I need to list the messages that were posted in nats stream to know which ones were not recognized.
I have tried to look at the admin api that nats suggests in its documentation, but it does not specify if this can be done or not.
I have also looked at the jetstream library for go, with this I can get general information about the streams and their comsumers but not the messages that were not acknowledged and I don't see any functions that give me what I need.
Has anyone already done this no matter the programming language?
Acknowledgements are tied to a specific consumer, not a stream.
You can derive the state of acknowledgements from consumer info, precisely, the Acknowledgement floor:
nats consumer info
State:
Last Delivered Message: Consumer sequence: 8 Stream sequence: 158 Last delivery: 13m59s ago
Acknowledgment floor: Consumer sequence: 4 Stream sequence: 154 Last Ack: 13m59s ago
Outstanding Acks: 2 out of maximum 1,000
Redelivered Messages: 0
Unprocessed Messages: 42
Waiting Pulls: 0 of maximum 512
Which is available in NATS CLI and most client libraries.
There is no way to directly see the list of acknowledged messages.
We have been facing an issue where message rate of a xmitq is very slow comparing with what should be a normal performance.
We have many other Qmgrs with bigger MQ flows that don't have the same issue.
Our HUB qmgr connects to business line in the same company HUB qmgr, and even the destination queues on their side being empty the flow is really slow.
At OS and Network level they say nothing can be done. At MQ we have changed the Buffersizes so it matches the OS level and uses the system tcp windows.
Now at MQ level we have the channel SDR setup with BATCHSZ to 100, but seems the receiver is configured with 30.
We noticed that because we see messages flow in batches fof 30 messages. Also not sure if that is related but we see the XMITQ havs always 30 uncommited messages.
Our questiong for advice.
Would increase the BATCHSZ parameter on SDR/RCVR help the perfomance?
Is there any other parameter at MQ level that could help it?
DIS CHS(NAME) ALL
AMQ8417: Display Channel Status details.
CHANNEL(QMGRA.QMGRB.T7) CHLTYPE(SDR)
BATCHES(234) BATCHSZ(30)
BUFSRCVD(235) BUFSSENT(6391)
BYTSRCVD(6996) BYTSSENT(14396692)
CHSTADA(2020-04-16) CHSTATI(14.38.17)
COMPHDR(NONE,NONE) COMPMSG(NONE,NONE)
COMPRATE(0,0) COMPTIME(0,0)
CONNAME(159.50.69.38(48702)) CURLUWID(398F3E5EEA43381C)
CURMSGS(30) CURRENT
CURSEQNO(43488865) EXITTIME(0,0)
HBINT(300) INDOUBT(YES)
JOBNAME(000051FC00000001) LOCLADDR(10.185.8.122(54908))
LONGRTS(999999999) LSTLUWID(398F3E5EE943381C)
LSTMSGDA(2020-04-16) LSTMSGTI(14.49.46)
LSTSEQNO(43488835) MCASTAT(RUNNING)
MONCHL(HIGH) MSGS(6386)
NETTIME(2789746,3087573) NPMSPEED(NORMAL)
RQMNAME(QMGRB) SHORTRTS(10)
SSLCERTI(*******************)
SSLKEYDA( ) SSLKEYTI( )
SSLPEER(*******************)
SSLRKEYS(0) STATUS(RUNNING)
STOPREQ(NO) SUBSTATE(RECEIVE)
XBATCHSZ(23,7) XMITQ(QMGRB.X7)
XQTIME(215757414,214033427) RVERSION(08000008)
RPRODUCT(MQMM)
qm.ini:
Log:
LogPrimaryFiles=10
LogSecondaryFiles=10
LogFilePages=16384
LogType=LINEAR
LogBufferPages=4096
LogPath=/apps/wmq/QMGR/log/QMGR/
LogWriteIntegrity=SingleWrite
Service:
Name=AuthorizationService
EntryPoints=13
TCP:
SvrSndBuffSize=0
SvrRcvBuffSize=0
ServiceComponent:
Service=AuthorizationService
Name=MQSeries.UNIX.auth.service
Module=/opt/mqm75/lib64/amqzfu
ComponentDataSize=0
Channels:
MaxChannels=500
UPDATED: 15:41 GMT
Just to update the information, both sides are now with BATCHSZ 100 and seems slightly.
AMQ8417: Display Channel Status details.
CHANNEL(QMGRA.QMGRB.T7) CHLTYPE(SDR)
BATCHES(403) BATCHSZ(100)
BUFSRCVD(405) BUFSSENT(23525)
BYTSRCVD(11756) BYTSSENT(53751066)
CHSTADA(2020-04-17) CHSTATI(15.13.51)
COMPHDR(NONE,NONE) COMPMSG(NONE,NONE)
COMPRATE(0,0) COMPTIME(0,0)
CONNAME(159.50.69.38(48702)) CURLUWID(6D66985E94343410)
CURMSGS(0) CURRENT
CURSEQNO(44115897) EXITTIME(0,0)
HBINT(300) INDOUBT(NO)
JOBNAME(0000172A00000001) LOCLADDR(10.185.8.122(2223))
LONGRTS(999999999) LSTLUWID(6D66985E93343410)
LSTMSGDA(2020-04-17) LSTMSGTI(15.30.06)
LSTSEQNO(44115897) MCASTAT(RUNNING)
MONCHL(HIGH) MSGS(23505)
NETTIME(101563,480206) NPMSPEED(NORMAL)
RQMNAME(QMGRB) SHORTRTS(10)
SSLCERTI(*************************************)
SSLKEYDA( ) SSLKEYTI( )
SSLPEER(****************************)
SSLRKEYS(0) STATUS(RUNNING)
STOPREQ(NO) SUBSTATE(MQGET)
XBATCHSZ(1,1) XMITQ(QMGRB.X7)
XQTIME(191225,794134) RVERSION(08000008)
RPRODUCT(MQMM)
AMQ8450: Display queue status details.
QUEUE(QMGRB.X7) TYPE(QUEUE)
CURDEPTH(0) IPPROCS(1)
LGETDATE(2020-04-17) LGETTIME(15.30.06)
LPUTDATE(2020-04-17) LPUTTIME(15.30.06)
MEDIALOG(S2488154.LOG) MONQ(LOW)
MSGAGE(0) OPPROCS(9)
QTIME(794134, 191225) UNCOM(NO)
I'll put a few observations in this answer, but based on any further feedback I may add more.
You are running a very old version of the software on the sender side, MQ 7.5 went out of support almost two years ago (April 30 2018). IBM for a cost will provide extended support for an additional three years, so maybe you fall in that group. The 7.5.0.2 maintenance release itself came out in July 11th 2013, so it is almost seven years old at this point. I would strongly suggest you move to a newer version.
Note that MQ v8.0 goes out of support April 30 2020, and IBM just announced a few days ago that MQ v9.0 goes out of support September 30 2021. When you do migrate you should go with either 9.1 which has no announced end of support (they give five years minimum so it could be 2023) or go with the next version of MQ that should be out some time this year.
You mention setting the following:
TCP:
SvrSndBuffSize=0
SvrRcvBuffSize=0
The above setting apply to the SVRCONN end of a client connection. You can see this in the MQ v7.5 Knowledge Center page WebSphere MQ>Configuring>Changing configuration information>Changing queue manager configuration information>TCP, LU62, NETBIOS, and SPX:
SvrSndBuffSize=32768|number
The size in bytes of the TCP/IP send buffer used by the server end of a client-connection
server-connection channel.
SvrRcvBuffSize=32768|number
The size in bytes of the TCP/IP receive buffer used by the server end of a client-connection
server-connection channel.
At IBM MQ v7.5.0.2 APAR IV58073 introduced the concept of setting various buffer settings to a value to 0 which means that it will allow the operating system defaults to be used. Unfortunately like many things in the Knowledge Center it does not look like IBM documented this correctly for 7.5.
You can however review the IBM MQ v8.0 Knowledge Center to get the full picture regarding these settings at the page Configuring>Changing configuration information>Changing queue manager configuration information>TCP, LU62, and NETBIOS, specifically you would want to set these two settings to have any impact on your Sender Channel:
SndBuffSize=number| 0
The size in bytes of the TCP/IP send buffer used by the sending end of
channels. This stanza value can be overridden by a stanza more
specific to the channel type, for example RcvSndBuffSize. If the
value is set as zero, the operating system defaults are used. If no
value is set, then the IBM MQ default, 32768, is used.
RcvSndBuffSize=number| 0
The size in bytes of the TCP/IP send buffer used by the sender end of
a receiver channel. If the value is set as zero, the operating system
defaults are used. If no value is set, then the IBM MQ default, 32768,
is used.
Starting at IBM MQ v8.0 any newly created queue manager will have all of the following in the qm.ini:
TCP:
SndBuffSize=0
RcvBuffSize=0
RcvSndBuffSize=0
RcvRcvBuffSize=0
ClntSndBuffSize=0
ClntRcvBuffSize=0
SvrSndBuffSize=0
SvrRcvBuffSize=0
However, any queue manager that is upgraded will not by default get those settings, meaning if those are not present they will not be added, if they are present they will remain the same. If the setting is not present then as it says above "the IBM MQ default, 32768, is used."
I had extensive discussions with IBM support on this topic and came to the conclusion that they did not see any reason to not set it to 0, they only saw benefit in doing so, but with an abundance of caution they do not change it to 0 for you.
I would recommend you add all of those to your qm.ini, but at minimum add the two I highlighted above.
These are good setting to implement but may not solve your problem if nothing changed recently on either end. If however something did change, for example a network difference, or MQ was upgraded to 8.0.0.8 on the remote side, then this setting just might solve your problem.
In the channel status output two values are interesting:
NETTIME(2789746,3087573)
XQTIME(215757414,214033427)
NETTIME means that based on recent activity it took 2.7 seconds to receive a response from the RCVR channel, over a longer period of time it took 3.1 seconds to receive a response from the RCVR channel. Can you compare this to a TCP ping from the sender channel server to the receive channel server, 2.7 seconds for a response over the network seems excessive. In the presentation Keeping MQ Channels Up and Running given at Capitalware's MQ Technical Conference v2.0.1.4, Paul Clarke who used to work for IBM states "NETTIME only measures network time, and does not include
the MQCMIT for example".
XQTIME means that based on recent activity and over a longer period of time it took ~215 seconds for a message on the XMITQ to be picked up by the SDR channel to be sent.
See below for how IBM documents these:
NETTIME
Amount of time, displayed in microseconds, to send a request to the remote end of the channel and receive a response. This time only measures the network time for such an operation. Two values are displayed:
A value based on recent activity over a short period.
A value based on activity over a longer period.
XQTIME
The time, in microseconds, that messages remained on the transmission queue before being retrieved. The time is measured from when the message is put onto the transmission queue until it is retrieved to be sent on the channel and, therefore, includes any interval caused by a delay in the putting application.
Two values are displayed:
A value based on recent activity over a short period.
A value based on activity over a longer period.
Information on the BATCHSZ channel parameter can be found in the IBM MQ v8.0 Knowledge Center page Reference>Configuration reference>Channel attributes>Channel attributes in alphabetical order>Batch size (BATCHSZ). I have quoted it and highlighted a few areas in bold.
This attribute is the maximum number of messages to be sent before a sync point is taken.
The batch size does not affect the way the channel transfers messages; messages are always transferred individually, but are committed or backed out as a batch.
To improve performance, you can set a batch size to define the maximum number of messages to be transferred between two sync points. The batch size to be used is negotiated when a channel starts, and the lower of the two channel definitions is taken. On some implementations, the batch size is calculated from the lowest of the two channel definitions and the two queue manager MAXUMSGS values. The actual size of a batch can be less; for example, a batch completes when there are no messages left on the transmission queue or the batch interval expires.
A large value for the batch size increases throughput, but recovery times are increased because there are more messages to back out and send again. The default BATCHSZ is 50, and you are advised to try that value first. You might choose a lower value for BATCHSZ if your communications are unreliable, making the need to recover more likely.
This attribute is valid for channel types of:
Sender
Server
Receiver
Requester
Cluster sender
Cluster receiver
Follow up questions:
Are the messages that are PUT to this XMITQ persistent?
Answer: Yes, in our PROD env all messages are pesistent.
Have you had a recent increase in volume going to this XMITQ?
Answer: No, we use a monitoring tools, we extracted a report that show very similar message rate during the period. The same rate over the last 2 weeks.
Do the putting applications set MQPMO_SYNCPOINT and then commit after 1 or more messages are PUT to the queue?
Answer: I will check with the application team.
A couple of things..
You have XBATCHSZ(1,1) so your recent batch size is 1 message per batch.
Total messages 23505 batches 403, so an average of 58 messages per batch. If your recent batch size is 1, then you must have had some larger (100?) batch sizes
XQTIME 191225 is number of microseconds messages were on the xmit queue before being sent. This is 0.1 second!
Nettime 101563 microseconds. This is a long time ( 0.1 seconds) 10,000 would be a good value. Compare this with a "TCP PING"
BUFSSENT 23525 is similar to number of messages - so message size is typically under 32K. Bytessent. messages gives 2286 so small messages.
Things to check
The queue at the remote end. Has it filled up? This would cause the sender queue to get more messages
The nettime seems very long. Compare this with TCP Ping. Nettime can include slow IO at the remote end - or a queue full at the remote end
XQTIME is high. This could be caused by sending applications not committing, or slow disk IO
I wrote "Why is my xmit queue filling up" in this blog
*Search for the title
have a read.
Capture these metrics over a day and see if they are typical
regards
Colin Paice
We are testing the capacity of a Mail relay based on RHEL 7.6.
We are observing issues when sending an important number of msgs (e.g.: ~1000 msgs in 60 seconds).
While we have sent all the msgs and the recipient has received all the msgs, logs are missing in the /var/log/maillog_rfc5424.
We have the following message in the /var/log/messages:
rsyslogd: imjournal: XYZ messages lost due to rate-limiting
We adapted the /etc/rsyslog.conf with the following settings but without effect:
$SystemLogRateLimitInterval 0 # turn off rate limit
$SystemLogRateLimitBurst 0 # turn rate limit off
Any ideas ?
The error is from imjournal, but your configuration settings are for imuxsock.
According to the rsyslog configuration page you need to set
$imjournalRatelimitInterval 0
$imjournalRatelimitBurst 0
Note that for very high message rates you might like to change to imuxsock, as it says:
this module may be notably slower than when using imuxsock. The journal provides imuxsock with a copy of all “classical” syslog messages, however, it does not provide structured data. Only if that structured data is needed, imjournal must be used. Otherwise, imjournal may simply be replaced by imuxsock, and we highly suggest doing so.
I have a RabbitMQ server setup with thousands of queues. Of which only about 5 of these are persistent queues. Every now and then there is a back up of a queue that will have about 5-10 messages in a ready state. These messages do not appear to be in the persistent queues. I want to find out which queues had the messages in a ready state, but the only indication that it is happening is on the overview page of the web management console which is for all queues.
Is there a way to query Rabbit to tell me the stat info for messages that were in a ready state for a period of minutes and which queue they were in?
I would use the HTTP API.
http://rabbit-broker:15672/api/queues
This will give you a list of the current queue states in JSON so you'll have to keep polling it. Store the "messages_ready" for given queue "name" for the period you want to monitor. Now you'll be able to see which queues have that backlog spike.
You can use simple curl as well as whichever platform you prefer with an HTTP client.
Please note: the user you'll connect will have to have monitor tag to access all the queue information.
Out of the box there is no easy way AFAIK, you'd have to manually click through the queues and look at their graphs in the UI for the last hour, which is tedious.
I had similar requirements and I found a better way than polling. The docs say that you may get raw samples via api if you use special parameters in the request.
For example in your case, if you are interested in messages with ready state, you may ask your queue for a history of queue lengths, for example last 60 seconds with samples every 1 second (note 15672 is the default port used by rabbitmq_management):
http://rabbitHost:15672/api/queues/vhost/queue?lengths_age=60&lengths_incr=1
For default vhost=/ it will be:
http://rabbitHost:15672/api/queues/%2F/queue?lengths_age=60&lengths_incr=1
Then in the result json there will be some additional _details objects like this:
"messages_ready_details": {
"avg": 8.524590163934427,
"avg_rate": 0.08333333333333333,
"samples": [{
"timestamp": 1532699694000,
"sample": 5
}, {
"timestamp": 1532699693000,
"sample": 11
},
<... more samples ...>
],
"rate": -6.0
},
"messages_ready": 5,
Then on this raw data you may do any stats you need.
Other raw data samples appear if you use differen parameters in
What sampling will appear? What parameters are required for it to appear?
Messages sent and received msg_rates_age / msg_rates_incr
Bytes sent and received data_rates_age / data_rates_incr
Queue lengths lengths_age / lengths_incr
Node statistics (e.g. file descriptors, disk space free) node_stats_age / node_stats_incr
We are using Apache JMeter 2.12 in order to measure the response time of our JMS queue. However, we would like to see how many of those requests take less than a certain time. This, according to the official site of JMeter (http://jmeter.apache.org/usermanual/component_reference.html) should be set by the Timeout property. You can see in the photo below how our configuration looks like:
However, setting the timeout does not result in an error after sending 100 requests. We can see that some of them take apparently more than that amount of time:
Is there some other setting I am missing or is there a way to achieve my goal?
Thanks!
The JMeter documentation for JMS Point-to-Point describes the timeout as
The timeout in milliseconds for the reply-messages. If a reply has not been received within the specified time, the specific testcase failes and the specific reply message received after the timeout is discarded. Default value is 2000 ms.
This is timing not the actual sending the message but receipt of a response.
The source for the JMeter Point to Point will determine if you have a 'Receive Queue' Configured. If you do it will go through the executor path and use the timeout value, otherwise it does not use time timeout value.
if (useTemporyQueue()) {
executor = new TemporaryQueueExecutor(session, sendQueue);
} else {
producer = session.createSender(sendQueue);
executor = new FixedQueueExecutor(producer, getTimeoutAsInt(), isUseReqMsgIdAsCorrelId());
}
In your screen shot JNDI name Receive Queue is not defined, thus it uses temporary queue, and does not use the timeout. Should or should not timeout be supported in this case, that is best discussed in JMeter forum.
Alternately if you want to see request times in percentiles/buckets please read this stack overflow Q/A -
I want to find out the percentage of HTTPS requests that take less than a second in JMeter