How to dump/list all kernel symbols with addresses from Linux kernel module? - linux-kernel

In a kernel module, how to list all the kernel symbols with their addresses?
The kernel should not be re-compiled.
I know "cat /proc/kallsyms" in an interface, but how to get them directly from kernel data structures, using functions like kallsyms_lookup_name.

Example
Working module code:
#include <linux/module.h>
#include <linux/kallsyms.h>
static int prsyms_print_symbol(void *data, const char *namebuf,
struct module *module, unsigned long address)
{
pr_info("### %lx\t%s\n", address, namebuf);
return 0;
}
static int __init prsyms_init(void)
{
kallsyms_on_each_symbol(prsyms_print_symbol, NULL);
return 0;
}
static void __exit prsyms_exit(void)
{
}
module_init(prsyms_init);
module_exit(prsyms_exit);
MODULE_AUTHOR("Sam Protsenko");
MODULE_DESCRIPTION("Module for printing all kernel symbols");
MODULE_LICENSE("GPL");
Explanation
kernel/kallsyms.c implements /proc/kallsyms. Some of its functions are available for external usage. They are exported via EXPORT_SYMBOL_GPL() macro. Yes, your module should have GPL license to use it. Those functions are:
kallsyms_lookup_name()
kallsyms_on_each_symbol()
sprint_symbol()
sprint_symbol_no_offset()
To use those functions, include <linux/kallsyms.h> in your module. It should be mentioned that CONFIG_KALLSYMS must be enabled (=y) in your kernel configuration.
To print all the symbols you obviously have to use kallsyms_on_each_symbol() function. The documentation says next about it:
/* Call a function on each kallsyms symbol in the core kernel */
int kallsyms_on_each_symbol(int (*fn)(void *, const char *, struct module *,
unsigned long), void *data);
where fn is your callback function that should be called for each symbol found, and data is a pointer to some private data of yours (will be passed as first parameter to your callback function).
Callback function must have next signature:
int fn(void *data, const char *namebuf, struct module *module,
unsigned long address);
This function will be called for each kernel symbol with next parameters:
data: will contain pointer to your private data you passed as last argument to kallsyms_on_each_symbol()
namebuf: will contain name of current kernel symbol
module: will always be NULL, just ignore that
address: will contain address of current kernel symbol
Return value should always be 0 (on non-zero return value the iteration through symbols will be interrupted).
Supplemental
Answering the questions in your comment.
Also, is there a way to output the size of each function?
Yes, you can use sprint_symbol() function I mentioned above to do that. It will print symbol information in next format:
symbol_name+offset/size [module_name]
Example:
psmouse_poll+0x0/0x30 [psmouse]
Module name part can be omitted if symbol is built-in.
I tried the module and see the result with "dmesg". But a lot of symbols are missing such as "futex_requeue". The output symbol number is about 10K, while it is 100K when I use "nm vmlinux".
This is most likely because your printk buffer size is insufficient to store all the output of module above.
Let's improve above module a bit, so it provides symbols information via miscdevice. Also let's add function size to the output, as requested. The code as follows:
#include <linux/device.h>
#include <linux/fs.h>
#include <linux/kallsyms.h>
#include <linux/module.h>
#include <linux/miscdevice.h>
#include <linux/sizes.h>
#include <linux/uaccess.h>
#include <linux/vmalloc.h>
#define DEVICE_NAME "prsyms2"
/* 16 MiB is sufficient to store information about approx. 200K symbols */
#define SYMBOLS_BUF_SIZE SZ_16M
struct symbols {
char *buf;
size_t pos;
};
static struct symbols symbols;
/* ---- misc char device definitions ---- */
static ssize_t prsyms2_read(struct file *file, char __user *buf, size_t count,
loff_t *pos)
{
return simple_read_from_buffer(buf, count, pos, symbols.buf,
symbols.pos);
}
static const struct file_operations prsyms2_fops = {
.owner = THIS_MODULE,
.read = prsyms2_read,
};
static struct miscdevice prsyms2_misc = {
.minor = MISC_DYNAMIC_MINOR,
.name = DEVICE_NAME,
.fops = &prsyms2_fops,
};
/* ---- module init/exit definitions ---- */
static int prsyms2_store_symbol(void *data, const char *namebuf,
struct module *module, unsigned long address)
{
struct symbols *s = data;
int count;
/* Append address of current symbol */
count = sprintf(s->buf + s->pos, "%lx\t", address);
s->pos += count;
/* Append name, offset, size and module name of current symbol */
count = sprint_symbol(s->buf + s->pos, address);
s->pos += count;
s->buf[s->pos++] = '\n';
if (s->pos >= SYMBOLS_BUF_SIZE)
return -ENOMEM;
return 0;
}
static int __init prsyms2_init(void)
{
int ret;
ret = misc_register(&prsyms2_misc);
if (ret)
return ret;
symbols.pos = 0;
symbols.buf = vmalloc(SYMBOLS_BUF_SIZE);
if (symbols.buf == NULL) {
ret = -ENOMEM;
goto err1;
}
dev_info(prsyms2_misc.this_device, "Populating symbols buffer...\n");
ret = kallsyms_on_each_symbol(prsyms2_store_symbol, &symbols);
if (ret != 0) {
ret = -EINVAL;
goto err2;
}
symbols.buf[symbols.pos] = '\0';
dev_info(prsyms2_misc.this_device, "Symbols buffer is ready!\n");
return 0;
err2:
vfree(symbols.buf);
err1:
misc_deregister(&prsyms2_misc);
return ret;
}
static void __exit prsyms2_exit(void)
{
vfree(symbols.buf);
misc_deregister(&prsyms2_misc);
}
module_init(prsyms2_init);
module_exit(prsyms2_exit);
MODULE_AUTHOR("Sam Protsenko");
MODULE_DESCRIPTION("Module for printing all kernel symbols");
MODULE_LICENSE("GPL");
And here is how to use it:
$ sudo insmod prsyms2.ko
$ sudo cat /dev/prsyms2 >symbols.txt
$ wc -l symbols.txt
$ sudo rmmod prsyms2
File symbols.txt will contain all kernel symbols (both built-in and from loaded modules) in next format:
ffffffffc01dc0d0 psmouse_poll+0x0/0x30 [psmouse]
It seems that I can use kallsyms_lookup_name() to find the address of the function, can then use a function pointer to call the function?
Yes, you can. If I recall correctly, it's called reflection. Below is an example how to do so:
typedef int (*custom_print)(const char *fmt, ...);
custom_print my_print;
my_print = (custom_print)kallsyms_lookup_name("printk");
if (my_print == 0) {
pr_err("Unable to find printk\n");
return -EINVAL;
}
my_print(KERN_INFO "### printk found!\n");

Related

How to trigger fops poll function from the kernel driver

I am working on a kernel driver which logs some spi data in a virtual file using debugfs.
My main goal is to be able to "listen" for incomming data from userspace using for example $ tail -f /sys/kernel/debug/spi-logs which is using select to wait for new data on the debugfs file.
I've implemented the fops poll function in the driver and when I am trying to get the data from the userspace, the poll function is never called even though there is new data available in the kernel to be read.
I assume that the poll function never gets called because the debugfs file never gets actually written.
My question is, is there a way to trigger the poll function from the kernel space when new data is available?
EDIT: Added an example
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/debugfs.h>
#include <linux/wait.h>
#include <linux/poll.h>
struct module_ctx {
struct wait_queue_head wq;
};
struct module_ctx module_ctx;
static ssize_t debugfs_read(struct file *filp, char __user *buff, size_t count, loff_t *off)
{
// simulate no data left to read for now
return 0;
}
static __poll_t debugfs_poll(struct file *filp, struct poll_table_struct *wait) {
struct module_ctx *module_hdl;
__poll_t mask = 0;
module_hdl = filp->f_path.dentry->d_inode->i_private;
pr_info("CALLED!!!");
poll_wait(filp, &module_hdl->wq, wait);
if (is_data_available_from_an_external_ring_buffer())
mask |= POLLIN | POLLRDNORM;
return mask;
}
loff_t debugfs_llseek(struct file *filp, loff_t offset, int orig)
{
loff_t pos = filp->f_pos;
switch (orig) {
case SEEK_SET:
pos = offset;
break;
case SEEK_CUR:
pos += offset;
break;
case SEEK_END:
pos = 0; /* Going to the end => to the beginning */
break;
default:
return -EINVAL;
}
filp->f_pos = pos;
return pos;
}
static const struct file_operations debugfs_fops = {
.owner = THIS_MODULE,
.read = debugfs_read,
.poll = debugfs_poll,
.llseek = debugfs_llseek,
};
static int __init rb_example_init(void)
{
struct dentry *file;
init_waitqueue_head(&module_ctx.wq);
file = debugfs_create_file("spi_logs", 0666, NULL, &module_ctx,
&debugfs_fops);
if (!file) {
pr_err("qm35: failed to create /sys/kernel/debug/spi_logs\n");
return 1;
}
return 0;
}
static void __exit
rb_example_exit(void) {
}
module_init(rb_example_init);
module_exit(rb_example_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mihai Pop");
MODULE_DESCRIPTION("A simple example Linux module.");
MODULE_VERSION("0.01");
Using tail -f /sys/kernel/debug/spi_logs, the poll function never gets called
Semantic of poll is to return whenever encoded operations (read and/or write) on a file would return without block. In case of read operation, "block" means:
If read is called in nonblocking mode (field f_flags of the struct file has flag O_NONBLOCK set), then it returns -EAGAIN.
If read is called in blocking mode, then it puts a thread into the waiting state.
As you can see, your read function doesn't follow that convention and returns 0, which means EOF. So the caller has no reason to call poll after that.
Semantic of -f option for tail:
... not stop when end of file is reached, but rather to wait ...
is about the situation, when read returns 0, but the program needs to wait.
As you can see, poll semantic is not suitable for such wait. Instead, such programs use inotify mechanism.

What is "WriteCallback" in C++ for Arduino?

In a library I use, there is a WriteCallback type. I don't know what is it, I cannot find it define anywhere ?
Could someone explain me what is WriteCallback ? Is it a native function or type in c++ ?
.h file
#if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h"
#else
#include "WConstants.h"
#endif
typedef void (*WriteCallback) (const byte what); // send a byte to serial port
typedef int (*AvailableCallback) (); // return number of bytes available
typedef int (*ReadCallback) (); // read a byte from serial port
void sendMsg (WriteCallback fSend,
const byte * data, const byte length);
byte recvMsg (AvailableCallback fAvailable, ReadCallback fRead,
byte * data, const byte length,
unsigned long timeout = 500);
typedef void (*WriteCallback) (const byte what); defines a function pointer type which takes a const byte and returns a void. It is used to easily use function pointers. Just as uint8_t is defined using a typedef as: typedef unsigned char uint8_t; to be used as a easy shorthand for a 8bit width variable.
A example usage would be:
typedef void (*WriteCallback) (const byte what);
void sendMsg (WriteCallback fSend, const byte * data, const byte length);
void callbackfunction(const byte what) { /*do stuff*/ }
With a function call:
sendMsg(&callbackfunction,0);
Internally the sendMsg would call the function pointed to by the fSend variable which in this case is callbackfunction.
The usage of this typedef makes it possbile to easily define pointers to functions and as per example switch the used write callback.
Writecallback funcPtr;
void switchCallback(){
static int tmp = 0;
if(tmp)
funcPtr = &writecallbackA;
else
funcPtr = &writecallbackB;
tmp = (tmp) ? 0 : 1;
}
The above usage is more easily readable and comprehendeable than:
void (*fun_ptr) (const byte what);

gethostbyname fails on OSX (Yosemite 10.10.4)

"gethostbyname" returns a pointer to this structure:
struct hostent {
char *h_name; /* official name of host */
char **h_aliases; /* alias list */
int h_addrtype; /* host address type */
int h_length; /* length of address */
char **h_addr_list; /* list of addresses from name server */
};
When I try to use it, h_name points to a valid string: the partial name I supply is expanded to the correct fully qualified host name.
The value of h_addr_list is 4
h_name is valid
h_aliasis is a valid pointer to a null pointer
h_addrtype is 2 (AF_INET, IPV4)
h_length is 0 (should be 4, or perhaps a multiple of 4)
h_addr_list is 4, fails when dereferenced.
I'm running a 32 bit process (MS Office), the h_name pointer is a valid 32 bit pointer. WTF am I doing wrong? Does gethostbyname work for other people, or on other versions of OSX?
I was able to run this small example successfully on 10.10.4 (taken from paulschreiber.com)
#include <netdb.h>
#include <stdio.h>
#include <stdlib.h>
#include <arpa/inet.h>
int main(int argc, char **argv) {
if (argc < 2) {
printf("Usage: %s hostname", argv[0]);
exit(-1);
}
struct hostent *hp = gethostbyname(argv[1]);
if (hp == NULL) {
printf("gethostbyname() failed\n");
} else {
printf("%s = ", hp->h_name);
unsigned int i=0;
while ( hp -> h_addr_list[i] != NULL) {
printf( "%s ", inet_ntoa( *( struct in_addr*)( hp -> h_addr_list[i])));
i++;
}
printf("\n");
}
}
However, it did segfault on 64-bit without #include <arpa/inet.h: without that, no prototype for inet_ntoa is found, the return type is assumed to be an int (when it's actually a char *), and on 64-bit this truncates the pointer and causes a segfault.

Using an old device file for char device driver

I have two questions as I'm trying device drivers as a beginner.
I created one module , loaded it, it dynamically took major number 251 say. Number of minor devices is kept 1 only i.e minor number 0. For testing , I tried echo and cat on the device file (created using mknod) and it works as expected. Now if I unload the module but don't remove /dev entry and again load the module with same major number and try writing/reading to same device file which was used previously, kernel crashes. I know we shouldn't do this but just want to understand what happens in this scenario which causes this crash. I think something that VFS does.
When I do cat on device file, the read keeps on happening indefinitely. why? To stop that needed to use offset manipulation. This looks to be because buffer length is coming as 32768 as default to read?
EDIT: further in this I added one ioctl function as below, then I'm getting error regarding the storage class of init and cleanup function, which work well if no ioctl is defined. Not getting the link between ioctl and the init/cleanup functions' storage class. Updated code is posted. Errors are below:
/home/diwakar/Documents/my_modules/first_test_module/flowTest.c:95:12: error: invalid storage class for function ‘flow_init’
/home/diwakar/Documents/my_modules/first_test_module/flowTest.c: In function ‘flow_init’:
/home/diwakar/Documents/my_modules/first_test_module/flowTest.c:98:2: warning: ISO C90 forbids mixed declarations and code [-Wdeclaration-after-statement]
/home/diwakar/Documents/my_modules/first_test_module/flowTest.c: In function ‘flow_ioctl’:
/home/diwakar/Documents/my_modules/first_test_module/flowTest.c:112:13: error: invalid storage class for function ‘flow_terminate’
/home/diwakar/Documents/my_modules/first_test_module/flowTest.c:119:1: error: invalid storage class for function ‘__inittest’
/home/diwakar/Documents/my_modules/first_test_module/flowTest.c:119:1: warning: ‘alias’ attribute ignored [-Wattributes]
/home/diwakar/Documents/my_modules/first_test_module/flowTest.c:120:1: error: invalid storage class for function ‘__exittest’
/home/diwakar/Documents/my_modules/first_test_module/flowTest.c:120:1: warning: ISO C90 forbids mixed declarations and code [-Wdeclaration-after-statement]
/home/diwakar/Documents/my_modules/first_test_module/flowTest.c:120:1: warning: ‘alias’ attribute ignored [-Wattributes]
/home/diwakar/Documents/my_modules/first_test_module/flowTest.c:120:1: error: expected declaration or statement at end of input
/home/diwakar/Documents/my_modules/first_test_module/flowTest.c: At top level:
/home/diwakar/Documents/my_modules/first_test_module/flowTest.c:73:13: warning: ‘flow_ioctl’ defined but not used [-Wunused-function]
Below is the code:
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <asm/uaccess.h>
#include <linux/cdev.h>
#include <linux/kdev_t.h>
#include <linux/errno.h>
#include <linux/ioctl.h>
#define SUCCESS 0
#define BUF_LEN 80
#define FLOWTEST_MAGIC 'f'
#define FLOW_QUERY _IOR(FLOWTEST_MAGIC,1,int)
MODULE_LICENSE("GPL");
int minor_num=0,i;
int num_devices=1;
int fopen=0,counter=0,ioctl_test;
static struct cdev ms_flow_cd;
static char c;
///// Open , close and rest of the things
static int flow_open(struct inode *f_inode, struct file *f_file)
{
printk(KERN_ALERT "flowtest device: OPEN\n");
return SUCCESS;
}
static ssize_t flow_read(struct file *f_file, char __user *buf, size_t
len, loff_t *off)
{
printk(KERN_INFO "flowtest Driver: READ()\nlength len=%d, Offset = %d\n",len,*off);
/* Check to avoid the infinitely printing on screen. Return 1 on first read, and 0 on subsequent read */
if(*off==1)
return 0;
printk(KERN_INFO "Copying...\n");
copy_to_user(buf,&c,1);
printk(KERN_INFO "Copied : %s\n",buf);
*off = *off+1;
return 1; // Return 1 on first read
}
static ssize_t flow_write(struct file *f_file, const char __user *buf,
size_t len, loff_t *off)
{
printk(KERN_INFO "flowtest Driver: WRITE()\n");
if (copy_from_user(&c,buf+len-2,1) != 0)
return -EFAULT;
else
{
printk(KERN_INFO "Length len = %d\n\nLast character written is - %c\n",len,*(buf+len-2));
return len;
}
}
static int flow_close(struct inode *i, struct file *f)
{
printk(KERN_INFO "ms_tty Device: CLOSE()\n");
return 0;
}
///* ioctl commands *///
static long flow_ioctl (struct file *filp,unsigned int cmd, unsigned long arg)
{
switch(cmd) {
case FLOW_QUERY:
ioctl_test=51;
return ioctl_test;
default:
return -ENOTTY;
}
///////////////////File operations structure below/////////////////////////
struct file_operations flow_fops = {
.owner = THIS_MODULE,
.llseek = NULL,
.read = flow_read,
.write = flow_write,
.unlocked_ioctl = flow_ioctl,
.open = flow_open,
.release = flow_close
};
static int flow_init(void)
{
printk(KERN_ALERT "Here with flowTest module ... loading...\n");
int result=0;
dev_t dev=0;
result = alloc_chrdev_region(&dev, minor_num,
num_devices,"mod_flowtest"); // allocate major number dynamically.
i=MAJOR(dev);
printk(KERN_ALERT "Major allocated = %d",i);
cdev_init(&ms_flow_cd,&flow_fops);
cdev_add(&ms_flow_cd,dev,1);
return 0;
}
static void flow_terminate(void)
{
dev_t devno=MKDEV(i,0); // wrap major/minor numbers in a dev_t structure , to pass for deassigning.
printk(KERN_ALERT "Going out... exiting...\n");
unregister_chrdev_region(devno,num_devices); //remove entry from the /proc/devices
}
module_init(flow_init);
module_exit(flow_terminate);
1- You're missing cdev_del() in your cleanup function. Which means the device stays registered, but the functions to handle it are unloaded, thus the crash. Also, cdev_add probably fails on the next load, but you don't know because you're not checking return values.
2- It looks ok... you modify offset, return the correct number of bytes, and then return 0 if offset is 1, which indicates EOF. But you should really check for *off >= 1.
EDIT-
The length passed into your read handler function comes all the way from user-land read(). If the user opens the device file and calls read(fd, buf, 32768);, that just means the user wants to read up to 32768 bytes of data. That length gets passed all the way to your read handler. If you don't have 32768 bytes of data to supply, you supply what you have, and return the length. Now, the user code isn't sure if that's the end of the file or not, so it tries for another 32768 read. You really have no data now, so you return 0, which tells the user code that it has hit EOF, so it stops.
In summary, what you're seeing as some sort of default value at the read handler is just the block size that the utility cat uses to read anything. If you want to see a different number show up at your read function, try using dd instead, since it lets you specify the block size.
dd if=/dev/flowtest of=/dev/null bs=512 count=1
In addition, this should read one block and stop, since you're specifying count=1. If you omit count=1, it will look more like cat, and try to read until EOF.
For 2, make sure you start your module as a char device when using mknod.
mknod /dev/you_device c major_number minor_number

Getting process base address in Mac OSX

I'm trying to read the memory of a process using task_for_pid / vm_read.
uint32_t sz;
pointer_t buf;
task_t task;
pid_t pid = 9484;
kern_return_t error = task_for_pid(current_task(), pid, &task);
vm_read(task, 0x10e448000, 2048, &buf, &sz);
In this case I read the first 2048 bytes.
This works when I know the base address of the process (which I can find out using gdb "info shared" - in this case 0x10e448000), but how do I find out the base address at runtime (without looking at it with gdb)?
Answering my own question. I was able to get the base address using mach_vm_region_recurse like below. The offset lands in vmoffset. If there is another way that is more "right" - don't hesitate to comment!
#include <stdio.h>
#include <mach/mach_init.h>
#include <sys/sysctl.h>
#include <mach/mach_vm.h>
...
mach_port_name_t task;
vm_map_offset_t vmoffset;
vm_map_size_t vmsize;
uint32_t nesting_depth = 0;
struct vm_region_submap_info_64 vbr;
mach_msg_type_number_t vbrcount = 16;
kern_return_t kr;
if ((kr = mach_vm_region_recurse(task, &vmoffset, &vmsize,
&nesting_depth,
(vm_region_recurse_info_t)&vbr,
&vbrcount)) != KERN_SUCCESS)
{
printf("FAIL");
}
Since you're calling current_task(), I assume you're aiming at your own process at runtime. So the base address you mentioned should be the dynamic base address, i.e. static base address + image slide caused by ASLR, right? Based on this assumption, you can use "Section and Segment Accessors" to get the static base address of your process, and then use the dyld functions to get the image slide. Here's a snippet:
#import <Foundation/Foundation.h>
#include </usr/include/mach-o/getsect.h>
#include <stdio.h>
#include </usr/include/mach-o/dyld.h>
#include <string.h>
uint64_t StaticBaseAddress(void)
{
const struct segment_command_64* command = getsegbyname("__TEXT");
uint64_t addr = command->vmaddr;
return addr;
}
intptr_t ImageSlide(void)
{
char path[1024];
uint32_t size = sizeof(path);
if (_NSGetExecutablePath(path, &size) != 0) return -1;
for (uint32_t i = 0; i < _dyld_image_count(); i++)
{
if (strcmp(_dyld_get_image_name(i), path) == 0)
return _dyld_get_image_vmaddr_slide(i);
}
return 0;
}
uint64_t DynamicBaseAddress(void)
{
return StaticBaseAddress() + ImageSlide();
}
int main (int argc, const char *argv[])
{
printf("dynamic base address (%0llx) = static base address (%0llx) + image slide (%0lx)\n", DynamicBaseAddress(), StaticBaseAddress(), ImageSlide());
while (1) {}; // you can attach to this process via gdb/lldb to view the base address now :)
return 0;
}
Hope it helps!

Resources