Are cubes not a good geometry for environmental mapping? - three.js

I've been building out a scene with many cubes using this example from Three.js for reference: THREE.js Environmental Mapping
I've noticed that spheres, torus', etc. look great with this sort of mapping, however, flat surfaces like the ones on a cube look terrible. Is there a better way of doing environmental mapping for a scene with many cubes?

I think that what you are seeing is that a flat surface has sharp edges, and so the environment map comes suddenly into view and passes suddenly out of view, and the result is jarring because there is no sense of what will come next over the course of a rotation.
With a taurus/sphere/anything with rounded edges, we get a distorted preview of whatever will rotate into view, and so the experience is less jarring. At leas that's my take on it.
Also the square will give a more 1:1 reflection of the resolution of the map, whereas a sphere will compress more like PI/2 : 1 pixel data into the same cross section, so it makes your reflections look higher quality than they are, because it shrinks them.
I'd say that those two factors are probably what you are seeing. Try doubling the resolution of your map when using cubes as any pixelation will be more obvious.

Related

Using three.js, how would you project a globe world to a map on the screen?

I am curious about the limits of three.js. The following question is asked mainly as a challenge, not because I actually need the specific knowledge/code right away.
Say you have a game/simulation world model around a sphere geometry representing a planet, like the worlds of the game Populous. The resolution of polygons and textures is sufficient to look smooth when the globe fills the view of an ordinary camera. There are animated macroscopic objects on the surface.
The challenge is to project everything from the model to a global map projection on the screen in real time. The choice of projection is yours, but it must be seamless/continuous, and it must be possible for the user to rotate it, placing any point on the planet surface in the center of the screen. (It is not an option to maintain an alternative model of the world only for visualization.)
There are no limits on the number of cameras etc. allowed, but the performance must be expected to be "realtime", say two-figured FPS or more.
I don't expect ayn proof in the form of a running application (although that would be cool), but some explanation as to how it could be done.
My own initial idea is to place a lot of cameras, in fact one for every pixel in the map projection, around the globe, within a Group object that is attached to some kind of orbit controls (with rotation only), but I expect the number of object culling operations to become a huge performance issue. I am sure there must exist more elegant (and faster) solutions. :-)
why not just use a spherical camera-model (think a 360° camera) and virtually put it in the center of the sphere? So this camera would (if it were physically possible) be wrapped all around the sphere, looking toward the center from all directions.
This camera could be implemented in shaders (instead of the regular projection-matrix) and would produce an equirectangular image of the planet-surface (or in fact any other projection you want, like spherical mercator-projection).
As far as I can tell the vertex-shader can implement any projection you want and it doesn't need to represent a camera that is physically possible. It just needs to produce consistent clip-space coordinates for all vertices. Fragment-Shaders for lighting would still need to operate on the original coordinates, normals etc. but that should be achievable. So the vertex-shader would just need compute (x,y,z) => (phi,theta,r) and go on with that.
Occlusion-culling would need to be disabled, but iirc three.js doesn't do that anyway.

three.js - Overlapping layers flickering

When several objects overlap on the same plane, they start to flicker. How do I tell the renderer to put one of the objects in front?
I tried to use .renderDepth, but it only works partly -
see example here: http://liveweave.com/ahTdFQ
Both boxes have the same size and it works as intended. I can change which of the boxes is visible by setting .renderDepth. But if one of the boxes is a bit smaller (say 40,50,50) the contacting layers are flickering and the render depth doesn't work anymore.
How to fix that issue?
When .renderDepth() doesn't work, you have to set the depths yourself.
Moving whole meshes around is indeed not really efficient.
What you are looking for are offsets bound to materials:
material.polygonOffset = true;
material.polygonOffsetFactor = -0.1;
should solve your issue. See update here: http://liveweave.com/syC0L4
Use negative factors to display and positive factors to hide.
Try for starters to reduce the far range on your camera. Try with 1000. Generally speaking, you shouldn't be having overlapping faces in your 3d scene, unless they are treated in a VERY specific way (look up the term 'decal textures'/'decals'). So basically, you have to create depth offsets, and perhaps even pre sort the objects when doing this, which all requires pretty low-level tinkering.
If the far range reduction helps, then you're experiencing a lack of precision (depending on the device). Also look up 'z fighting'
UPDATE
Don't overlap planes.
How do I tell the renderer to put one of the objects in front?
You put one object in front of the other :)
For example if you have a camera at 0,0,0 looking at an object at 0,0,10, if you want another object to be behind the first object put it at 0,0,11 it should work.
UPDATE2
What is z-buffering:
http://en.wikipedia.org/wiki/Z-buffering
http://msdn.microsoft.com/en-us/library/bb976071.aspx
Take note of "floating point in range of 0.0 - 1.0".
What is z-fighting:
http://en.wikipedia.org/wiki/Z-fighting
...have similar values in the z-buffer. It is particularly prevalent with
coplanar polygons, where two faces occupy essentially the same space,
with neither in front. Affected pixels are rendered with fragments
from one polygon or the other arbitrarily, in a manner determined by
the precision of the z-buffer.
"The renderer cannot reposition anything."
I think that this is completely untrue. The renderer can reposition everything, and probably does if it's not shadertoy, or some video filter or something. Every time you move your camera the renderer repositions everything (the camera is actually the only thing that DOES NOT MOVE).
It seems that you are missing some crucial concepts here, i'd start with this:
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/
About the depth offset mentioned:
How this would work, say you want to draw a decal on a surface. You can 'draw' another mesh on this surface - by say, projecting a quad onto it. You want to draw a bullet hole over a concrete wall and end up with two coplanar surfaces - the wall, the bullet hole. You can figure out the depth buffer precision, find the smallest value, and then move the bullet hole mesh by that value towards the camera. The object does not get scaled (you're doing this in NDC which you can visualize as a cube and moving planes back and forth in the smallest possible increment), but does translate in depth direction, ending up in front of the other.
I don't see any flicker. The cube movement in 3D seems to be super-smooth. Can you try in a different computer (may be faster one)? I used Chrome on Macbook Pro.

What is the fastest shadowing algorithm (CPU only)?

Suppose I have a 3D model:
The model is given in the form of vertices, faces (all triangles) and normal vectors. The model may have holes and/or transparent parts.
For an arbitrarily placed light source at infinity, I have to determine:
[required] which triangles are (partially) shadowed by other triangles
Then, for the partially shadowed triangles:
[bonus] what fraction of the area of the triangle is shadowed
[superbonus] come up with a new mesh that describe the shape of the shadows exactly
My final application has to run on headless machines, that is, they have no GPU. Therefore, all the standard things from OpenGL, OpenCL, etc. might not be the best choice.
What is the most efficient algorithm to determine these things, considering this limitation?
Do you have single mesh or more meshes ?
Meaning if the shadow is projected on single 'ground' surface or on more like room walls or even near objects. According to this info the solutions are very different
for flat ground/wall surfaces
is usually the best way a projected render to this surface
camera direction is opposite to light normal and screen is the render to surface. Surface is not usually perpendicular to light so you need to use projection to compensate... You need 1 render pass for each target surface so it is not suitable if shadow is projected onto near mesh (just for ground/walls)
for more complicated scenes
You need to use more advanced approach. There are quite a number of them and each has its advantages and disadvantages. I would use Voxel map but if you are limited by space than some stencil/vector approach will be better. Of course all of these techniques are quite expensive and without GPU I would not even try to implement them.
This is how Voxel map looks like:
if you want just self shadowing then voxel map size can be only some boundig box around your mesh and in that case you do not incorporate whole mesh volume instead just projection of each pixel into light direction (ignore first voxel...) to avoid shadow on lighted surface

Is it possible to use GIS terrain vector data in three.js?

I'm new to three.js and WebGL in general.
The sample at http://css.dzone.com/articles/threejs-render-real-world shows how to use raster GIS terrain data in three.js
Is it possible to use vector GIS data in a scene? For example, I have a series of points representing locations (including height) stored in real-world coordinates (meters). How would I go about displaying those in three.js?
The basic sample at http://threejs.org/docs/59/#Manual/Introduction/Creating_a_scene shows how to create a geometry using coordinates - could I use a similar approach with real-world coordinates such as
"x" : 339494.5,
"y" : 1294953.7,
"z": 0.75
or do I need to convert these into page units? Could I use my points to create a surface on which to drape an aerial image?
I tried modifying the simple sample but I'm not seeing anything (or any error messages): http://jsfiddle.net/slead/KpCfW/
Thanks for any suggestions on what I'm doing wrong, or whether this is indeed possible.
I did a number of things to get the JSFiddle show something.. here: http://jsfiddle.net/HxnnA/
You did not specify any faces in your geometry. In this case I just hard-coded a face with all three of your data points acting as corner. Alternatively you can look into using particles to display your data as points instead of faces.
Set material to THREE.DoubleSide. This is not usually needed or recommended, but helps debugging in early phases, when you can see both sides of a face.
Your camera was probably looking in a wrong direction. Added a lookAt() to point it to the center and made the field of view wider (this just makes it easier to find things while coding).
Your camera near and far planes were likely off-range for the camera position and terrain dimensions. So I increased the far plane distance.
Your coordinate values were quite huge, so I just modified them by hand a bit to make sense in relation to the camera, and to make sure they form a big enough triangle for it to be seen in camera. You could consider dividing your coordinates with something like 100 to make the units smaller. But adjusting the camera to account for the huge scale should be enough too.
Nothing wrong with your approach, just make sure you feed the data so that it makes sense considering the camera location, direction and near + far planes. Pay attention to how you make the faces. The parameters to Face3 is the index of each point in your vertices array. Later on you might need to take winding order, normals and uvs into account. You can study the geometry classes included in Three.js for reference.
Three.js does not specify any meaning to units. Its just floating point numbers, and you can decide yourself what a unit (1.0) represents. Whether it's 1mm, 1 inch or 1km, depends on what makes the most sense considering the application and the scale of it. Floating point numbers can bring precision problems when the actual numbers are extremely small or extremely big. My own applications typically deal with stuff in the range from a couple of centimeters to couple hundred meters, and use units in such a way that 1.0 = 1 meter, that has been working fine.

Google Maps-style quad-tree of materials on a single plane in Three.js – 1x1, 2x2, 4x4 and 8x8

I'm trying and failing to work out how to achieve a quad-tree of materials (images) on a single plane, much like a Google Maps-style zoomable tile that gets more accurate the closer you get.
In short, I want to be able to have a 1x1 image texture (covering a plane that is 256 units wide and tall) that can then be replaced with a 2x2 texture, that can then be replaced with a 4x4 texture, and so on.
Like the image example below…
Ideally, I want to avoid having to create a different plane for each zoom level / number of segments. A perfect solution would allow me to break a single plane into 8x8 segments (highest zoom) and update the number of textures on the fly. So it would start with a 1x1 texture across all 64 (8x8) segments, then change into a 2x2 texture with each texture covering 4x4 segments, and so on.
Unfortunately, I can't work out how to do this. I explored setting the materialIndex for each face but you aren't able to update those after the first render so that wouldn't work. I've tried looking into UV coordinates but I don't understand how it would work in this situation, nor how to actually implement that in Three.js – there is little in the way of documentation / examples for this specific case.
A vertex shader is another option that came up in research, but again I don't know enough to understand how to construct that.
I'd appreciate any and all help with this, it will be a technique that proves valuable for other Three.js users I'm sure.
Not 100% sure what you are trying to do, whether you are talking about texture atlasing (looking up and different textures based on current setting/zooms) but if you are looking for quad-tree based texturing that increases in detail as you zoom in then this is essentially what mipmaping is and does.
(It can be also be used to do all sorts of weird things because of that, but that's another adventure entirely)
Generally mipmapping is automatic based on the filtering you use - however it sounds like you need more control over it.
I created an example hidden away in the three.js source tree which may help:
http://mrdoob.github.com/three.js/examples/webgl_materials_texture_manualmipmap.html
Which shows you how to load each mipmap level in manually, rather than have it just be automatically generated.
HTH

Resources