Efficient sqlite query based on list of primary keys - performance

For querying an sqlite table based on a list of IDs (i.e. distinct primary keys) I am using following statement (example based on the Chinook Database):
SELECT * FROM Customer WHERE CustomerId IN (1,2,3,8,20,35)
However, my actual list of IDs might become rather large (>1000). Thus, I was wondering if this approach using the IN statement is the most efficient or if there is a better/optimized way to query an sqlite table based on a list of primary keys.

If the number of elements in the IN is large enough, SQLite constructs a temporary index for them. This is likely to be more efficient than creating a temporary table manually.
The length of the IN list is limited only be the maximum length of an SQL statement, and by memory.

Because the statement you wrote does not include any instructions to SQLite about how to find the rows you want the concept of "optimizing" doesn't really exist -- there's nothing to optimize. The job of planning the best algorithm to retrieve the data belongs to the SQLite query optimizer.
Some databases do have idiosyncrasies in their query optimizers which can lead to performance issues but I wouldn't expect SQLite to have any trouble finding the correct algorithm for this simple query, even with lots of values in the IN list. I would only worry about trying to guide the query optimizer to another execution plan if and when you find that there's a performance problem.

SQLite Optimizer Overview
IN (expression-list) does use an index if available.
Beyond that, I can't glean any guarantees from it, so the following is subject to a performance measaurement.
Axis 1: how to pass the expression-list
hardocde as string. Overhead for int-to-string conversion and string-to-int parsing
bind parameters (i.e. the statement is ... WHERE CustomerID in (?,?,?,?,?,?,?,?,?,?....), which is easier to build from a predefined string than hardcoded values). Prevents int → string → int conversion, but the default limit for number of parameters is 999. This can be increased by SQLITE_LIMIT_VARIABLE_NUMBER, but might lead to excessive allocations.
Temporary table. Possibly less efficient than any of the above methods after the statement is prepared, but that doesn't help if most time is spent preparing the statement
Axis 2: Statement optimization
If the same expression-list is used in multiple queries against changing CustomerIDs, one of the following may help:
reusing a prepared statement with hardcoded values (i.e. don't pass 1001 parameters)
create a temporary table for the CustomerIDs with index (so the index is created once, not on the fly for every query)
If the expression-list is different with every query, ist is probably best to let SQLite do its job. The following might be an improvement
create a temp table for the expression-list
bulk-insert expression-list elements using union all
use a sub query
(from my experience with SQLite, I'd expect it to be on par or slightly worse)
Axis 3 Ask Richard
the sqlite mailing list (yeah I know, that technology even older than rotary phones!) is pretty active with often excellent advise, including from the author of SQLite. 90% chance someone will dismiss you ass "Measure before asking suhc a question!", 10% chance someone gives you detailed insight.

Related

performance issues while processing 2 tables in lockstep based on orderedBy from-to

Title is probably not very clear so let me explain.
I want to process a in-process join (nodeJs) on 2 tables*, Session and SessionAction. (1-N)
Since these tables are rather big (millions of records both) my idea was to get slices based on an orderBy sessionId (which they both share), and sort of lock-step walk through both tables in batches.
This however proves to be awefully slow. I'm using pseudo code as follows for both the tables to get the batches:
table('x').orderBy({index:"sessionId"}.filter(row.sessionId > start && row.sessionId < y)
It seems that even though I'm essentially filtering on a attribute sessionId which has got an index, the query planner is not smart enough to see this and every query does a complete tablescan to do the orderby before filtering afterwards (or so it seems)
Of course, this is incredibly wasteful but I don't see another option. E.g.:
Order after filter is not supported by Rethink.
Getting a slice of the ordered table doesn't work either, since slice-enumeration (i.e.: the xth until the yth record) for lack of a better work doesn't add up between the 2 tables.
Questions:
Is my approach indeed expected to be slow, due to having to do a table scan at each iteration/batch?
If so, how could I design my queries to get it working faster?
*) It's too involved to do it using Rethink Reql only.
filter is never indexed in RethinkDB. (In general a particular command will only use a secondary index if you pass index as one of its optional arguments.) You can write that query like this to avoid scanning over the whole table:
r.table('x').orderBy({index: 'sessionID'}).between(start, y, {index: 'sessionId'})

Oracle PL/SQL: choosing the update/merge column dynamically

I have a table with data relating to several moments in time that I have to keep updated. To save space and time, however, each row in my table refers to a given day and hourly and quarter-hourly data for that day are scattered throughout the several columns in that same row. When updating the data for a particular moment in time I, therefore, must choose the column that has to be be updated through some programming logic in my PL/SQL procedures and functions.
Is there a way to dynamically choose the column or columns involved in an update/merge operation without having to assemble the query string anew every time? Performance is a concern and the throughput must be high, so I can't do anything that would perform poorly.
Edit: I am aware of normalization issues. However I still would like to know a good way for choosing the columns to be updated/merged dynamically and programatically.
The only way to dynamically choose what column or columns to use for a DML statement is to use dynamic SQL. And the only way to use dynamic SQL is to generate a SQL statement that can then be prepared and executed. Of course, you can assemble the string in a more or less efficient manner, you can potentially parse the statement once and execute it multiple times, etc. in order to minimize the expense of using dynamic SQL. But using dynamic SQL that performs close to what you'd get with static SQL requires quite a bit more work.
I'd echo Ben's point-- it doesn't appear that you are saving time by structuring your table this way. You'll likely get much better performance by normalizing the table properly. I'm not sure what space you believe you are saving but I would tend to doubt that denormalizing your table structure is going to save you much if anything in terms of space.
One way to do what is required is to create a package with all possible updates (which aren't that many, as I'll only update one field at a given time) and then choosing which query to use depending on my internal logic. This would, however, lead to a big if/else or switch/case-like statement. Is there a way to achieve similar results with better performance?

Best-performing method for associating arbitrary key/value pairs with a table row in a Postgres DB?

I have an otherwise perfectly relational data schema in place for my Postgres 8.4 DB, but I need the ability to associate arbitrary key/value pairs with several of my tables, with the assigned keys varying by row. Key/value pairs are user-generated, so I have no way of predicting them ahead of time or wrangling orderly schema changes.
I have the following requirements:
Key/value pairs will be read often, written occasionally. Reads must be reasonably fast.
No (present) need to query off of the keys or values. (But it might come in handy some day.)
I see the following possible solutions:
The Entity-Attribute-Value pattern/antipattern. Annoying, but the annoyance would be generally offset by my ORM.
Storing key/value pairs as serialized JSON data on a text column. A simple solution, and again the ORM comes in handy, but I can kiss my future self's need for queries good-bye.
Storing key/value pairs in some other NoSQL db--probably a key/value or document store. ORM is no help here. I'll have to manage the separate queries (and looming data integrity issues?) myself.
I'm concerned about query performance, as I hope to have a lot of these some day. I'm also concerned about programmer performance, as I have to build, maintain, and use the darned thing. Is there an obvious best approach here? Or something I've missed?
That's precisely what the hstore datatype is for in PostgreSQL.
http://www.postgresql.org/docs/current/static/hstore.html
It's really fast (you can index it) and quite easy to handle. The only drawback is that you can only store character data, but you'd have that problem with the other solutions as well.
Indexes support "exists" operator, so you can query quite quickly for rows where a certain key is present, or for rows where a specific attribute has a specific value.
And with 9.0 it got even better because some size restrictions were lifted.
hstore is generally good solution for that, but personally I prefer to use plain key:value tables. One table with definitions, other table with values and relation to bind values to definition, and relation to bind values to particular record in other table.
Why I'm against hstore? Because it's like a registry pattern. Often mentioned as example of anti pattern. You can put anything there, it's hard to easy validate if it's still needed, when loading a whole row (in ORM especially), the whole hstore is loaded which can have much junk and very little sense. Not mentioning that there is need to convert hstore data type into your language type and convert back again when saved. So you get some overhead of type conversion.
So actually I'm trying to convert all hstores in company I'm working for into simple key:value tables. It's not that hard task though, because structures kept here in hstore are huge (or at least big), and reading/writing an object crates huge overhead of function calls. Thus making a simple task like that "select * from base_product where id = 1;" is making a server sweat and hits performance badly. Want to point that performance issue is not because db, but because python has to convert several times results received from postgres. While key:value is not requiring such conversion.
As you do not control data then do not try to overcomplicate this.
create table sometable_attributes (
sometable_id int not null references sometable(sometable_id),
attribute_key varchar(50) not null check (length(attribute_key>0)),
attribute_value varchar(5000) not null,
primary_key(sometable_id, attribute_key)
);
This is like EAV, but without attribute_keys table, which has no added value if you do not control what will be there.
For speed you should periodically do "cluster sometable_attributes using sometable_attributes_idx", so all attributes for one row will be physically close.

ABAP select performance hints?

Are there general ABAP-specific tips related to performance of big SELECT queries?
In particular, is it possible to close once and for all the question of FOR ALL ENTRIES IN vs JOIN?
A few (more or less) ABAP-specific hints:
Avoid SELECT * where it's not needed, try to select only the fields that are required. Reason: Every value might be mapped several times during the process (DB Disk --> DB Memory --> Network --> DB Driver --> ABAP internal). It's easy to save the CPU cycles if you don't need the fields anyway. Be very careful if you SELECT * a table that contains BLOB fields like STRING, this can totally kill your DB performance because the blob contents are usually stored on different pages.
Don't SELECT ... ENDSELECT for small to medium result sets, use SELECT ... INTO TABLE instead.
Reason: SELECT ... INTO TABLE performs a single fetch and doesn't keep the cursor open while SELECT ... ENDSELECT will typically fetch a single row for every loop iteration.
This was a kind of urban myth - there is no performance degradation for using SELECT as a loop statement. However, this will keep an open cursor during the loop which can lead to unwanted (but not strictly performance-related) effects.
For large result sets, use a cursor and an internal table.
Reason: Same as above, and you'll avoid eating up too much heap space.
Don't ORDER BY, use SORT instead.
Reason: Better scalability of the application server.
Be careful with nested SELECT statements.
While they can be very handy for small 'inner result sets', they are a huge performance hog if the nested query returns a large result set.
Measure, Measure, Measure
Never assume anything if you're worried about performance. Create a representative set of test data and run tests for different implementations. Learn how to use ST05 and SAT.
There won't be a way to close your second question "once and for all". First of all, FOR ALL ENTRIES IN 'joins' a database table and an internal (memory) table while JOIN only operates on database tables. Since the database knows nothing about the internal ABAP memory, the FOR ALL ENTRIES IN statement will be transformed to a set of WHERE statements - just try and use the ST05 to trace this. Second, you can't add values from the second table when using FOR ALL ENTRIES IN. Third, be aware that FOR ALL ENTRIES IN always implies DISTINCT. There are a few other pitfalls - be sure to consult the on-line ABAP reference, they are all listed there.
If the number of records in the second table is small, both statements should be more or less equal in performance - the database optimizer should just preselect all values from the second table and use a smart joining algorithm to filter through the first table. My recommendation: Use whatever feels good, don't try to tweak your code to illegibility.
If the number of records in the second table exceeds a certain value, Bad Things [TM] happen with FOR ALL ENTRIES IN - the contents of the table are split into multiple sets, then the query is transformed (see above) and re-run for each set.
Another note: The "Avoid SELECT *" statement is true in general, but I can tell you where it is false.
When you are going to take most of the fields anyway, and where you have several queries (in the same program, or different programs that are likely to be run around the same time) which take most of the fields, especially if they are different fields that are missing.
This is because the App Server Data buffers are based on the select query signature. If you make sure to use the same query, then you can ensure that the buffer can be used instead of hitting the database again. In this case, SELECT * is better than selecting 90% of the fields, because you make it much more likely that the buffer will be used.
Also note that as of the last version I tested, the ABAP DB layer wasn't smart enough to recognize SELECT A, B as being the same as SELECT B, A, which means you should always put the fields you take in the same order (preferable the table order) in order to make sure again that the data buffer on the application is being well used.
I usually follow the rules stated in this pdf from SAP: "Efficient Database Programming with ABAP"
It shows a lot of tips in optimizing queries.
This question will never be completely answered.
ABAP statement for accessing database is interpreted several times by different components of whole system (SAP and DB). Behavior of each component depends from component itself, its version and settings. Main part of interpretation is done in DB adapter on SAP side.
The only viable approach for reaching maximum performance is measurement on particular system (SAP version and DB vendor and version).
There are also quite extensive hints and tips in transaction SE30. It even allows you (depending on authorisations) to write code snippets of your own & measure it.
Unfortunately we can't close the "for all entries" vs join debate as it is very dependent on how your landscape is set up, wich database server you are using, the efficiency of your table indexes etc.
The simplistic answer is let the DB server do as much as possible. For the "for all entries" vs join question this means join. Except every experienced ABAP programmer knows that it's never that simple. You have to try different scenarios and measure like vwegert said. Also remember to measure in your live system as well, as sometimes the hardware configuration or dataset is significantly different to have entirely different results in your live system than test.
I usually follow the following conventions:
Never do a select *, Select only the required fields.
Never use 'into corresponding table of' instead create local structures which has all the required fields.
In the where clause, try to use as many primary keys as possible.
If select is made to fetch a single record and all primary keys are included in where clause use Select single, or else use SELECT UP TO TO 1 ROWS, ENDSELECT.
Try to use Join statements to connect tables instead of using FOR ALL ENTRIES.
If for all entries cannot be avoided ensure that the internal table is not empty and a delete the duplicate entries to increase performance.
Two more points in addition to the other answers:
usually you use JOIN for two or more tables in the database and you use FOR ALL ENTRIES IN to join database tables with a table you have in memory. If you can, JOIN.
usually the IN operator is more convinient than FOR ALL ENTRIES IN. But the kernel translates IN into a long select statement. The length of such a statement is limited and you get a dump when it gets too long. In this case you are forced to use FOR ALL ENTRIES IN despite the performance implications.
With in-memory database technologies, it's best if you can finish all data and calculations on the database side with JOINs and database aggregation functions like SUM.
But if you can't, at least try to avoid accessing database in LOOPs. Also avoid reading the database without using indexes, of course.

How can I optimize a dynamic search query in Oracle

I am writing a stored procedure to perform a dynamic search that spans 10+ database tables. With millions of records in each table and a dynamic set of search parameters*, I am having some trouble optimizing the procedure.
Is there a "best practice" for building these kinds of queries? E.g. Use strings to build a dynamic query, use a huge list of IF THEN .. ELSE statements, etc? Can anyone provide a simple example or point me to some literature that will help? Here's some psuedocode for the stored procedure I am developing, which accepts a collection of parameters and a ref cursor.
v_query = "SELECT .....";
v_name = ... -- retrieve "name" parameter from collection
if v_name is not null then
v_query := v_query || ' AND table.Name = ' || v_name;
end if;
open search_cursor for v_query;
...
*By "dynamic set of search parameters," I mean that I pass in a collection of parameters. I figured this would be easier than making the caller pass in 20 parameters if they only want to search on one.
There are problems with using the static query approach; also be very careful about using the CURSOR_SHARING=FORCE option - it can really raise hell with your system if you haven't done a coverage test to ensure that all your other queries will work the way you want.
Problems with static queries:
The (x is null or x = col) predicates tend to kill any chance of using indexes. Since the query plan is computed at the time query is parsed the first time, the indexes you use will be based on the values for the first run of the query; later runs, which may not constrain on the same columns, will still use the same indexes.
Having one static statement with substitution variables will prevent the optimizer from making an intelligent choice about which index to use based on the data distribution. In a dynamic query (or in the first run of a query with bind variables), Oracle will see how selective your constraint is; a highly selective constraint will become a prime candidate for index use. For example, if your table had a row for every person in the U.S., STATE='Alaska' will be much more likely to use the index on STATE than STATE='California'.
Of course, in both these cases, if the dynamic columns in your WHERE clause are not indexed anyway, it doesn't matter, although I'd be surprised if that were the case in a database the size you're talking about.
Also, consider the real cost of all that hard parsing. Yes, hard parses serialize system resources, which makes them expensive, but only in the context of high volume queries. By their nature, ad-hoc queries do not get run very often. The cost you pay for all the hard parses you incur in an entire day will likely be hundreds of times less than the cost of a single query that uses the wrong indexes.
In the past, I've implemented these systems pretty much like you've done here - a base query portion, then iterating over a constraint list and adding WHERE clause predicates. I don't think it's hard for someone to maintain or understand, especially if you're talking about constraints that don't involve adding a lot of subqueries or extra tables to the FROM clause.
One thing to consider: If this system is primarily an offline one (in other words, not constantly being updated or inserted into - populated by periodic loads of bulk data), you may want to look into using BITMAP indexes. Bitmap indexes differ from regular b-tree indexes in that multiple indexes on a single table can be used simultaneously, and bitmap indexes are much, much smaller on disk than b-trees. They work very well for applications like this - where you will have a variety of constraints that can't be defined at design time. You will only want to put bitmap indexes on columns that have relatively few distinct values - say, one value constitutes no less than 1/1000 of the table - so don't use bitmaps on unique columns.
However, the downside is that bitmap indexes will noticeably degrade the performance of inserts and updates. The best practice for bitmaps is to use them in data warehouse applications, and they are dropped prior to loads and recreated afterwards.
Except in very particular cases, I don't think it is advisable (or even possible) to try to generate an optimized query. My advice is not to use dynamic SQL if you can : hard to read, hard to debug, hard to optimize, hard to maintain.
First, write a generic query that will work with any parameter sent to your procedure. According to your example, that would give something like :
SELECT * FROM table WHERE ((v_name IS NULL) OR (table.Name=v_name));
As you see, you could easily add other parameters to this query without using dynamic SQL. This query is much easier to read and debug. Ask your DBA for optimization tips.
Then, if you have a particular set of parameters that you know are often passed together, you could write a particular query for this set that you could specifically optimize. Pseudocode :
IF particular_set
THEN
/* Specific query */
ELSE
/* Generic query */
END IF;
The difficult part is to try not to have too many specific queries here, or you could fall into a maintenance hell.
We've had a similar requirement for one of our clients. They have half a dozen tables with millions of rows, and they wanted adhoc search capability on most of the columns.
The solution was a separate package for each table, which would take the search criteria and construct the SQL to run the search. We took advantage of the old system that was being replaced, to discover what the most common types of searches the users were doing, and made sure that those searches ran the best, by tuning the queries that were being generated (supported by the strategic use of indexes). Because each package was only responsible for queries against one table, it could have specific code designed to work with that table (including the odd hint, in a few rare cases).
One question/problem that you'll need to address is, do you hard-code the criteria (e.g. WHERE SURNAME='SMITH') or use bind variables? Using bind variables reduces hard parsing, which reduces load on the database server; however it can be impractical to use bind variables when the SQL is dynamically generated. The way we ended up going was to set CURSOR_SHARING=FORCE (which has its own disadvantages) which was a reasonable compromise in our case.
Read http://asktom.oracle.com/pls/asktom/f?p=100:11:0::::P11_QUESTION_ID:6711305251199

Resources