I have this doubt in code of searching by argument.
what is the meaning of context.getConfiguration().get("Uid2Search");
package SearchTxnByArg;
// This is the Mapper Program for SearchTxnByArg
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class MyMap extends Mapper<LongWritable, Text, NullWritable, Text>{
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String Txn = value.toString();
String TxnParts[] = Txn.split(",");
String Uid = TxnParts[2];
String Uid2Search = context.getConfiguration().get("Uid2Search");
if(Uid.equals(Uid2Search))
{
context.write(null, value);
}
}
}
Driver Program
package SearchTxnByArg;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class MyDriver {
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
conf.set("Uid2Search", args[0]);
Job job = new Job(conf, "Map Reduce Search Txn by Arg");
job.setJarByClass(MyDriver.class);
job.setMapperClass(MyMap.class);
job.setMapOutputKeyClass(NullWritable.class);
job.setMapOutputValueClass(Text.class);
job.setNumReduceTasks(0);
FileInputFormat.addInputPath(job, new Path(args[1]));
FileOutputFormat.setOutputPath(job, new Path(args[2]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
I don't know how you have written your driver program. But in my experience,
If you are trying to get system property either by using -D option from the command line or by System.setproperty method by default these values will be set to context configuration.
As per documentation,
Configurations are specified by resources. A resource contains a set
of name/value pairs as XML data. Each resource is named by either a
String or by a Path. If named by a String, then the classpath is
examined for a file with that name. If named by a Path, then the local
filesystem is examined directly, without referring to the classpath.
Unless explicitly turned off, Hadoop by default specifies two
resources, loaded in-order from the classpath: core-default.xml :
Read-only defaults for hadoop. core-site.xml: Site-specific
configuration for a given hadoop installation. Applications may add
additional resources, which are loaded subsequent to these resources
in the order they are added.
Please see this answer as well
Context object: allows the Mapper/Reducer to interact with the rest of the Hadoop system. It includes configuration data for the job as well as interfaces which allow it to emit output.
Applications can use the Context:
to report progress
to set application-level status messages
update Counters
indicate they are alive
to get the values that are stored in job configuration across map/reduce phase.
Related
Is there a way to create a hive table where the location for that hive table will be a http JSON REST API? I don't want to import the data every time in HDFS.
I had encountered similar situation in a project couple of years ago. This is the sort of low-key way of ingesting data from Restful to HDFS and then you use Hive analytics to implement the business logic.I hope you are familiar with core Java, Map Reduce (if not you might look into Hortonworks Data Flow, HDF which is a product of Hortonworks).
Step 1: Your data ingestion workflow should not be tied to your Hive workflow that contains business logic. This should be executed independently in timely manner based on your requirement (volume & velocity of data flow) and monitored regularly. I am writing this code on a text editor. WARN: It's not compiled or tested!!
The code below is using a Mapper which would take in the url or tweak it to accept the list of urls from the FS. The payload or requested data is stored as text file in the specified job output directory (forget the structure of data this time).
Mapper Class:
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.net.URL;
import java.net.URLConnection;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class HadoopHttpClientMap extends Mapper<LongWritable, Text, Text, Text> {
private int file = 0;
private String jobOutDir;
private String taskId;
#Override
protected void setup(Context context) throws IOException,InterruptedException {
super.setup(context);
jobOutDir = context.getOutputValueClass().getName();
taskId = context.getJobID().toString();
}
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException{
Path httpDest = new Path(jobOutDir, taskId + "_http_" + (file++));
InputStream is = null;
OutputStream os = null;
URLConnection connection;
try {
connection = new URL(value.toString()).openConnection();
//implement connection timeout logics
//authenticate.. etc
is = connection.getInputStream();
os = FileSystem.getLocal(context.getConfiguration()).create(httpDest,true);
IOUtils.copyBytes(is, os, context.getConfiguration(), true);
} catch(Throwable t){
t.printStackTrace();
}finally {
IOUtils.closeStream(is);
IOUtils.closeStream(os);
}
context.write(value, null);
//context.write(new Text (httpDest.getName()), new Text (os.toString()));
}
}
Mapper Only Job:
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
public class HadoopHttpClientJob {
private static final String data_input_directory = “YOUR_INPUT_DIR”;
private static final String data_output_directory = “YOUR_OUTPUT_DIR”;
public HadoopHttpClientJob() {
}
public static void main(String... args) {
try {
Configuration conf = new Configuration();
Path test_data_in = new Path(data_input_directory, "urls.txt");
Path test_data_out = new Path(data_output_directory);
#SuppressWarnings("deprecation")
Job job = new Job(conf, "HadoopHttpClientMap" + System.currentTimeMillis());
job.setJarByClass(HadoopHttpClientJob.class);
FileSystem fs = FileSystem.get(conf);
fs.delete(test_data_out, true);
job.setMapperClass(HadoopHttpClientMap.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
job.setNumReduceTasks(0);
FileInputFormat.addInputPath(job, test_data_in);
FileOutputFormat.setOutputPath(job, test_data_out);
job.waitForCompletion(true);
}catch (Throwable t){
t.printStackTrace();
}
}
}
Step 2: Create external table in Hive based on the HDFS directory. Remember to use Hive SerDe for the JSON data (in your case) then you can copy the data from external table into managed master tables. This is the step where you implement your incremental logics, compression..
Step 3: Point your hive queries (which you might have already created) to the master table to implement your business needs.
Note: If you are supposedly referring to realtime analysis or streaming api, you might have to change your application's architecture. Since you have asked architectural question, I am using my best educated guess to support you. Please go through this once. If you feel you can implement this in your application then you can ask the specific question, I will try my best to address them.
I compiled the mapreduce code (driver, mapper and reducer classes) and created Jar files. When I run it on the dataset, it doesn't seem to run. It just comes back to the prompt as shown in the image. Any suggestions folks?
thanks much
basam
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.lib.input.KeyValueTextInputFormat;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
//This driver program will bring all the information needed to submit this Map reduce job.
public class MultiLangDictionary {
public static void main(String[] args) throws Exception{
if (args.length !=2){
System.err.println("Usage: MultiLangDictionary <input path> <output path>");
System.exit(-1);
}
Configuration conf = new Configuration();
Job ajob = new Job(conf, "MultiLangDictionary");
//Assigning the driver class name
ajob.setJarByClass(MultiLangDictionary.class);
FileInputFormat.addInputPath(ajob, new Path(args[0]));
//first argument is the job itself
//second argument is the location of the output dataset
FileOutputFormat.setOutputPath(ajob, new Path(args[1]));
ajob.setInputFormatClass(TextInputFormat.class);
ajob.setOutputFormatClass(TextOutputFormat.class);
//Defining the mapper class name
ajob.setMapperClass(MultiLangDictionaryMapper.class);
//Defining the Reducer class name
ajob.setReducerClass(MultiLangDictionaryReducer.class);
//setting the second argument as a path in a path variable
Path outputPath = new Path(args[1]);
//deleting the output path automatically from hdfs so that we don't have delete it explicitly
outputPath.getFileSystem(conf).delete(outputPath);
}
}
try with java packagename.classname in the command
hadoop jar MultiLangDictionary.jar [yourpackagename].MultiLangDictionary input output
You could try adding the Map and Reduce output key types to your driver. Something like (this is an example):
job2.setMapOutputKeyClass(Text.class);
job2.setMapOutputValueClass(Text.class);
job2.setOutputKeyClass(Text.class);
job2.setOutputValueClass(Text.class);
In the above both the Mapper and Reducer would be writing (Text,Text) in their context.write() methods.
I'm running a simple mapreduce program wordcount agian Apache Hadoop 2.6.0. The hadoop is running distributedly (several nodes). However, I'm not able to see any stderr and stdout from yarn job history. (but I can see the syslog)
The wordcount program is really simple, just for demo purpose.
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCount {
public static final Log LOG = LogFactory.getLog(WordCount.class);
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
LOG.info("LOG - map function invoked");
System.out.println("stdout - map function invoded");
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
conf.set("mapreduce.job.jar","/space/tmp/jar/wordCount.jar");
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path("hdfs://localhost:9000/user/jsun/input"));
FileOutputFormat.setOutputPath(job, new Path("hdfs://localhost:9000/user/jsun/output"));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
Note in the map function of Mapper class, I added two statements:
LOG.info("LOG - map function invoked");
System.out.println("stdout - map function invoded");
These two statements are to test whether I can see logging from hadoop server. I can successfully run the program. But if I go to localhost:8088 to see the application history and then "logs", I see nothing in "stdout", and in "stderr":
log4j:WARN No appenders could be found for logger (org.apache.hadoop.ipc.Server).
log4j:WARN Please initialize the log4j system properly.
log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.
I think there is some configuration needed to get those output, but not sure which piece of information is missing. I searched online as well as in stackoverflow. Some people mentioned container-log4j.properties but they are not specific about how to configure that file and where to put.
One thing to note is I also tried the job with Hortonworks Data Platform 2.2 and Cloudera 5.4. The result is the same. I remember when I dealt with some previous version of hadoop (hadoop 1.x), I can easily see the loggings from same place. So I guess this is something new in hadoop 2.x
=======
As a comparison, if I make the apache hadoop run in local mode (meaning LocalJobRunner), I can see some loggings in console like this:
[2015-09-08 15:57:25,992]org.apache.hadoop.mapred.MapTask$MapOutputBuffer.init(MapTask.java:998) INFO:kvstart = 26214396; length = 6553600
[2015-09-08 15:57:25,996]org.apache.hadoop.mapred.MapTask.createSortingCollector(MapTask.java:402) INFO:Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
[2015-09-08 15:57:26,064]WordCount$TokenizerMapper.map(WordCount.java:28) INFO:LOG - map function invoked
stdout - map function invoded
[2015-09-08 15:57:26,075]org.apache.hadoop.mapred.LocalJobRunner$Job.statusUpdate(LocalJobRunner.java:591) INFO:
[2015-09-08 15:57:26,077]org.apache.hadoop.mapred.MapTask$MapOutputBuffer.flush(MapTask.java:1457) INFO:Starting flush of map output
[2015-09-08 15:57:26,077]org.apache.hadoop.mapred.MapTask$MapOutputBuffer.flush(MapTask.java:1475) INFO:Spilling map output
These kind of loggings ("map function is invoked") is what I expected in hadoop server logging.
All the sysout written in Map-Reduce program can not be seen on console. It is because map-reduce run in multiple parallel copies across the cluster, so there is no concept of a single console with output.
However, The System.out.println() for map and reduce phases can be seen in the job logs. Easy way to access the logs is
open the jobtracker web console - http://localhost:50030/jobtracker.jsp
click on the completed job
click on map or reduce task
click on tasknumber
Go to task logs
Check stdout logs.
Please note that if you are not able to locate URL, just look into the console log for jobtracker URL.
I am a beginner in Hadoop. When trying to set the number of reducers using command line using Generic Options Parser, the number of reducers is not changing. There is no property set in the configuration file "mapred-site.xml" for the number of reducers and I think, that would make the number of reducers=1 by default. I am using cloudera QuickVM and hadoop version : "Hadoop 2.5.0-cdh5.2.0".
Pointers Appreciated. Also my issue was I wanted to know the preference order of the ways to set the number of reducers.
Using configuration File "mapred-site.xml"
mapred.reduce.tasks
By specifying in the driver class
job.setNumReduceTasks(4)
By specifying at the command line using Tool interface:
-Dmapreduce.job.reduces=2
Mapper :
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable>
{
#Override
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException
{
String line = value.toString();
//Split the line into words
for(String word: line.split("\\W+"))
{
//Make sure that the word is legitimate
if(word.length() > 0)
{
//Emit the word as you see it
context.write(new Text(word), new IntWritable(1));
}
}
}
}
Reducer :
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable>{
#Override
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException
{
//Initializing the word count to 0 for every key
int count=0;
for(IntWritable value: values)
{
//Adding the word count counter to count
count += value.get();
}
//Finally write the word and its count
context.write(key, new IntWritable(count));
}
}
Driver :
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class WordCount extends Configured implements Tool
{
public int run(String[] args) throws Exception
{
//Instantiate the job object for configuring your job
Job job = new Job();
//Specify the class that hadoop needs to look in the JAR file
//This Jar file is then sent to all the machines in the cluster
job.setJarByClass(WordCount.class);
//Set a meaningful name to the job
job.setJobName("Word Count");
//Add the apth from where the file input is to be taken
FileInputFormat.addInputPath(job, new Path(args[0]));
//Set the path where the output must be stored
FileOutputFormat.setOutputPath(job, new Path(args[1]));
//Set the Mapper and the Reducer class
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class);
//Set the type of the key and value of Mapper and reducer
/*
* If the Mapper output type and Reducer output type are not the same then
* also include setMapOutputKeyClass() and setMapOutputKeyValue()
*/
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
//job.setNumReduceTasks(4);
//Start the job and wait for it to finish. And exit the program based on
//the success of the program
System.exit(job.waitForCompletion(true)?0:1);
return 0;
}
public static void main(String[] args) throws Exception
{
// Let ToolRunner handle generic command-line options
int res = ToolRunner.run(new Configuration(), new WordCount(), args);
System.exit(res);
}
}
And I have tried the following commands to run the job :
hadoop jar /home/cloudera/Misc/wordCount.jar WordCount -Dmapreduce.job.reduces=2 hdfs:/Input/inputdata hdfs:/Output/wordcount_tool_D=2_take13
and
hadoop jar /home/cloudera/Misc/wordCount.jar WordCount -D mapreduce.job.reduces=2 hdfs:/Input/inputdata hdfs:/Output/wordcount_tool_D=2_take14
Answering your query on order. It would always be 2>3>1
The option specified in your driver class takes precedence over the ones you specify as an argument to your GenOptionsParser or the ones you specify in your site specific config.
I would recommend debugging the configurations inside your driver class by printing it out before you submit the job. This way , you can be sure what the configurations are , right before you submit the job to the cluster.
Configuration conf = getConf(); // This is available to you since you extended Configured
for(Entry entry: conf)
//Sysout the entries here
I wrote a Driver, Mapper, and Reducer class in Java that runs the k-nearest neighbor algorithm on test data, and pulls in the training set using Distributed Cache. I used a Cloudera virtual machine to test the code, and it works in pseudo-distributed mode.
I'm trying to get through Amazon's EC2/EMR documentation ... it seems like there should be a way to easily convert working Java Hadoop code into something that will work in EC2, but I'm seeing a whole bunch of custom amazon import statements and methods that I've never seen before.
Here's my driver code for an example:
import java.net.URI;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.filecache.DistributedCache;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class KNNDriverEC2 extends Configured implements Tool {
public int run(String[] args) throws Exception {
Configuration conf = new Configuration();
conf.setInt("rows",1000);
conf.setInt("columns",613);
DistributedCache.createSymlink(conf);
// might have to start next line with ./!!!
DistributedCache.addCacheFile(new URI("knn-jg/cache_data/train_sample.csv#train_sample.csv"),conf);
DistributedCache.addCacheFile(new URI("knn-jg/cache_data/train_labels.csv#train_labels.csv"),conf);
//DistributedCache.addCacheFile(new URI("cacheData/train_sample.csv"),conf);
//DistributedCache.addCacheFile(new URI("cacheData/train_labels.csv"),conf);
Job job = new Job(conf);
job.setJarByClass(KNNDriverEC2.class);
job.setJobName("KNN");
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.setMapperClass(KNNMapperEC2.class);
job.setReducerClass(KNNReducerEC2.class);
// job.setInputFormatClass(KeyValueTextInputFormat.class);
job.setMapOutputKeyClass(IntWritable.class);
job.setMapOutputValueClass(IntWritable.class);
job.setOutputKeyClass(IntWritable.class);
job.setOutputValueClass(IntWritable.class);
boolean success = job.waitForCompletion(true);
return success ? 0 : 1;
}
public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new Configuration(), new KNNDriverEC2(), args);
System.exit(exitCode);
}
}
I've gotten my instance running, but an exception is thrown at the line "FileInputFormat.setInputPaths(job, new Path(args[0]));". I'm going to try to work through the documentation on handling arguments, but I've run into so many errors so far I'm wondering if I'm far from making this work. Any help appreciated.