Studying fluctuations in time series - algorithm

I have some time series to analyze.
Given the domain the data is coming from -
Time series is supposed to have some fluctuations.
A regular periodicity might not be present at all in some cases. There might be some irregular periods of droughts (no fluctuations happening at all)
These fluctuations may be a part of an overall down/up trend.
I am trying to avoid modeling techniques like ARIMA etc. since I am only interested in knowing the following features for each one of them:
Average amplitude of fluctuations.
Average time period of fluctuations (how long it takes for values to rise and fall back to almost same level?).
Average frequency of fluctuations. After what period do these fluctuations occur?
Following is what some of the data looks like:
The approach I am taking is to -
First build some sort of annotation on the time-axis (e.g. flat, increasing, decreasing)
Then based on these tags study further the patterns to answer the above questions. In case there is an overall up/down trend in the series I am de-trending it by removing mean/linear-fit, etc.
I was wondering if there is any other approach or technique to answer the above mentioned questions for my data.

Take a look at Singular Spectrum Analysis (ssa) which has an R package Rssa behind it. We did some research where SSA was compared with established auto-regressive algorithms and SSA did quite well.
http://axibase.com/environmental-monitoring-using-big-data/

Related

Mahout - Naive Bayes Model Very Slow

I have about 44 Million training examples across about 6200 categories.
After training, the model comes out to be ~ 450MB
And while testing, with 5 parallel mappers (each given enough RAM), the classification proceeds at a rate of ~ 4 items a second which is WAY too slow.
How can speed things up?
One way i can think of is to reduce the word corpus, but i fear losing accuracy. I had maxDFPercent set to 80.
Another way i thought of was to run the items through a clustering algorithm and empirically maximize the number of clusters while keeping the items within each category restricted to a single cluster. This would allow me to build separate models for each cluster and thereby (possibly) decrease training and testing time.
Any other thoughts?
Edit :
After some of the answers given below, i started contemplating doing some form of down-sampling by running a clustering algorithm, identifying groups of items that are "highly" close to one another and then taking a union of a few samples from those "highly" close groups and other samples that are not that tightly close to one another.
I also started thinking about using some form of data normalization techniques that involve incorporating edit distances while using n-grams (http://lucene.apache.org/core/4_1_0/suggest/org/apache/lucene/search/spell/NGramDistance.html)
I'm also considering using the hadoop streaming api to leverage some of the ML libraries available in Python from listed here http://pydata.org/downloads/ , and here http://scikit-learn.org/stable/modules/svm.html#svm (These I think use liblinear mentioned in one of the answers below)
Prune stopwords and otherwise useless words (too low support etc.) as early as possible.
Depending on how you use clustering, it may actually make in particular the test phase even more expensive.
Try other tools than Mahout. I found Mahout to be really slow in comparison. It seems that it somewhere comes at a really high overhead.
Using less training exampes would be an option. You will see that after a specific amount of training examples you classification accuracy on unseen examples won't increase. I would recommend to try to train with 100, 500, 1000, 5000, ... examples per category and using 20% for cross validating the accuracy. When it doesn't increase anymore, you have found the amount of data you need which may be a lot less then you use now.
Another approach would be to use another library. For document-classification i find liblinear very very very fast. It's may be more low-level then mahout.
"but i fear losing accuracy" Have you actually tried using less features or less documents? You may not lose as much accuracy as you fear. There may be a few things at play here:
Such a high number of documents are not likely to be from the same time period. Over time, the content of a stream will inevitably drift and words indicative of one class may become indicative of another. In a way, adding data from this year to a classifier trained on last year's data is just confusing it. You may get much better performance if you train on less data.
The majority of features are not helpful, as #Anony-Mousse said already. You might want to perform some form of feature selection before you train your classifier. This will also speed up training. I've had good results in the past with mutual information.
I've previously trained classifiers for a data set of similar scale and found the system worked best with only 200k features, and using any more than 10% of the data for training did not improve accuracy at all.
PS Could you tell us a bit more about your problem and data set?
Edit after question was updated:
Clustering is a good way of selecting representative documents, but it will take a long time. You will also have to re-run it periodically as new data come in.
I don't think edit distance is the way to go. Typical algorithms are quadratic in the length of the input strings, and you might have to run for each pair of words in the corpus. That's a long time!
I would again suggest that you give random sampling a shot. You say you are concerned about accuracy, but are using Naive Bayes. If you wanted the best model money can buy, you would go for a non-linear SVM, and you probably wouldn't live to see it finish training. People resort to classifiers with known issues (there's a reason Naive Bayes is called Naive) because they are much faster than the alternative but performance will often be just a tiny bit worse. Let me give you an example from my experience:
RBF SVM- 85% F1 score - training time ~ month
Linear SVM- 83% F1 score - training time ~ day
Naive Bayes- 82% F1 score - training time ~ day
You find the same thing in the literature: paper . Out of curiosity, what kind of accuracy are you getting?

Simple trend analysis algorithm

OK, so you have some historic data in the form of [say] an array of integers. This, for example, could represent free-space on a server HDD over a two-year period, with each array element representing a daily sample.
The data (free-space in this example) has a downward trend, but also has periodic positive spikes where files have been removed/compressed, Etc.
How would you go about identifying the overall trend for the two-year period, i.e.: iron out the peaks and troughs in the data?
Now, I did A-level statistics and then a stats module in my degree, but I've slept over 7,000 times since then, and well, it's leaked out of my brain.
I'm not after a bit of code as such, more of a description of how you'd approach this problem...
Thanks in advance!
You'll get many different answers, and the one you choose really depends on more specific requirements you may have. Examples:
Low-pass filter, or any other spectral analysis technique, and use the low frequencies to determine trend.
Linear regression (time/value) to find "r" (the correlation between time and the value).
Moving average of last "n" samples. If "n" is large enough this is my favorite as many times this is sufficient, and is very easy to code. It's a sort of approximation to #1 above.
I'm sure they'll be others.
If I was doing this to produce a line through points for me to look at, I would probably use a some variant of Loess, described at http://en.wikipedia.org/wiki/Local_regression, http://stat.ethz.ch/R-manual and /R-patched/library/stats/html/loess.html. Basically, you find the smoothed value at any particular point by doing a weighted regression on the data points near that point, with the nearest points given the most weight.

Simulation Performance Metrics

This is a semi-broad question, but it's one that I feel on some level is answerable or at least approachable.
I've spent the last month or so making a fairly extensive simulation. In order to protect the interests of my employer, I won't state specifically what it does... but an analogy of what it does may be explained by... a high school dance.
A girl or boy enters the dance floor, and based on the selection of free dance partners, an optimal choice is made. After a period of time, two dancers finish dancing and are now free for a new partnership.
I've been making partner selection algorithms designed to maximize average match outcome while not sacrificing wait time for a partner too much.
I want a way to gauge / compare versions of my algorithms in order to make a selection of the optimal algorithm for any situation. This is difficult however since the inputs of my simulation are extremely large matrices of input parameters (2-5 per dancer), and the simulation takes several minutes to run (a fact that makes it difficult to test a large number of simulation inputs). I have a few output metrics, but linking them to the large number of inputs is extremely hard. I'm also interested in finding which algorithms completely fail under certain input conditions...
Any pro tips / online resources which might help me in defining input constraints / output variables which might give clarity on an optimal algorithm?
I might not understand what you exactly want. But here is my suggestion. Let me know if my solution is inaccurate/irrelevant and I will edit/delete accordingly.
Assume you have a certain metric (say compatibility of the pairs or waiting time). If you just have the average or total number for this metric over all the users, it is kind of useless. Instead you might want to find the distribution of of this metric over all users. If nothing, you should always keep track of the variance. Once you have the distribution, you can calculate a probability that particular algorithm A is better than B for a certain metric.
If you do not have the distribution of the metric within an experiment, you can always run multiple experiments, and the number of experiments you need to run depends on the variance of the metric and difference between two algorithms.

Multiple parameter optimization with a stochastic element

I am looking for a method to find the best parameters for a simulation. It's about break-shots in billiards / pool. A shot is defined by 7 parameters, I can simulate the shot and then rate the outcome and I would like to compute the best parameters.
I have found the following link here:
Multiple parameter optimization with lots of local minima
suggesting 4 kinds of algorithms. In the pool simulator I am using, the shots are altered by a little random value each time it is simulated. If I simulate the same shot twice, the outcome will be different. So I am looking for an algorithm like the ones in the link above, only with the addition of a stochastical element, optimizing for the 7 parameters that will on average yield the best parameters, i.e. a break shot that most likely will be a success. My initial idea was simulating the shot 100 or 1000 times and just take the average as rating for the algorithms above, but I still feel like there is a better way. Does anyone have an idea?
The 7 parameters are continuous but within different ranges (one from 0 to 10, another from 0.0 to 0.028575 and so on).
Thank you
At least for some of the algorithms, simulating the same shot repeatedly might not be neccessary. As long as your alternatives have some form of momentum, like in the swarm simulation approach, you can let that be affected by the outcome of each individual simulation. In that case, a single unlucky simulation would slow the movement in parameter space only slightly, whereas a serious loss of quality should be enough to stop and reverse the movement. Thos algorithms which don't use momentum might be tweaked to have momentum. If not, then repeated simulation seems the best approach. Unless you can get your hands on the internals of the simulator, and rate the shot as a whole without having to simulate it over and over again.
You can use the algorithms you mentioned in your non-deterministic scenario with independent stochastic runs. Your idea with repeated simulations is good, you can read more about how many repeats you might have to consider for your simulations (unfortunately, there is no trivial answer). If you are not so much into maths, and the runs go fast, do 1.000 repeats, then 10.000 repeats, and see if the results differ largely. If yes, you have to collect more samples, if not, you are probably on the safe side (the central limit theorem states that the results converge).
Further, do not just consider the average! Make sure to look into the standard deviation for each algorithm's results; you might want to use box plots to compare their quartiles. If you rely on the average only, you could pick an algorithm that produces very varying results, sometimes excellent, sometimes terrible in performance.
I don't know what language you are using, but if you use Java, I am maintaining a tool that could simplify your "monte carlo" style experiments.

Modeling distribution of performance measurements

How would you mathematically model the distribution of repeated real life performance measurements - "Real life" meaning you are not just looping over the code in question, but it is just a short snippet within a large application running in a typical user scenario?
My experience shows that you usually have a peak around the average execution time that can be modeled adequately with a Gaussian distribution. In addition, there's a "long tail" containing outliers - often with a multiple of the average time. (The behavior is understandable considering the factors contributing to first execution penalty).
My goal is to model aggregate values that reasonably reflect this, and can be calculated from aggregate values (like for the Gaussian, calculate mu and sigma from N, sum of values and sum of squares). In other terms, number of repetitions is unlimited, but memory and calculation requirements should be minimized.
A normal Gaussian distribution can't model the long tail appropriately and will have the average biased strongly even by a very small percentage of outliers.
I am looking for ideas, especially if this has been attempted/analysed before. I've checked various distributions models, and I think I could work out something, but my statistics is rusty and I might end up with an overblown solution. Oh, a complete shrink-wrapped solution would be fine, too ;)
Other aspects / ideas: Sometimes you get "two humps" distributions, which would be acceptable in my scenario with a single mu/sigma covering both, but ideally would be identified separately.
Extrapolating this, another approach would be a "floating probability density calculation" that uses only a limited buffer and adjusts automatically to the range (due to the long tail, bins may not be spaced evenly) - haven't found anything, but with some assumptions about the distribution it should be possible in principle.
Why (since it was asked) -
For a complex process we need to make guarantees such as "only 0.1% of runs exceed a limit of 3 seconds, and the average processing time is 2.8 seconds". The performance of an isolated piece of code can be very different from a normal run-time environment involving varying levels of disk and network access, background services, scheduled events that occur within a day, etc.
This can be solved trivially by accumulating all data. However, to accumulate this data in production, the data produced needs to be limited. For analysis of isolated pieces of code, a gaussian deviation plus first run penalty is ok. That doesn't work anymore for the distributions found above.
[edit] I've already got very good answers (and finally - maybe - some time to work on this). I'm starting a bounty to look for more input / ideas.
Often when you have a random value that can only be positive, a log-normal distribution is a good way to model it. That is, you take the log of each measurement, and assume that is normally distributed.
If you want, you can consider that to have multiple humps, i.e. to be the sum of two normals having different mean. Those are a bit tricky to estimate the parameters of, because you may have to estimate, for each measurement, its probability of belonging to each hump. That may be more than you want to bother with.
Log-normal distributions are very convenient and well-behaved. For example, you don't deal with its average, you deal with it's geometric mean, which is the same as its median.
BTW, in pharmacometric modeling, log-normal distributions are ubiquitous, modeling such things as blood volume, absorption and elimination rates, body mass, etc.
ADDED: If you want what you call a floating distribution, that's called an empirical or non-parametric distribution. To model that, typically you save the measurements in a sorted array. Then it's easy to pick off the percentiles. For example the median is the "middle number". If you have too many measurements to save, you can go to some kind of binning after you have enough measurements to get the general shape.
ADDED: There's an easy way to tell if a distribution is normal (or log-normal). Take the logs of the measurements and put them in a sorted array. Then generate a QQ plot (quantile-quantile). To do that, generate as many normal random numbers as you have samples, and sort them. Then just plot the points, where X is the normal distribution point, and Y is the log-sample point. The results should be a straight line. (A really simple way to generate a normal random number is to just add together 12 uniform random numbers in the range +/- 0.5.)
The problem you describe is called "Distribution Fitting" and has nothing to do with performance measurements, i.e. this is generic problem of fitting suitable distribution to any gathered/measured data sample.
The standard process is something like that:
Guess the best distribution.
Run hypothesis tests to check how well it describes gathered data.
Repeat 1-3 if not well enough.
You can find interesting article describing how this can be done with open-source R software system here. I think especially useful to you may be function fitdistr.
In addition to already given answers consider Empirical Distributions. I have successful experience in using empirical distributions for performance analysis of several distributed systems. The idea is very straightforward. You need to build histogram of performance measurements. Measurements should be discretized with given accuracy. When you have histogram you could do several useful things:
calculate the probability of any given value (you are bound by accuracy only);
build PDF and CDF functions for the performance measurements;
generate sequence of response times according to a distribution. This one is very useful for performance modeling.
Try whit gamma distribution http://en.wikipedia.org/wiki/Gamma_distribution
From wikipedia
The gamma distribution is frequently a probability model for waiting times; for instance, in life testing, the waiting time until death is a random variable that is frequently modeled with a gamma distribution.
The standard for randomized Arrival times for performance modelling is either Exponential distribution or Poisson distribution (which is just the distribution of multiple Exponential distributions added together).
Not exactly answering your question, but relevant still: Mor Harchol-Balter did a very nice analysis of the size of jobs submitted to a scheduler, The effect of heavy-tailed job size distributions on computer systems design (1999). She found that the size of jobs submitted to her distributed task assignment system took a power-law distribution, which meant that certain pieces of conventional wisdom she had assumed in the construction of her task assignment system, most importantly that the jobs should be well load balanced, had awful consequences for submitters of jobs. She's done good follor-up work on this issue.
The broader point is, you need to ask such questions as:
What happens if reasonable-seeming assumptions about the distribution of performance, such as that they take a normal distribution, break down?
Are the data sets I'm looking at really representative of the problem I'm trying to solve?

Resources