Why the warning: "Constant <name> inferred to have type (), which may be unexpected"? - sorting

I'm attempting to sort an array of instantiated items of the class: "Employees".
However I'm getting the following error within my playground:
Here's the code as written in my playground:
class Employee {
var firstName:String = ""
var lastName:String = ""
init(fName:String, lName:String) {
self.firstName = fName
self.lastName = lName
}
}
var employees = [Employee]()
// 1)
var employee = Employee(fName: "Ric", lName: "Lee")
employees.append(employee)
// 2)
employee = Employee(fName: "Ralph", lName: "Knott")
employees.append(employee)
// 3)
employee = Employee(fName: "Joe", lName: "Smirf")
employees.append(employee)
// 4)
employee = Employee(fName: "Meredith", lName: "Lind")
employees.append(employee)
// 5)
employee = Employee(fName: "Aarnald", lName: "Zingerhost")
employees.append(employee)
let sortedEmployees = employees.sort { (e1:Employee, e2:Employee) -> Bool in
e1.lastName < e2.lastName
}
What am I missing here?
Why the warning?

The reason is that you are using the wrong function (former sortInPlace):
In Swift 3
sort() has been renamed to sorted()
sortInPlace() has been renamed to sort()
Therefore it's
let sortedEmployees = employees.sorted { (e1:Employee, e2:Employee) -> Bool in
e1.lastName < e2.lastName
}
Source: Swift Evolution: Apply API Guidelines to the Standard Library

try declaring
let sortedEmployees = employees.sort { (e1:Employee, e2:Employee) -> Bool in
e1.lastName < e2.lastName}
as
let sortedEmployees : () = employees.sort { (e1:Employee, e2:Employee) -> Bool in
e1.lastName < e2.lastName}

Related

How to create a sorted merged list from two diffrent ArrayList of Objects based on a common value field in Kotlin?

I have two ArrayLists of different Data classes as given below:
class Record{
var id: Long = 0
var RecordId: Int = 0
var Record: String? = null
var title: String? = null
var description: String? = null
var longDate: Long = 0
}
class Type{
var id: Long = 0
var typeId: Int = 0
var subTypeId: Int = 0
var typeString: String? = null
var longDate: Long = 0
}
var recordsList: ArrayList<Record>
var typesList: ArrayList<Type>
Now, I want a merged list of these two which will be sorted based on a common field in both the Objects i.e. longDate. I have tried .associate , sortedBy, sortedWith(compareBy<>) etc. but could not achieve the desired result.
Here, also there is one point to note is that while comparing the two lists it is possible that one on them may be empty.
This will produce a List<Any> with all items sorted by longDate:
(recordsList + typesList)
.sortedBy {
when (it) {
is Record -> it.longDate
is Type -> it.longDate
else -> error("")
}
}
Or you might consider creating an interface that has val longDate: Long that both of these classes implement. Then you wouldn't need the when expression, and your List would be of the type of the interface.
Something like this should work, but I personally think that it is quite the code smell. There is no guarantee that Record.longDate is truly the same type as Type.longDate (we know that it is, since we create the model, but the compiler would never know).
val result = (recordsList + typesList).sortedBy {
when(it){
is Record -> it.longDate
is Type -> it.longDate
else -> error("incompatible list element $it")
}
}
And it would work something like this: (I've removed some parameters from the models as they don't really count here)
fun main() {
val recordsList = listOf(Record().apply { longDate = 5 }, Record().apply { longDate = 3})
val typesList = listOf(Type().apply { longDate = 3 }, Type().apply { longDate = 2 })
val result = (recordsList + typesList).sortedBy {
when(it){
is Record -> it.longDate
is Type -> it.longDate
else -> error("incompatible list element $it")
}
}
result.forEach{
println(it.toString())
}
}
class Record{
var longDate: Long = 0
override fun toString(): String {
return "Record(longDate=$longDate)"
}
}
class Type{
var longDate: Long = 0
override fun toString(): String {
return "Type(longDate=$longDate)"
}
}
This will output:
Type(longDate=2)
Record(longDate=3)
Type(longDate=3)
Record(longDate=5)
Doing it in a more generic way, so that you can create a fun where you state which property to be used from each object type would most likely use reflection, which I'd avoid at all costs.
So I would definitely consider if one object can inherit the other, or create an interface, or anything else.
I'll end with 2 questions: why no constructors? why ArrayList and not list?

'Argument expression is not valid' when creating anonymous types dynamically

I'm creating an expression tree builder to return custom anonymous types. I tried it first with discrete types and it works ok, but using TypeBuilder to build types at runtime and pass that type to the expression tree fail with this error
'Argument expression is not valid'
here is the code I use:
this method I use to create the anonymous type
private Type CreateAnonymousType(Dictionary<string, Type> properties)
{
AssemblyName dynamicAssemblyName = new AssemblyName("MyAssembly");
AssemblyBuilder dynamicAssembly = AssemblyBuilder.DefineDynamicAssembly(dynamicAssemblyName, AssemblyBuilderAccess.Run);
ModuleBuilder dynamicModule = dynamicAssembly.DefineDynamicModule("MyAssembly");
TypeBuilder dynamicAnonymousType = dynamicModule.DefineType("ReturnType", TypeAttributes.Public | TypeAttributes.Class | TypeAttributes.AutoClass);
foreach (var p in properties)
{
dynamicAnonymousType.DefineField(p.Key, p.Value, FieldAttributes.Public);
}
return dynamicAnonymousType.CreateType();
}
and here is how I create the expression tree
var cars = new List<Car>();
for (int i = 0; i < 10; i++)
{
cars.Add(new Car { Id = i, Name = "Car " + i, Age = 2010 + i });
}
IQueryable<Car> allCars = cars.AsQueryable();
var properties = new Dictionary<string, Type>
{
{ "Id", typeof(int) },
{ "Name", typeof(string) }
};
ParameterExpression x = Expression.Parameter(typeof(Car), "x");
var listMembers = properties.Select(p => Expression.Property(x, p.Key));
var returnType = CreateAnonymousType(properties);
object destObject = Activator.CreateInstance(returnType);
var listBind = listMembers.Select(p => Expression.Bind(returnType.GetField(p.Member.Name), p));
var result = Expression.New(returnType);
var initExp = Expression.MemberInit(result, listBind.ToArray());
var call = Expression.Call(typeof(Queryable), "Select",
new Type[] {
typeof(Car),
returnType
}
, Expression.Constant(allCars)
, Expression.Lambda(initExp, x));
var qResult = allCars.Provider.CreateQuery<IdName>(call);
foreach (var car in qResult)
{
Console.WriteLine(car.Id + " - " + car.Name);
}
the error happened while CreateQuery method executes
This is because call returns dynamically created ReturnType not IdName thus the exception. Additionally you cannot put such dynamic types like ReturnType as generic type parameters because compiler knows nothing about them so you should use dynamic instead so the type will be resolved at runtime:
var qResult = allCars.Provider.CreateQuery<dynamic>(call);

Instance member cannot be use on type

#IBAction func saveDetails(sender: AnyObject) {
Person.firstName = firstNameTF.text
Person.lastName = lastNameTF.text
}
Above is the function I am trying to implement and below is the class I am trying to create an instance of and store the data from my text fields in... I am getting the error "Instance member "firstName" cannot be used on type Person". I was almost positive that my class was setup and initialised properly so I can't see what the problem could be?
class Person {
var firstName : String = ""
var middleName : String? = nil
var lastName : String = ""
var yearOfBirth : Int? = nil
var age : Int! {
get {
guard let _ = yearOfBirth else {
return nil
}
return currentYear - yearOfBirth!
}
set {
yearOfBirth = currentYear - newValue
}
}
init(firstName: String, lastName: String, yearOfBirth: Int? = nil, middleName: String? = nil){
self.firstName = firstName
self.lastName = lastName
self.yearOfBirth = yearOfBirth
self.middleName = middleName
}
convenience init(firstName: String, lastName: String, age: Int, middleName: String? = nil) {
self.init(firstName: firstName, lastName: lastName, yearOfBirth: nil, middleName: middleName)
self.age = age
}
}
The error message says you cannot call the properties on the class (type) Person.
Create a Person instance using the given initializer
#IBAction func saveDetails(sender: AnyObject) {
let person = Person(firstName:firstNameTF.text, lastName:lastNameTF.text)
// do something with person
}
You should create an instance of Person in order to set its properties:
either do this:
#IBAction func saveDetails(sender: AnyObject) {
let p = Person(firstName: firstNameTF.text!, lastName: lastNameTF.text!)
}
or add an init method that doesn't take arguments to your Person class
#IBAction func saveDetails(sender: AnyObject) {
let p = Person()
p.firstName = firstNameTF.text!
p.lastName = lastNameTF.text!
}
"Instance member "firstName" cannot be used on type Person" is perfect explanation.
class C {
var s: String = ""
static var s1: String = ""
}
C.s1 = "alfa"
//C.s = "alfa" // error: instance member 's' cannot be used on type 'C'
let c0 = C()
c0.s = "beta"
//c0.s1 = "beta" // error: static member 's1' cannot be used on instance of type 'C'

get sum from list of objects in linq C#

I have list of objects as described below:
List<Maths> mObjs = new List<Maths>();
mObjs.Add(new Maths{ Name = "Jack", M1 = 10, M2 = 5, M3 = 0, M4 = 2, M5 =1 });
mObjs.Add(new Maths { Name = "Jill", M1 = 2, M2 = 3, M3 = 4, M4 = 1, M5 = 0 });
mObjs.Add(new Maths { Name = "Michel", M1 = 12, M2 = 15, M3 = 10, M4 = 12, M5 = 11 });
Now I need to calculated the total aggregated value for all three people.
I need to get the below results, probably a new other class
List<Results> mRes = new List<Results>();
public class Results{
public string Name { get; set; }
public int TotalValue { get; set; }
}
mRes.Name = "M1"
mRes.TotalValue = 24;
mRes.Name = "M2"
mRes.TotalValue = 23;
mRes.Name = "M3"
mRes.TotalValue = 14;
mRes.Name = "M4"
mRes.TotalValue = 15;
mRes.Name = "M5"
mRes.TotalValue = 12;
How can I get this data from mObjs using linq query? I know we can do it using for, but want to know if there are any better ways to get this using linq query because that reduces lines of code and I have similar requirements in many other places and dont want to write number of foreach or fors every time.
You can use a pre selection list to list both the name and the field to select
var lookups = new Dictionary<string,Func<Maths,int>> {
{"M1", x => x.M1 },
{"M2", x => x.M2 },
{"M3", x => x.M3 },
{"M4", x => x.M4 },
{"M5", x => x.M5 },
};
Then you can simply do
var mRes = dlookups.Select(x => new Results {
Name= x.Key,
TotalValue = mObjs.Sum(x.Value)
}).ToList();
BEGIN UPDATED*
In response to comments
The lambda expression is just a function from your source class to an int.
For example
class Sub1 {
string M3 {get;set;}
int M4 {get;set;}
}
class Math2 {
string Name {get;set;}
string M1 {get;set;}
string M2 {get;set;}
Sub1 Sub {get;set;}
}
var lookups = new Dictionary<string,Func<Math2,int>> {
{ "M1", x => int.Parse(x.M1) },
{ "M2", x => int.Parse(x.M2) },
{ "M3", x => int.Parse(x.Sub.M3) },
{ "M4", x => int.Parse(x.Sub.M4} }
};
Or if you want to put a little error checking in, you can either use functions or embed the code.
int GetInt(string source) {
if (source == null) return 0;
int result;
return int.TryParse(source, out result) ? result : 0;
}
var lookups = new Dictionary<string,Func<Math2,int>> {
{ "M1", x => {
int result;
return x == null ? 0 : (int.TryParse(x,out result) ? result : 0);
},
{ "M2", x => GetInt(x) },
{ "M3", x => x.Sub == null ? 0 : GetInt(x.Sub.M3) },
{ "M4", x => x.Sub == null ? 0 : x.Sub.M4}
};
END UPDATED
If you want to go further you could use reflection to build the lookups dictionary.
Here is a helper function that will generate the lookups for all Integer properties of a class.
public Dictionary<string,Func<T,int>> GenerateLookups<T>() where T: class {
// This just looks for int properties, you could add your own filter
var properties = typeof(T).GetProperties().Where(pi => pi.PropertyType == typeof(int));
var parameter = Expression.Parameter(typeof(T));
return properties.Select(x => new {
Key = x.Name,
Value = Expression.Lambda<Func<T,int>>(Expression.Property(parameter,x),parameter).Compile()
}).ToDictionary (x => x.Key, x => x.Value);
}
Now you can just do:
var mRes=GenerateLookups<Maths>().Select( x => new Results
{
Name = x.Key,
TotalValue = mObjs.Sum(x.Value)
}).ToList();
Not very smart but efficient and readable:
int m1Total= 0;
int m2Total= 0;
int m3Total= 0;
int m4Total= 0;
int m5Total= 0;
foreach(Maths m in mObjs)
{
m1Total += m.M1;
m2Total += m.M2;
m3Total += m.M3;
m4Total += m.M4;
m5Total += m.M5;
}
List<Results> mRes = new List<Results>
{
new Results{ Name = "M1", TotalValue = m1Total },
new Results{ Name = "M2", TotalValue = m2Total },
new Results{ Name = "M3", TotalValue = m3Total },
new Results{ Name = "M4", TotalValue = m4Total },
new Results{ Name = "M5", TotalValue = m5Total },
};
Result:
Name: "M1" TotalValue: 24
Name: "M2" TotalValue: 23
Name: "M3" TotalValue: 14
Name: "M4" TotalValue: 15
Name: "M5" TotalValue: 12
Edit: since you've explicitly asked for LINQ, if the properties are always these five i don't see why you need to use LINQ at all. If the number can change i would use a different structure.
You could for example use
a single List<Measurement> instead of multiple properties where Measurement is another class that stores the name and the value or you could use
a Dictionary<string, int> for efficient lookup.
You can try out some thing like this :
mRes.Add(new Results() { Name = "M1", TotalValue = mObjs.Sum(x => x.M1) });
To programmatically iterate through all the class properties, you might need to employ reflection.

PIVOT with LINQ from Datatable [duplicate]

I have a collection of items that contain an Enum (TypeCode) and a User object, and I need to flatten it out to show in a grid. It's hard to explain, so let me show a quick example.
Collection has items like so:
TypeCode | User
---------------
1 | Don Smith
1 | Mike Jones
1 | James Ray
2 | Tom Rizzo
2 | Alex Homes
3 | Andy Bates
I need the output to be:
1 | 2 | 3
Don Smith | Tom Rizzo | Andy Bates
Mike Jones | Alex Homes |
James Ray | |
I've tried doing this using foreach, but I can't do it that way because I'd be inserting new items to the collection in the foreach, causing an error.
Can this be done in Linq in a cleaner fashion?
I'm not saying it is a great way to pivot - but it is a pivot...
// sample data
var data = new[] {
new { Foo = 1, Bar = "Don Smith"},
new { Foo = 1, Bar = "Mike Jones"},
new { Foo = 1, Bar = "James Ray"},
new { Foo = 2, Bar = "Tom Rizzo"},
new { Foo = 2, Bar = "Alex Homes"},
new { Foo = 3, Bar = "Andy Bates"},
};
// group into columns, and select the rows per column
var grps = from d in data
group d by d.Foo
into grp
select new {
Foo = grp.Key,
Bars = grp.Select(d2 => d2.Bar).ToArray()
};
// find the total number of (data) rows
int rows = grps.Max(grp => grp.Bars.Length);
// output columns
foreach (var grp in grps) {
Console.Write(grp.Foo + "\t");
}
Console.WriteLine();
// output data
for (int i = 0; i < rows; i++) {
foreach (var grp in grps) {
Console.Write((i < grp.Bars.Length ? grp.Bars[i] : null) + "\t");
}
Console.WriteLine();
}
Marc's answer gives sparse matrix that can't be pumped into Grid directly.
I tried to expand the code from the link provided by Vasu as below:
public static Dictionary<TKey1, Dictionary<TKey2, TValue>> Pivot3<TSource, TKey1, TKey2, TValue>(
this IEnumerable<TSource> source
, Func<TSource, TKey1> key1Selector
, Func<TSource, TKey2> key2Selector
, Func<IEnumerable<TSource>, TValue> aggregate)
{
return source.GroupBy(key1Selector).Select(
x => new
{
X = x.Key,
Y = source.GroupBy(key2Selector).Select(
z => new
{
Z = z.Key,
V = aggregate(from item in source
where key1Selector(item).Equals(x.Key)
&& key2Selector(item).Equals(z.Key)
select item
)
}
).ToDictionary(e => e.Z, o => o.V)
}
).ToDictionary(e => e.X, o => o.Y);
}
internal class Employee
{
public string Name { get; set; }
public string Department { get; set; }
public string Function { get; set; }
public decimal Salary { get; set; }
}
public void TestLinqExtenions()
{
var l = new List<Employee>() {
new Employee() { Name = "Fons", Department = "R&D", Function = "Trainer", Salary = 2000 },
new Employee() { Name = "Jim", Department = "R&D", Function = "Trainer", Salary = 3000 },
new Employee() { Name = "Ellen", Department = "Dev", Function = "Developer", Salary = 4000 },
new Employee() { Name = "Mike", Department = "Dev", Function = "Consultant", Salary = 5000 },
new Employee() { Name = "Jack", Department = "R&D", Function = "Developer", Salary = 6000 },
new Employee() { Name = "Demy", Department = "Dev", Function = "Consultant", Salary = 2000 }};
var result5 = l.Pivot3(emp => emp.Department, emp2 => emp2.Function, lst => lst.Sum(emp => emp.Salary));
var result6 = l.Pivot3(emp => emp.Function, emp2 => emp2.Department, lst => lst.Count());
}
* can't say anything about the performance though.
You can use Linq's .ToLookup to group in the manner you are looking for.
var lookup = data.ToLookup(d => d.TypeCode, d => d.User);
Then it's a matter of putting it into a form that your consumer can make sense of. For instance:
//Warning: untested code
var enumerators = lookup.Select(g => g.GetEnumerator()).ToList();
int columns = enumerators.Count;
while(columns > 0)
{
for(int i = 0; i < enumerators.Count; ++i)
{
var enumerator = enumerators[i];
if(enumator == null) continue;
if(!enumerator.MoveNext())
{
--columns;
enumerators[i] = null;
}
}
yield return enumerators.Select(e => (e != null) ? e.Current : null);
}
Put that in an IEnumerable<> method and it will (probably) return a collection (rows) of collections (column) of User where a null is put in a column that has no data.
I guess this is similar to Marc's answer, but I'll post it since I spent some time working on it. The results are separated by " | " as in your example. It also uses the IGrouping<int, string> type returned from the LINQ query when using a group by instead of constructing a new anonymous type. This is tested, working code.
var Items = new[] {
new { TypeCode = 1, UserName = "Don Smith"},
new { TypeCode = 1, UserName = "Mike Jones"},
new { TypeCode = 1, UserName = "James Ray"},
new { TypeCode = 2, UserName = "Tom Rizzo"},
new { TypeCode = 2, UserName = "Alex Homes"},
new { TypeCode = 3, UserName = "Andy Bates"}
};
var Columns = from i in Items
group i.UserName by i.TypeCode;
Dictionary<int, List<string>> Rows = new Dictionary<int, List<string>>();
int RowCount = Columns.Max(g => g.Count());
for (int i = 0; i <= RowCount; i++) // Row 0 is the header row.
{
Rows.Add(i, new List<string>());
}
int RowIndex;
foreach (IGrouping<int, string> c in Columns)
{
Rows[0].Add(c.Key.ToString());
RowIndex = 1;
foreach (string user in c)
{
Rows[RowIndex].Add(user);
RowIndex++;
}
for (int r = RowIndex; r <= Columns.Count(); r++)
{
Rows[r].Add(string.Empty);
}
}
foreach (List<string> row in Rows.Values)
{
Console.WriteLine(row.Aggregate((current, next) => current + " | " + next));
}
Console.ReadLine();
I also tested it with this input:
var Items = new[] {
new { TypeCode = 1, UserName = "Don Smith"},
new { TypeCode = 3, UserName = "Mike Jones"},
new { TypeCode = 3, UserName = "James Ray"},
new { TypeCode = 2, UserName = "Tom Rizzo"},
new { TypeCode = 2, UserName = "Alex Homes"},
new { TypeCode = 3, UserName = "Andy Bates"}
};
Which produced the following results showing that the first column doesn't need to contain the longest list. You could use OrderBy to get the columns ordered by TypeCode if needed.
1 | 3 | 2
Don Smith | Mike Jones | Tom Rizzo
| James Ray | Alex Homes
| Andy Bates |
#Sanjaya.Tio I was intrigued by your answer and created this adaptation which minimizes keySelector execution. (untested)
public static Dictionary<TKey1, Dictionary<TKey2, TValue>> Pivot3<TSource, TKey1, TKey2, TValue>(
this IEnumerable<TSource> source
, Func<TSource, TKey1> key1Selector
, Func<TSource, TKey2> key2Selector
, Func<IEnumerable<TSource>, TValue> aggregate)
{
var lookup = source.ToLookup(x => new {Key1 = key1Selector(x), Key2 = key2Selector(x)});
List<TKey1> key1s = lookup.Select(g => g.Key.Key1).Distinct().ToList();
List<TKey2> key2s = lookup.Select(g => g.Key.Key2).Distinct().ToList();
var resultQuery =
from key1 in key1s
from key2 in key2s
let lookupKey = new {Key1 = key1, Key2 = key2}
let g = lookup[lookupKey]
let resultValue = g.Any() ? aggregate(g) : default(TValue)
select new {Key1 = key1, Key2 = key2, ResultValue = resultValue};
Dictionary<TKey1, Dictionary<TKey2, TValue>> result = new Dictionary<TKey1, Dictionary<TKey2, TValue>>();
foreach(var resultItem in resultQuery)
{
TKey1 key1 = resultItem.Key1;
TKey2 key2 = resultItem.Key2;
TValue resultValue = resultItem.ResultValue;
if (!result.ContainsKey(key1))
{
result[key1] = new Dictionary<TKey2, TValue>();
}
var subDictionary = result[key1];
subDictionary[key2] = resultValue;
}
return result;
}

Resources