upd1, p::Parm)
polold = x.pol;
polnew = similar(x.pol);
#inbounds for col in 1:size(bt,2)
F1 = LinearInterpolation(#view(bt[:,col]), #view(ct[:,col]),extrapolation_bc=Line());
polnew[:,col] = F1(x.b);
end
for j in eachindex(polnew)
polnew[j] < p.lC[j] ? polnew[j] = p.lC[j] : nothing
polnew[j] > p.uC[j] ? polnew[j] = p.uC[j] : nothing
end
dif = maximum(abs.(polnew - polold));
return polnew,dif
end
This leads to an improvement in the speed (from ~1.5 to ~1.3 seconds). And a reduction in the number of allocations. Somethings that I noted were:
Changing from polnew[:,col] = F1(x.b) to polnew[:,col] .= F1(x.b) can reduce the total allocations but the time is slower, why is that?
How should I understand the difference between #time and #btime. For this case, I have:
up1 = Upd1(c0,b,1);
#time conver(up1,pp)
1.338042 seconds (385.72 k allocations: 1.157 GiB, 3.37% gc time)
up1 = Upd1(c0,b,1);
#btime conver(up1,pp)
4.200 ns (0 allocations: 0 bytes)
Just to be precise, in both cases, I run it several times and I choose representative numbers for each line.
Does it mean that all the time is due allocations during the compilation?
Start going through the "performance tips" as advised by #DNF but below you will find most important comments for your code.
Vectorize vector assignments - a small dot makes big difference
julia> julia> a = rand(3,4);
julia> #btime $a[3,:] = $a[3,:] ./ 2;
40.726 ns (2 allocations: 192 bytes)
julia> #btime $a[3,:] .= $a[3,:] ./ 2;
20.562 ns (1 allocation: 96 bytes)
Use views when doing something with subarrays:
julia> #btime sum($a[3,:]);
18.719 ns (1 allocation: 96 bytes)
julia> #btime sum(#view($a[3,:]));
5.600 ns (0 allocations: 0 bytes)
Your code around a lines polnew[polnew .< p.lC] .= p.lC[polnew .< p.lC]; will make much less allocations when you do it with a for loop over each element of polnew
#simd will have no effect on conditionals (point 3) neither when code is calling complex external functions
I want to give an update about this problem. I made two main changes to my code: (i) I define my own linear interpolation function and (ii) I include the check of bounds in the interpolation.
With this the new function three is
function interp0!(bt::Array{Float64},ct::Array{Float64},x::Upd1, p::Parm)
polold = x.pol;
polnew = similar(x.pol);
#inbounds #views for col in 1:size(bt,2)
polnew[:,col] = myint(bt[:,col], ct[:,col],x.b[:],p.lC[:,col],p.uC[:,col]);
end
dif = maximum(abs.(polnew - polold));
return polnew,dif
end
And the interpolation is now:
function myint(x0,y0,x1,ly,uy)
y1 = similar(x1);
n = size(x0,1);
j = 1;
#simd for i in eachindex(x1)
while (j <= n) && (x1[i] > x0[j])
j+=1;
end
if j == 1
y1[i] = y0[1] + ((y0[2]-y0[1])/(x0[2]-x0[1]))*(x1[i]-x0[1]) ;
elseif j == n+1
y1[i] = y0[n] + ((y0[n]-y0[n-1])/(x0[n]-x0[n-1]))*(x1[i]-x0[n]);
else
y1[i] = y0[j-1]+ ((x1[i]-x0[j-1])/(x0[j]-x0[j-1]))*(y0[j]-y0[j-1]);
end
y1[i] > uy[i] ? y1[i] = uy[i] : nothing;
y1[i] < ly[i] ? y1[i] = ly[i] : nothing;
end
return y1;
end
As you can see, I am taking advantage (and assuming) that both vectors that we use as basis are ordered while the two last lines in the outer loops checks the bounds imposed by lC and uC.
With that I get the following total time
up1 = Upd1(c0,b,1);
#time conver(up1,pp)
0.734630 seconds (28.93 k allocations: 752.214 MiB, 3.82% gc time)
up1 = Upd1(c0,b,1);
#btime conver(up1,pp)
4.200 ns (0 allocations: 0 bytes)
which is almost as twice faster with ~8% of the total allocations. the use of views in the loop of the function interp0! also helps a lot.

How to optimize a function and minimize allocations

The following function generates primes up to N. For large N, this becomes quite slow, my Julia implementation is 5X faster for N = 10**7. I guess the creation of a large integer array and using pack to collect the result is the slowest part. I tried counting .true.s first, then allocating res(:) and populating it using a loop, but the speedup was negligible (4%) as I iterate the prims array twice in this case. In Julia, I used findall which does exactly what I did; iterating the array twice, first counting trues and allocationg result then populating it. Any ideas? Thank you.
Compiler:
Intel(R) Visual Fortran Intel(R) 64 Compiler for applications running on Intel(R) 64, Version 18.0.3.210 Build 20180410 (on Windows 10)
Options: ifort -warn /O3 -heap-arrays:8000000
program main
implicit none
integer, allocatable :: primes(:)
integer :: t0, t1, count_rate, count_max
call system_clock(t0, count_rate, count_max)
primes = do_primes(10**7)
call system_clock(t1)
print '(a,f7.5,a)', 'Elapsed time: ', real(t1-t0)/count_rate, ' seconds'
print *, primes(1:10)
contains
function do_primes(N) result (res)
integer, allocatable :: res(:), array(:)
logical, allocatable :: prims(:)
integer :: N, i, j
allocate (prims(N))
prims = .true.
i = 3
do while (i * i < N)
j = i
do while (j * i < N)
prims(j*i) = .false.
j = j + 2
end do
i = i + 2
end do
prims(1) = .false.
prims(2) = .true.
do i = 4, N, 2
prims(i) = .false.
end do
allocate (array(N))
do i = 1, N
array(i) = i
end do
res = pack(array, prims)
end
end
Timing (147 runs):
Elapsed time: 0.14723 seconds
Edit:
I converted the do whiles to straight dos as per #IanBush comment like this, still no speedup:
do i = 3, sqrt(dble(N)), 2
do j = i, N/i, 2
prims(j*i) = .false.
end do
end do
The Julia implementation:
function do_primes(N)
prims = trues(N)
i = 3
while i * i < N
j = i
while j * i < N
prims[j*i] = false
j = j + 2
end
i = i + 2
end
prims[1] = false
prims[2] = true
prims[4:2:N] .= false
return findall(prims)
end
Timing:
using Benchmarktools
#benchmark do_primes(10^7)
BenchmarkTools.Trial:
memory estimate: 6.26 MiB
allocs estimate: 5
--------------
minimum time: 32.227 ms (0.00% GC)
median time: 32.793 ms (0.00% GC)
mean time: 34.098 ms (3.92% GC)
maximum time: 94.479 ms (65.46% GC)
--------------
samples: 147
evals/sample: 1

Julia: why doesn't shared memory multi-threading give me a speedup?

I want to use shared memory multi-threading in Julia. As done by the Threads.#threads macro, I can use ccall(:jl_threading_run ...) to do this. And whilst my code now runs in parallel, I don't get the speedup I expected.
The following code is intended as a minimal example of the approach I'm taking and the performance problem I'm having: [EDIT: See later for even more minimal example]
nthreads = Threads.nthreads()
test_size = 1000000
println("STARTED with ", nthreads, " thread(s) and test size of ", test_size, ".")
# Something to be processed:
objects = rand(test_size)
# Somewhere for our results
results = zeros(nthreads)
counts = zeros(nthreads)
# A function to do some work.
function worker_fn()
work_idx = 1
my_result = results[Threads.threadid()]
while work_idx > 0
my_result += objects[work_idx]
work_idx += nthreads
if work_idx > test_size
break
end
counts[Threads.threadid()] += 1
end
end
# Call our worker function using jl_threading_run
#time ccall(:jl_threading_run, Ref{Cvoid}, (Any,), worker_fn)
# Verify that we made as many calls as we think we did.
println("\nCOUNTS:")
println("\tPer thread:\t", counts)
println("\tSum:\t\t", sum(counts))
On an i7-7700, a typical single threaded result is:
STARTED with 1 thread(s) and test size of 1000000.
0.134606 seconds (5.00 M allocations: 76.563 MiB, 1.79% gc time)
COUNTS:
Per thread: [999999.0]
Sum: 999999.0
And with 4 threads:
STARTED with 4 thread(s) and test size of 1000000.
0.140378 seconds (1.81 M allocations: 25.661 MiB)
COUNTS:
Per thread: [249999.0, 249999.0, 249999.0, 249999.0]
Sum: 999996.0
Multi-threading slows things down! Why?
EDIT: A better minimal example can be created #threads macro itself.
a = zeros(Threads.nthreads())
b = rand(test_size)
calls = zeros(Threads.nthreads())
#time Threads.#threads for i = 1 : test_size
a[Threads.threadid()] += b[i]
calls[Threads.threadid()] += 1
end
I falsely assumed that the #threads macro's inclusion in Julia would mean that there was a benefit to be had.
The problem you have is most probably false sharing.
You can solve it by separating the areas you write to far enough like this (here is a "quick and dirty" implementation to show the essence of the change):
julia> function f(spacing)
test_size = 1000000
a = zeros(Threads.nthreads()*spacing)
b = rand(test_size)
calls = zeros(Threads.nthreads()*spacing)
Threads.#threads for i = 1 : test_size
#inbounds begin
a[Threads.threadid()*spacing] += b[i]
calls[Threads.threadid()*spacing] += 1
end
end
a, calls
end
f (generic function with 1 method)
julia> #btime f(1);
41.525 ms (35 allocations: 7.63 MiB)
julia> #btime f(8);
2.189 ms (35 allocations: 7.63 MiB)
or doing per-thread accumulation on a local variable like this (this is a preferred approach as it should be uniformly faster):
function getrange(n)
tid = Threads.threadid()
nt = Threads.nthreads()
d , r = divrem(n, nt)
from = (tid - 1) * d + min(r, tid - 1) + 1
to = from + d - 1 + (tid ≤ r ? 1 : 0)
from:to
end
function f()
test_size = 10^8
a = zeros(Threads.nthreads())
b = rand(test_size)
calls = zeros(Threads.nthreads())
Threads.#threads for k = 1 : Threads.nthreads()
local_a = 0.0
local_c = 0.0
for i in getrange(test_size)
for j in 1:10
local_a += b[i]
local_c += 1
end
end
a[Threads.threadid()] = local_a
calls[Threads.threadid()] = local_c
end
a, calls
end
Also note that you are probably using 4 treads on a machine with 2 physical cores (and only 4 virtual cores) so the gains from threading will not be linear.

Memory allocation in a fixed point algorithm

I need to find the fixed point of a function f. The algorithm is very simple:
Given X, compute f(X)
If ||X-f(X)|| is lower than a certain tolerance, exit and return X,
otherwise set X equal to f(X) and go back to 1.
I'd like to be sure I'm not allocating memory for a new object at every iteration
For now, the algorithm looks like this:
iter1 = function(x::Vector{Float64})
for iter in 1:max_it
oldx = copy(x)
g1(x)
delta = vnormdiff(x, oldx, 2)
if delta < tolerance
break
end
end
end
Here g1(x) is a function that sets x to f(x)
But it seems this loop allocates a new vector at every loop (see below).
Another way to write the algorithm is the following:
iter2 = function(x::Vector{Float64})
oldx = similar(x)
for iter in 1:max_it
(oldx, x) = (x, oldx)
g2(x, oldx)
delta = vnormdiff(oldx, x, 2)
if delta < tolerance
break
end
end
end
where g2(x1, x2) is a function that sets x1 to f(x2).
Is thi the most efficient and natural way to write this kind of iteration problem?
Edit1: timing shows that the second code is faster:
using NumericExtensions
max_it = 1000
tolerance = 1e-8
max_it = 100
g1 = function(x::Vector{Float64})
for i in 1:length(x)
x[i] = x[i]/2
end
end
g2 = function(newx::Vector{Float64}, x::Vector{Float64})
for i in 1:length(x)
newx[i] = x[i]/2
end
end
x = fill(1e7, int(1e7))
#time iter1(x)
# elapsed time: 4.688103075 seconds (4960117840 bytes allocated, 29.72% gc time)
x = fill(1e7, int(1e7))
#time iter2(x)
# elapsed time: 2.187916177 seconds (80199676 bytes allocated, 0.74% gc time)
Edit2: using copy!
iter3 = function(x::Vector{Float64})
oldx = similar(x)
for iter in 1:max_it
copy!(oldx, x)
g1(x)
delta = vnormdiff(x, oldx, 2)
if delta < tolerance
break
end
end
end
x = fill(1e7, int(1e7))
#time iter3(x)
# elapsed time: 2.745350176 seconds (80008088 bytes allocated, 1.11% gc time)
I think replacing the following lines in the first code
for iter = 1:max_it
oldx = copy( x )
...
by
oldx = zeros( N )
for iter = 1:max_it
oldx[:] = x # or copy!( oldx, x )
...
will be more efficient because no array is allocated. Also, the code can be made more efficient by writing for-loops explicitly. This can be seen, for example, from the following comparison
function test()
N = 1000000
a = zeros( N )
b = zeros( N )
#time c = copy( a )
#time b[:] = a
#time copy!( b, a )
#time \
for i = 1:length(a)
b[i] = a[i]
end
#time \
for i in eachindex(a)
b[i] = a[i]
end
end
test()
The result obtained with Julia0.4.0 on Linux(x86_64) is
elapsed time: 0.003955609 seconds (7 MB allocated)
elapsed time: 0.001279142 seconds (0 bytes allocated)
elapsed time: 0.000836167 seconds (0 bytes allocated)
elapsed time: 1.19e-7 seconds (0 bytes allocated)
elapsed time: 1.28e-7 seconds (0 bytes allocated)
It seems that copy!() is faster than using [:] in the left-hand side,
though the difference becomes marginal in repeated calculations (there seems to be
some overhead for the first [:] calculation). Btw, the last example using eachindex() is very convenient for looping over multi-dimensional arrays.
Similar comparison can be made for vnormdiff(), where use of norm( x - oldx ) etc is slower than an explicit loop for vector norm, because the former allocates one temporary array for x - oldx.

Memoization done, what now?

I was trying to solve a puzzle in Haskell and had written the following code:
u 0 p = 0.0
u 1 p = 1.0
u n p = 1.0 + minimum [((1.0-q)*(s k p)) + (u (n-k) p) | k <-[1..n], let q = (1.0-p)**(fromIntegral k)]
s 1 p = 0.0
s n p = 1.0 + minimum [((1.0-q)*(s (n-k) p)) + q*((s k p) + (u (n-k) p)) | k <-[1..(n-1)], let q = (1.0-(1.0-p)**(fromIntegral k))/(1.0-(1.0-p)**(fromIntegral n))]
This code was terribly slow though. I suspect the reason for this is that the same things get calculated again and again. I therefore made a memoized version:
memoUa = array (0,10000) ((0,0.0):(1,1.0):[(k,mua k) | k<- [2..10000]])
mua n = (1.0) + minimum [((1.0-q)*(memoSa ! k)) + (memoUa ! (n-k)) | k <-[1..n], let q = (1.0-0.02)**(fromIntegral k)]
memoSa = array (0,10000) ((0,0.0):(1,0.0):[(k,msa k) | k<- [2..10000]])
msa n = (1.0) + minimum [((1.0-q) * (memoSa ! (n-k))) + q*((memoSa ! k) + (memoUa ! (n-k))) | k <-[1..(n-1)], let q = (1.0-(1.0-0.02)**(fromIntegral k))/(1.0-(1.0-0.02)**(fromIntegral n))]
This seems to be a lot faster, but now I get an out of memory error. I do not understand why this happens (the same strategy in java, without recursion, has no problems). Could somebody point me in the right direction on how to improve this code?
EDIT: I am adding my java version here (as I don't know where else to put it). I realize that the code isn't really reader-friendly (no meaningful names, etc.), but I hope it is clear enough.
public class Main {
public static double calc(double p) {
double[] u = new double[10001];
double[] s = new double[10001];
u[0] = 0.0;
u[1] = 1.0;
s[0] = 0.0;
s[1] = 0.0;
for (int n=2;n<10001;n++) {
double q = 1.0;
double denom = 1.0;
for (int k = 1; k <= n; k++ ) {
denom = denom * (1.0 - p);
}
denom = 1.0 - denom;
s[n] = (double) n;
u[n] = (double) n;
for (int k = 1; k <= n; k++ ) {
q = (1.0 - p) * q;
if (k<n) {
double qs = (1.0-q)/denom;
double bs = (1.0-qs)*s[n-k] + qs*(s[k]+ u[n-k]) + 1.0;
if (bs < s[n]) {
s[n] = bs;
}
}
double bu = (1.0-q)*s[k] + 1.0 + u[n-k];
if (bu < u[n]) {
u[n] = bu;
}
}
}
return u[10000];
}
public static void main(String[] args) {
double s = 0.0;
int i = 2;
//for (int i = 1; i<51; i++) {
s = s + calc(i*0.01);
//}
System.out.println("result = " + s);
}
}
I don't run out of memory when I run the compiled version, but there is a significant difference between how the Java version works and how the Haskell version works which I'll illustrate here.
The first thing to do is to add some important type signatures. In particular, you don't want Integer array indices, so I added:
memoUa :: Array Int Double
memoSa :: Array Int Double
I found these using ghc-mod check. I also added a main so that you can run it from the command line:
import System.Environment
main = do
(arg:_) <- getArgs
let n = read arg
print $ mua n
Now to gain some insight into what's going on, we can compile the program using profiling:
ghc -O2 -prof memo.hs
Then when we invoke the program like this:
memo 1000 +RTS -s
we will get profiling output which looks like:
164.31333233347755
98,286,872 bytes allocated in the heap
29,455,360 bytes copied during GC
657,080 bytes maximum residency (29 sample(s))
38,260 bytes maximum slop
3 MB total memory in use (0 MB lost due to fragmentation)
Tot time (elapsed) Avg pause Max pause
Gen 0 161 colls, 0 par 0.03s 0.03s 0.0002s 0.0011s
Gen 1 29 colls, 0 par 0.03s 0.03s 0.0011s 0.0017s
INIT time 0.00s ( 0.00s elapsed)
MUT time 0.21s ( 0.21s elapsed)
GC time 0.06s ( 0.06s elapsed)
RP time 0.00s ( 0.00s elapsed)
PROF time 0.00s ( 0.00s elapsed)
EXIT time 0.00s ( 0.00s elapsed)
Total time 0.27s ( 0.27s elapsed)
%GC time 21.8% (22.3% elapsed)
Alloc rate 468,514,624 bytes per MUT second
Productivity 78.2% of total user, 77.3% of total elapsed
Important things to pay attention to are:
maximum residency
Total time
%GC time (or Productivity)
Maximum residency is a measure of how much memory is needed by the program. %GC time the proportion of the time spent in garbage collection and Productivity is the complement (100% - %GC time).
If you run the program for various input values you will see a productivity of around 80%:
n Max Res. Prod. Time Output
2000 779,076 79.4% 1.10s 328.54535361588535
4000 1,023,016 80.7% 4.41s 657.0894961398351
6000 1,299,880 81.3% 9.91s 985.6071032981068
8000 1,539,352 81.5% 17.64s 1314.0968411684714
10000 1,815,600 81.7% 27.57s 1642.5891214360522
This means that about 20% of the run time is spent in garbage collection. Also, we see increasing memory usage as n increases.
It turns out we can dramatically improve productivity and memory usage by telling Haskell the order in which to evaluate the array elements instead of relying on lazy evaluation:
import Control.Monad (forM_)
main = do
(arg:_) <- getArgs
let n = read arg
forM_ [1..n] $ \i -> mua i `seq` return ()
print $ mua n
And the new profiling stats are:
n Max Res. Prod. Time Output
2000 482,800 99.3% 1.31s 328.54535361588535
4000 482,800 99.6% 5.88s 657.0894961398351
6000 482,800 99.5% 12.09s 985.6071032981068
8000 482,800 98.1% 21.71s 1314.0968411684714
10000 482,800 96.1% 34.58s 1642.5891214360522
Some interesting observations here: productivity is up, memory usage is down (constant now over the range of inputs) but run time is up. This suggests that we forced more computations than we needed to. In an imperative language like Java you have to give an evaluation order so you would know exactly which computations need to be performed. It would interesting to see your Java code to see which computations it is performing.

Resources