NoSQL for multi-site archival logging with full-text search - elasticsearch

I'm looking at building a somewhat complex log handling system to replace an old ad-hoc setup and could use a bit of advice. I'm pretty familiar with SQL databases and networking, but am very new to NoSQL stores, which seem to be the key to solving this mess. Note that we have a very good team, but a limited licensing budget, so free/open-source options are vastly preferred. (That said, availability of support if something goes pear-shaped would be nice.)
Requirements:
Archive (test) logs generated in the several GB/day range at multiple sites around the world.
Provide full text search of those logs at each site fairly instantaneous for debugging purposes.
Push that archived data back to a central location (though a replica at each site would be absolutely okay).
Provide for analytics of that data back at the central location.
Constraints:
The sites have fairly crap Internet connections for the moment (high latency and fairly low bandwidth). Much of the data is generated during the day and a good portion of the sync would have to lag behind and finish overnight each day.
Sites MUST be able to function if the WAN goes completely off-line.
Extras
The log data is (as usual) highly compressible. Any solution that compresses data transacting from node to node across the WAN is preferred.
Many log files are related to each other in multi-level hierarchies, and that relationship is very important and must be maintained!
Sites will generally not modify the same data or modify it again once stored. This is all archival for the most part.
We can either stream as the logs are generated or push blocks of logs. Streaming is preferred, as it would simplify things considerably.
Options I'm aware of:
Local MySQL and folder structure for logging and local configuration management.
This is what we have now and it's running, but not a long-term solution by any means.
Elasticsearch
I've read that ElasticSearch would probably be really good for this, though from what I understand that doesn't support multi-site.
Cassandra
This seems to have built-in multi-site support, but I'm not exactly familiar with the data-model. Is this a good choice for something like this, or will I hate myself if I give it a try?
CouchDB
This is a document store that seems(?) like a good match for log data, but again doesn't appear to have multi-site support.
Apache Kafka
I read up on this, but I haven't quite wrapped my head around it yet...
Questions:
Do any of these actually let you stream-append logs or are they best suited to dumping completed files in?
Is there a solution I'm missing that might be better?
Any recommendations on multi-site with some of the options that don't support multi-site by themselves?
Interesting links:
https://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying
http://blog.cloudera.com/blog/2015/07/deploying-apache-kafka-a-practical-faq/
https://www.elastic.co/blog/scaling_elasticsearch_across_data_centers_with_kafka
https://kafka.apache.org/08/ops.html
https://github.com/Stratio/cassandra-lucene-index

I may be a bit biased, since Couchbase is my employer, but this sounds like the kind of problem that XDCR (Cross Datacenter Replication) was made to solve.
You could stand up a cluster on multiple geographical sites (Couchbase calls these "datacenters") and then XDCR would automatically replicate (bidirectionally) the data between sites. If I understand your requirements correctly, this sounds like just what you need.

Related

Difference between Apache NiFi and StreamSets

I am planning to do a class project and was going through few technologies where I can automate or set the flow of data between systems and found that there are couple of them i.e. Apache NiFi and StreamSets ( to my knowledge ). What I couldn't understand is the difference between them and use-cases where they can be used? I am new to this and if anyone can explain me a bit would be highly appreciated. Thanks
Suraj,
Great question.
My response is as a member of the open source Apache NiFi project management committee and as someone who is passionate about the dataflow management domain.
I've been involved in the NiFi project since it was started in 2006. My knowledge of Streamsets is relatively limited so I'll let them speak for it as they have.
The key thing to understand is that NiFi was built to do one really important thing really well and that is 'Dataflow Management'. It's design is based on a concept called Flow Based Programming which you may want to read about and reference for your project 'https://en.wikipedia.org/wiki/Flow-based_programming'
There are already many systems which produce data such as sensors and others. There are many systems which focus on data processing like Apache Storm, Spark, Flink, and others. And finally there are many systems which store data like HDFS, relational databases, and so on. NiFi purely focuses on the task of connecting those systems and providing the user experience and core functions necessary to do that well.
What are some of those key functions and design choices made to make that effective:
1) Interactive command and control
The job of someone trying to connect systems is to be able to rapidly and efficiently interact with the constant streams of data they see. NiFi's UI allows you do just that as the data is flowing you can add features to operate on it, fork off copies of data to try new approaches, adjust current settings, see recent and historical stats, helpful in-line documentation and more. Almost all other systems by comparison have a model that is design and deploy oriented meaning you make a series of changes and then deploy them. That model is fine and can be intuitive but for the dataflow management job it means you don't get the interactive change by change feedback that is so vital to quickly build new flows or to safely and efficiently correct or improve handling of existing data streams.
2) Data Provenance
A very unique capability of NiFi is its ability to generate fine grained and powerful traceability details for where your data comes from, what is done to it, where its sent and when it is done in the flow. This is essential to effective dataflow management for a number of reasons but for someone in the early exploration phases and working a project the most important thing this gives you is awesome debugging flexibility. You can setup your flows and let things run and then use provenance to actually prove that it did exactly what you wanted. If something didn't happen as you expected you can fix the flow and replay the object then repeat. Really helpful.
3) Purpose built data repositories
NiFi's out of the box experience offers very powerful performance even on really modest hardware or virtual environments. This is because of the flowfile and content repository design which gives us the high performance but transactional semantics we want as data works its way through the flow. The flowfile repository is a simple write ahead log implementation and the content repository provides an immutable versioned content store. That in turn means we can 'copy' data by only ever adding a new pointer (not actually copying bytes) or we can transform data by simply reading from the original and writing out a new version. Again very efficient. Couple that with the provenance stuff I mentioned a moment ago and it just provides a really powerful platform. Another really key thing to understand here is that in the business of connecting systems you don't always get to dictate things like size of data involved. The NiFi API was built to honor that fact and so our API lets processors do things like receive, transform, and send data without ever having to load the full objects in memory. These repositories also mean that in most flows the majority of processors do not even touch the content at all. However, you can easily see from the NiFi UI precisely how many bytes are actually being read or written so again you get really helpful information in establishing and observing your flows. This design also means NiFi can support back-pressure and pressure-release naturally and these are really critical features for a dataflow management system.
It was mentioned previously by the folks from the Streamsets company that NiFi is file oriented. I'm not really sure what the difference is between a file or a record or a tuple or an object or a message in generic terms but the reality is when data is in the flow then it is 'a thing that needs to be managed and delivered'. That is what NiFi does. Whether you have lots of really high speed tiny things or you have large things and whether they came from a live audio stream off the Internet or they come from a file sitting on your harddrive it doesn't matter. Once it is in the flow it is time to manage and deliver it. That is what NiFi does.
It was also mentioned by the Streamsets company that NiFi is schemaless. It is accurate that NiFi does not force conversion of data from whatever it is originally to some special NiFi format nor do we have to reconvert it back to some format for follow-on delivery. It would be pretty unfortunate if we did that because what this means is that even the most trivial of cases would have problematic performance implications and luckily NiFi does not have that problem. Further had we gone that route then it would mean handling diverse datasets like media (images, video, audio, and more) would be difficult but we're on the right track and NiFi is used for things like that all the time.
Finally, as you continue with your project and if you find there are things you'd like to see improved or that you'd like to contribute code we'd love to have your help. From https://nifi.apache.org you can quickly find information on how to file tickets, submit patches, email the mailing list, and more.
Here are a couple of fun recent NiFi projects to checkout:
https://www.linkedin.com/pulse/nifi-ocr-using-apache-read-childrens-books-jeremy-dyer
https://twitter.com/KayLerch/status/721455415456882689
Good luck on the class project! If you have any questions the users#nifi.apache.org mailing list would love to help.
Thanks
Joe
Both Apache NiFi and StreamSets Data Collector are Apache-licensed open source tools.
Hortonworks does have a commercially supported variant called Hortonworks DataFlow (HDF).
While both have a lot of similarities such as a web-based ui, both are used for ingesting data there are a few key differences. They also both consist of a processors linked together to perform transformations, serialization, etc.
NiFi processors are file-oriented and schemaless. This means that a piece of data is represented by a FlowFile (this could be an actual file on disk, or some blob of data acquired elsewhere). Each processor is responsible for understanding the content of the data in order to operate on it. Thus if one processor understands format A and another only understands format B, you may need to perform a data format conversion in between those two processors.
NiFi can be run standalone, or as a cluster using its own built-in clustering system.
StreamSets Data Collector (SDC) however, takes a record based approach. What this means is that as data enters your pipeline it (whether its JSON, CSV, etc) it is parsed into a common format so that the responsibility of understanding the data format is no longer placed on each individual processor and any processor can be connected to any other processor.
SDC also runs standalone, and also a clustered mode, but it runs atop Spark on YARN/Mesos instead, leveraging existing cluster resources you may have.
NiFi has been around for about the last 10 years (but less than 2 years in the open source community).
StreamSets was released to the open source community a little bit later in 2015. It is vendor agnostic, and as far as Hadoop goes Hortonworks, Cloudera, and MapR are all supported.
Full Disclosure: I am an engineer who works on StreamSets.
They are very similar for data ingest scenarios.
Apache NIFI(HDP) is more mature and StreamSets is more lightweight.
Both are easy to use, both have strong capability. And StreamSets could easily
They have companies behind, Hortonworks and Cloudera.
Obviously there are more contributors working on NIFI than StreamSets, of course, NIFI have more enterprise deployments in production.
Two of the key differentiators between the two IMHO are.
Apache NiFi is a Top Level Apache project, meaning it has gone through the incubation process described here, http://incubator.apache.org/policy/process.html, and can accept contributions from developers around the world who follow the standard Apache process which ensures software quality. StreamSets, is Apache LICENSED, meaning anyone can reuse the code, etc. But the project is not managed as an Apache project. In fact, in order to even contribute to Streamsets, you are REQUIRED to sign a contract. https://streamsets.com/contributing/ . Contrast this with the Apache NiFi contributor guide, which wasn't written by a lawyer. https://cwiki.apache.org/confluence/display/NIFI/Contributor+Guide#ContributorGuide-HowtocontributetoApacheNiFi
StreamSets "runs atop Spark on YARN/Mesos instead, leveraging existing cluster resources you may have." which imposes a bit of restriction if you want to deploy your dataflows further toward the Edge where the Devices that are generating the data live. Apache MiniFi, a sub-project of NiFi can run on a single Raspberry Pi, while I am fairly confident that StreamSets cannot, as YARN or Mesos require more resources than a Raspberry Pi provides.
Disclosure: I am a Hortonworks employee

Using elasticsearch as central data repository

We are currently using elasticsearch to index and perform searches on about 10M documents. It works fine and we are happy with its performance. My colleague who initiated the use of elasticsearch is convinced that it can be used as the central data repository and other data systems (e.g. SQL Server, Hadoop/Hive) can have data pushed to them. I didn't have any arguments against it because my knowledge of both is too limited. However, I am concerned.
I do know that data in elasticsearch is stored in a manner that is efficient for text searching. Hadoop stores data just as a file system would but in a manner that is efficient to scale/replicate blocks over over multiple data nodes. Therefore, in my mind it seems more beneficial to use Hadoop (as it is more agnostic w.r.t its view on data) as a central data repository. Then push data from Hadoop to SQL, elasticsearch, etc...
I've read a few articles on Hadoop and elasticsearch use cases and it seems conventional to use Hadoop as the central data repository. However, I can't find anything that would suggest that elasticsearch wouldn't be a decent alternative.
Please Help!
As is the case with all database deployments, it really depends on your specific application.
Elasticsearch is a great open source search engine built on top of Apache Lucene. Its features and upgrades allow it to basically function just like a schema-less JSON datastore that can be accessed using both search-specific methods and regular database CRUD-like commands.
Nevertheless all the advantages Elasticsearch that brings, there are still some main disadvantages:
Security - Elasticsearch does not provide any authentication or access control functionality. It's supported since they have introduced shield.
Transactions - There is no support for transactions or processing on data manipulation. Well now data manipulation is handled with logstash.
Durability - ES is distributed and fairly stable but backups and durability are not as high priority as in other data stores.
Maturity of tools - ES is still relatively new and has not had time to develop mature client libraries and 3rd party tools which can make development much harder. We can consider that it's quite mature now
with a variety of connectors and tools around it like kibana. But it's still not suited for large computations - Commands for searching data are not suited to "large" scans of data and advanced computation on the db side.
Data Availability - ES makes data available in "near real-time" which may require additional considerations in your application (ie: comments page where a user adds new comment, refreshing the page might not actually show the new post because the index is still updating).
If you can deal with these issues then there's certainly no reason why you can't use Elasticsearch as your primary data store. It can actually lower complexity and improve performance by not having to duplicate your data but again this depends on your specific use case.
As always, weigh the benefits, do some experimentation and see what works best for you.
DISCLAIMER: This answer was written a while ago for the Elasticsearch 1.x series. These critics still somehow stand with the 2.x series. But Elastic is working on them, as the 2.x series comes with more mature tools, APIs and plugins per example, security wise, like Shield or even transport clients like Logstash or Beats, etc.
I'd highly discourage most users from using elasticsearch as your primary datastore. It will work great until your cluster melts down due to a network partition. Even settings such as minimum_master_nodes that the ES pros always set won't save you. See this excellent analysis by Aphyr with his Call Me Maybe series:
http://aphyr.com/posts/317-call-me-maybe-elasticsearch
eliasah, is right, it depends on your use case, but if your data (and job) is important to you, stay away.
Keep your golden record of your data stored in something really focused on persisting and sync your data out to search from there. It adds extra complexity and resources, but will result in a better nights rest :)
There are plenty of ways to go about this and if elasticsearch does everything you need, you can look into Kafka for persisting all the events going into a cluster which would allow replaying if things go wrong. I like this approach as it provides an async ingestion pipeline into elasticsearch that also does the persistence.

monetdb - anyone uses it in production?

I am very interested in using monetdb as a datamart, holding some huge data tables for querying and reporting
However, after some searching, I am unable to find any online posts / blogs regarding their use of Monetdb in any kind of production capacity.
Also, there seems to be little or next to no activity online regarding Monetdb.
Is this a bad sign for the future of Monetdb ?
I am very interested in using monetdb as a datamart, holding some huge data tables for >querying and reporting
My boss is also interested in MonetDB and I had the same reaction as you. No one is writing about MonetDB... is no one using MonetDB?
Regardless, I have been running performance tests on datasets of 500,000 to 1,000,000 records comparing MonetDB (column-oriented dbms) vs. MySQL (row-oriented dbms) and MonetDB beats MySQL in all regards- even in bulk inserts... which hypothetically it should not be as good at.
I can't speculate as to what all this means for MonetDB's future, but while it's around you might want to check it out because it performs well.
(I run Windows 7 and am communicating with each database using PHP)
I react a bit late to this post, but I'd like to add my voice to the ones using MonetDB in a production environment. We use it as the back-end of Spinque, a framework for designing complex search solutions. I've been using MonetDB for about 10 years, but only in the past 3 years in a production environment. Clearly, it has pros and cons and bugs like all other products, but it is being developed and improved very actively (I don't understand the low-activity signs that you refer to). If you want a DB that allows you to be ahead of the market standards, it's a good choice. Otherwise, just go for MS SQL ;)
I've been evaluating it lately for a client so I've had some time with it. My impression at this point is that it is just finishing "growing up" from being an academic experimental playground. It clearly has yet to be really discovered, though it does have some rough edges which might hinder certain applications.
As I write, I'm in the process of trying to load over 100 million rows into an instance (at 27mil presently). So far, it performs startlingly well in some areas (aggregates), but is oddly sluggish in others (most joins I've tried so far); that said, I've not yet run the recommended sampling process yet and I'm forcing it to live in just a single service with 32GB RAM.
I've found a few little glitches and one thing that caused a full service crash (obscure and reported), but I'm thinking that for many applications MonetDB could be just the ticket. Columnar storage (rather than NoSQL) seems to be the future IMO.
I'll update this if I find anything particularly interesting.
MonetDB is first and for all a research system, but has progressed far beyond the level of the average research prototype. It is the (only) relational column-store platform in open source that I know of that supports full SQL. I have used it myself at CWI in many research projects that are not core DB research, but do need advanced DB technology.
You can see on the user's mailing list that deployments happen in many different organisations. As Roberto Cornacchia stated in a different answer, it is the backend of all Spinque deployments and we are happy MonetDB users. MonetDB is also used at a variety of non-profit projects like open streetmap and open kvk.
More and more commercial parties deploy MonetDB for analytics. (They do not always like to advertise that their analyses depend on an open source system.) Recently, MonetDB Solutions has started to provide dedicated commercial support for these deployments.
We have been using MonetDB in our business. We analyse very large data sets with many millions of rows. Traditional methods of data warehousing on SQL databases became so slow. The problem we were facing was that the data was only going to get bigger! The only way forward was to go columnar.
The results have been amazing. When you have very few joins it is staggeringly quick. Even with joins on the data sets we are looking at it is still frightening how fast it comes back.
Having seen some of the commercial partnerships I think MonetDB is going to boom over the next few years. I believe some of the major BI suppliers are using Monet under their hood to perform the large data work.

Which schemaless datastores provide good performance?

I've recently written a web app that uses couchdb. I like couchdb and it suited the app - which has a lot of dynamic behaviour and simply pulls JSON directly from couchdb. Being able to upload images via a browser is nice and it's a snap to do tweaks to document data. The replication also has made deployment a breeze as the app is a couchapp, and all that's required to deploy is a replicate to the production server.
However for a new app I'm thinking off (think blog type thingy), I want good performance and it's one area I think couchdb is not strong in. The app will be predominantly read oriented (I'm estimating 90% reads to 10% writes).
Which datastores provide the best performance in a single server scenario? I'd be very interested to hear people's experiences in this...
I think MongoDB is beginning to look like the front runner performance wise for schemaless data stores.
We're currently in the processes of evaluating this for storing binary objects that can range from 10Kb to 50Mb and I've been very impressed with it's performance even on modest hardware.
If it is primarily read performance you are worried about why not just put a varnish proxy in front of couchdb? I use a couple of custom configurations in varnish to tell it not to actually query couchdb for cached objects despite couchdb specifying must-validate, then have a script with an active HTTP GET on _changes that uses the data from _changes in order to explicitly purge changed entries from varnish.
As a plus varnish lets you do URL rewriting, which I need. Most of the other solutions for it involve running something like apache or ngnix just to rewrite URLs for couchdb.

Best scaling methodologies for a highly traffic web application?

We have a new project for a web app that will display banners ads on websites (as a network) and our estimate is for it to handle 20 to 40 billion impressions a month.
Our current language is in ASP...but are moving to PHP. Does PHP 5 has its limit with scaling web application? Or, should I have our team invest in picking up JSP?
Or, is it a matter of the app server and/or DB? We plan to use Oracle 10g as the database.
No offense, but I strongly suspect you're vastly overestimating how many impressions you'll serve.
That said:
PHP or other languages used in the application tier really have little to do with scalability. Since the application tier delegates it's state to the database or equivalent, it's straightforward to add as much capacity as you need behind appropriate load balancing. Choice of language does influence per server efficiency and hence costs, but that's different than scalability.
It's scaling the state/data storage that gets more complicated.
For your app, you have three basic jobs:
what ad do we show?
serving the add
logging the impression
Each of these will require thought and likely different tools.
The second, serving the add, is most simple: use a CDN. If you actually serve the volume you claim, you should be able to negotiate favorable rates.
Deciding which ad to show is going to be very specific to your network. It may be as simple as reading a few rows from a database that give ad placements for a given property for a given calendar period. Or it may be complex contextual advertising like google. Assuming it's more the former, and that the database of placements is small, then this is the simple task of scaling database reads. You can use replication trees or alternately a caching layer like memcached.
The last will ultimately be the most difficult: how to scale the writes. A common approach would be to still use databases, but to adopt a sharding scaling strategy. More exotic options might be to use a key/value store supporting counter instructions, such as Redis, or a scalable OLAP database such as Vertica.
All of the above assumes that you're able to secure data center space and network provisioning capable of serving this load, which is not trivial at the numbers you're talking.
You do realize that 40 billion per month is roughly 15,500 per second, right?
Scaling isn't going to be your problem - infrastructure period is going to be your problem. No matter what technology stack you choose, you are going to need an enormous amount of hardware - as others have said in the form of a farm or cloud.
This question (and the entire subject) is a bit subjective. You can write a dog slow program in any language, and host it on anything.
I think your best bet is to see how your current implementation works under load. Maybe just a few tweaks will make things work for you - but changing your underlying framework seems a bit much.
That being said - your infrastructure team will also have to be involved as it seems you have some serious load requirements.
Good luck!
I think that it is not matter of language, but it can be be a matter of database speed as CPU processing speed. Have you considered a web farm? In this way you can have more than one machine serving your application. There are some ways to implement this solution. You can start with two server and add more server as the app request more processing volume.
In other point, Oracle 10g is a very good database server, in my humble opinion you only need a stand alone Oracle server to commit the volume of request. Remember that a SQL server is faster as the people request more or less the same things each time and it happens in web application if you plan your database schema carefully.
You also have to check all the Ad Server application solutions and there are a very good ones, just try Google with "Open Source AD servers".
PHP will be capable of serving your needs. However, as others have said, your first limits will be your network infrastructure.
But your second limits will be writing scalable code. You will need good abstraction and isolation so that resources can easily be added at any level. Things like a fast data-object mapper, multiple data caching mechanisms, separate configuration files, and so on.

Resources