Triangulating a x-monotone polygon - computational-geometry

I am having trouble figuring out how to triangulate an x-monotone polygon. I am referencing this article. I don't understand how to check if a vertex is an ear and if there is a diagonal.

See page 13/25, "Triangulation: Theory". The diagram illustrates a test to see if p is the vertex on an ear. Its neighbors are q and r. If the line segment qr is a diagonal, then p is on an ear.
You test a line segment to see if it's a diagonal by testing if any other vertices lie on it or if any other edge line segments cross it.

You refer to the ear cutting which is a n^2 time algorithm. There are many simple algorithms to triangulate a simple polygons. One of the simplest n log n time algorithm consists of first splitting the simple polygon into monotone pieces and then triangulate these pieces. The splitting in that case takes n log n. In your case, as you already have the monotone piece(s) you can triangulate the x-monotone polygon easily in linear time.
A good explanation of this simple algorithm is given for example in the book Computational Geometry.
Roughly the idea is: You know that your polygon is x-monotone. Thus, you split it into its two monotone chains (upper and lower). Now you can walk along both chains and insert diagonals between the two chains without visibility check. You go along the upper chain as long as the next lower chain vertex is of smaller x-value. In case your vertex is reflex you put it on a stack, otherwise you insert a diagonal to the other side. When you take the next step on the other chain, you first insert diagonals to every vertex on the stack and then go on with this routine.

Related

Finding a point that is not inside any rotated rectangles

I'm looking for an algorithm that can quickly (I'm heavily constrained by performance) find a point inside of a circle, where this point is outside of all rectangles in a provided set (these rectangles can be rotated).
Or alternatively, to find a circle A with its center inside a circle B, where circle A does not intersect with a set of line segments.
The only solution I can come up with is to just loop through samples of points and then loop through the rectangles for each of them. But since my space is continuous, that's quite a pain. I'm basically satisfied with just a single point that doesn't intersect, but there will be cases where no such points exist. In the latter case I would ideally try to find a point with the least amount of intersections, or be able to find the answer that no such point exists.
Does anyone know of any algorithms that can accomplish this in something less than O(n^2)? Anything that would help identify good candidate points would be awesome too.
A typical example of the situation is this:
Lots of big rectangles, with small circle in which I hope to find a point (here indicated with blue). It's common that many of the rectangles fall completely outside of the circle, and also common that the circle is completely covered. There's only a small set of lengths and widths that tend to be used for the rectangles.
There are probably several interesting ways to do this. The simplest algorithm I can think of that gives a decent runtime is an algorithm as follows:
Treat all rectangles as a set of line segments.
Use an efficient algorithm to find the intersection of all line segments (for example the Bentley-Ottmann algorithm.)
Create a list of points of interest (POIs) that are either a) the corners of a rectangle or b) the intersection points computed in 2.
Create a finer set of line segments such that each line segment terminates at a POI defined in 3.
Using the POIs and the finer set of line segments from 4, compute a constrained triangulation (for example a Constrained Delaunay Triangulation.)
Pick any (unlabeled) triangle to start. Determine if the triangle lies within at least one rectangle (label it as a COVERED triangle) or not (label it as a FREE triangle). To do this you can use any point in polygon algorithm, for example ray-casting.
Run a Depth or Breadth first search starting at this triangle and expanding to neighbors, taking care not to cross between any triangle pair that would require crossing a line segment defined in 4. For every triangle visited, label it as the same label as the starting triangle.
Repeat 6-7 until all triangles are labeled (or all triangles covering the circle of interest are labeled.)
The union of all FREE triangles intersected with the circled of interest yields precisely the points that are not covered by any rectangle and are within the circle.
Note, this algorithm is a bit general and can be improved by focusing only in the area around the circle (for example a bounding box region can only be considered, with the bounding box encompassing all rectangles intersecting the circle.)
To analyze the runtime, consider the runtime of each key step:
has a runtime of O((n+k) log n) where k is the number of intersections, where n is the number of line segments.
has a runtime of O(m log m) where m is the number of POIs, m is O(n+k)
and 7. should be analyzed together. In the worst case, each triangle would need O(n) computations to check for containment in a rectangle. Given that there would be O(m) triangles this would yield a O(nm) bound. However, the purpose of the triangulation is to reuse the point in polygon computation for the seeding triangle to label as many neighboring triangles as possible. In practice the number of triangles that would require a point in polygon computation should be negligible. Therefore the runtime of this step is O(tn) where t is the number of traingles for which point in polygon computations are performed.
The runtime expected is, therefore, O((n+k) log n + t(n+k)) where k is the number of intersections in step 2 and t is the number of triangles for which point in polygon computations are performed. In the worst case this is O(n^2 log n) as you can create a pathological example with n^2 intersections, but this should be unlikely if not possible. Likewise, the number t should be kept to a minimum to make this as efficient as possible. If both t << n and k << n^2, this would be quite efficient.
One approximation that could yield performance improvement:
Consider approximating the circle by a set of r line segments, and including these line segments in steps 1-5. While this is an approximation, it would potentially improve the runtime, as only triangles inside the circle would ever need to be considered.

Finding all empty triangles

I have a small set of N points in the plane, N < 50.
I want to enumerate all triples of points from the set that form a triangle containing no other point.
Even though the obvious brute force solution could be viable for my tiny N, it has complexity O(N^4).
Do you know a way to decrease the time complexity, say to O(N³) or O(N²) that would keep the code simple ? No library allowed.
Much to my surprise, the number of such triangles is pretty large. Take any point as a center and sort the other ones by increasing angle around it. This forms a star-shaped polygon, that gives N-1 empty triangles, hence a total of Ω(N²). It has been shown that this bound is tight [Planar Point Sets with a Small Number of Empty convex Polygons, I. Bárány and P. Valtr].
In the case of points forming a convex polygon, all triangles are empty, hence O(N³). Chances of a fast algorithm are getting low :(
The paper "Searching for empty Convex polygons" by Dobkin, David P. / Edelsbrunner, Herbert / Overmars, Mark H. contains an algorithm linear in the number of possible output triangles for solving this problem.
A key problem in computational geometry is the identification of subsets of a point set having particular properties. We study this problem for the properties of convexity and emptiness. We show that finding empty triangles is related to the problem of determininng pairs of vertices that see each other in starshaped polygon. A linear time algorithm for this problem which is of independent interest yields an optimal algorithm for finding all empty triangles. This result is then extended to an algorithm for finding
empty convex r-gons (r > 3) and for determining a largest empty convex subset. Finally, extensions to higher dimensions are mentioned.
The sketch of the algorithm by Dobkin, Edelsbrunner and Overmars goes as follows for triangles:
for every point in turn, build the star-shaped polygon formed by sorting around it the points on its left. This takes N sorting operations (which can be lowered to total complexity O(N²) via an arrangement, anyway).
compute the visibility graph inside this star-shaped polygon and report all the triangles that are formed with the given point. This takes N visibility graph constructions, for a total of M operations, where M is the number of empty triangles.
Shortly, from every point you construct every empty triangle on the left of it, by triangulating the corresponding star-shaped polygon in all possible ways.
The construction of the visibility graph is a special version for the star-shaped polygon, which works in a traversal around the polygon, where every vertex has a visibility queue which gets updated.
The figure shows a star-shaped polygon in blue and the edges of its visibility graph in orange. The outline generates 6 triangles, and inner visibility edges 8 of them.
for each pair of points (A, B):
for each of the two half-planes defined by (A, B):
initialize a priority queue Q to empty.
for each point M in the half plane,
with increasing angle(AB, AM):
if angle(BA, BM) is smaller than all angles in Q:
print A,B,M
put M in Q with priority angle(BA, BM)
Inserting and querying the minimum in a priority queue can both be done in O(log N) time, so the complexity is O(N^3 log N) this way.
If I understand your questions, what you're looking for is https://en.wikipedia.org/wiki/Delaunay_triangulation
To quote from said Wikipedia article: "The most straightforward way of efficiently computing the Delaunay triangulation is to repeatedly add one vertex at a time, retriangulating the affected parts of the graph. When a vertex v is added, we split in three the triangle that contains v, then we apply the flip algorithm. Done naively, this will take O(n) time: we search through all the triangles to find the one that contains v, then we potentially flip away every triangle. Then the overall runtime is O(n2)."

Set operations (union and intersection) on simple polygons in 2D

I am looking for an algorithm for union and intersection operations on simple polygons in 2D.
Every polygon in my application is:
defined by a set of points (point is defined by x and y coordinates),
convex or concave (non-convex),
not self-intersecting,
without holes.
I met two approaches. The first is algorithm that indicates intersection points as entry or exit.
By K. Hormann and G. Greiner [ http://www.inf.usi.ch/hormann/papers/Greiner.1998.ECO.pdf ].
I very like this approache, but there is problem with degeneracies (shared edges, touching verticies).
I also read solution for degeneracies: [ http://arxiv.org/pdf/1211.3376.pdf ]. But I think that this solution returns wrong result for situations like this:
The second algorithm divides edges at intersection points and then select the "right" edges for selected operation.
By F. Martinéz et al. [ http://www.cs.ucr.edu/~vbz/cs230papers/martinez_boolean.pdf ].
But this algorithm returns one polygon instead two triangles for this situation (operation: intersection, point F lies on edge AB):
Can you please refer me to another approache? (Polygons usually have a little edges, so efficiency is not in the first place.)
I would like to use some algorithm instead existing library.
I recommend the following approach: for every vertex of a polygon, decide once for all if it is inside or outside the other polygon. The intersections points between edges tell you where the "insideness" state changes, and this allows you to delimit the fragments of both polygon outlines that you need to reassemble (for instance Out(P, Q) and Out(Q, P) are the fragments for the union, while In(P, Q) and In(Q, P) are those for the intersection).
Now to achieve good robustness at a little cost, use a coherence principle: the number of intersections along an edge must have a parity compatible with the insideness at both endoints. For instance, when joining an inside vertex to an outside vertex, you must find an odd number of intersections.
When you observe a deviation from this rule, modify the parity of the number of intersections. This can be done by discarding an intersection, or by duplicating one.
This measure will not avoid unwanted effects like very close edges not merging or microscopic intersections, but it will avoid catastrophic anomalies. It will work even with poor insideness tests or inaccurate intersection function.

How to find convex hull in a 3 dimensional space

Given a set of points S (x, y, z). How to find the convex hull of those points ?
I tried understanding the algorithm from here, but could not get much.
It says:
First project all of the points onto the xy-plane, and find an edge that is definitely on the hull by selecting the point with highest y-coordinate and then doing one iteration of gift wrapping to determine the other endpoint of the edge. This is the first part of the incomplete hull. We then build the hull iteratively. Consider this first edge; now find another point in order to form the first triangular face of the hull. We do this by picking the point such that all the other points lie to the right of this triangle, when viewed appropriately (just as in the gift-wrapping algorithm, in which we picked an edge such that all other points lay to the right of that edge). Now there are three edges in the hull; to continue, we pick one of them arbitrarily, and again scan through all the points to find another point to build a new triangle with this edge, and repeat this until there are no edges left. (When we create a new triangular face, we add two edges to the pool; however, we have to first check if they have already been added to the hull, in which case we ignore them.) There are O(n) faces, and each iteration takes O(n) time since we must scan all of the remaining points, giving O(n2).
Can anyone explain it in a more clearer way or suggest a simpler alternative approach.
Implementing the 3D convex hull is not easy, but many algorithms have been implemented, and code is widely available. At the high end of quality and time investment to use is CGAL. At the lower end on both measures is my own C code:
In between there is code all over the web, including this implementation of QuickHull.
I would suggest first try an easier approach like quick hull. (Btw, the order for gift wrapping is O(nh) not O(n2), where h is points on hull and order of quick hull is O(n log n)).
Under average circumstances quick hull works quite well, but processing usually becomes slow in cases of high symmetry or points lying on the circumference of a circle. Quick hull can be broken down to the following steps:
Find the points with minimum and maximum x coordinates, those are
bound to be part of the convex.
Use the line formed by the two points to divide the set in two
subsets of points, which will be processed recursively.
Determine the point, on one side of the line, with the maximum
distance from the line. The two points found before along with this
one form a triangle.
The points lying inside of that triangle cannot be part of the
convex hull and can therefore be ignored in the next steps.
Repeat the previous two steps on the two lines formed by the
triangle (not the initial line).
Keep on doing so on until no more points are left, the recursion has
come to an end and the points selected constitute the convex hull.
See this impementaion and explanation for 3d convex hull using quick hull algorithm.
Gift wrapping algorithm:
Jarvis's match algorithm is like wrapping a piece of string around the points. It starts by computing the leftmost point l, since we know that the left most point must be a convex hull vertex.This process will take linear time.Then the algorithm does a series of pivoting steps to find each successive convex hull vertex untill the next vertex is the original leftmost point again.
The algorithm find the successive convex hull vertex like this: the vertex immediately following a point p is the point that appears to be furthest to the right to someone standing at p and looking at the other points. In other words, if q is the vertex following p, and r is any other input point, then the triple p, q, r is in counter-clockwise order. We can find each successive vertex in linear time by performing a series of O(n) counter-clockwise tests.
Since the algorithm spends O(n) time for each convex hull vertex, the worst-case running time is O(n2). However, if the convex hull has very few vertices, Jarvis's march is extremely fast. A better way to write the running time is O(nh), where h is the number of convex hull vertices. In the worst case, h = n, and we get our old O(n2) time bound, but in the best case h = 3, and the algorithm only needs O(n) time. This is a so called output-sensitive algorithm, the smaller the output, the faster the algorithm.
The following image should give you more idea
GPL C++ code for finding 3D convex hulls is available at http://www.newtonapples.net/code/NewtonAppleWrapper_11Feb2016.tar.gz and a description of the O(n log(n)) algorithm at http://www.newtonapples.net/NewtonAppleWrapper.html
One of the simplest algorithms for convex hull computation in 3D was presented in the paper The QuickHull algorithm for Convex Hulls by Barber, etc from 1995. Unfortunately the original paper lacks any figures to simplify its understanding.
The algorithm works iteratively by storing boundary faces of some convex set with the vertices from the subset of original points. The remaining points are divided on the ones already inside the current convex set and the points outside it. And each step consists in enlarging the convex set by including one of outside points in it until no one remains.
The authors propose to start the algorithm in 3D from any tetrahedron with 4 vertices in original points. If these vertices are selected so that they are on the boundary of convex hull then it will accelerate the algorithm (they will not be removed from boundary during the following steps). Also the algorithm can start from the boundary surface containing just 2 oppositely oriented triangles with 3 vertices in original points. Such points can be selected as follows.
The first point has with the minimal (x,y,z) coordinates, if compare coordinates lexicographically.
The second point is the most distant from the first one.
The third point is the most distant from the line through the first two points.
The next figure presents initial points and the starting 2 oppositely oriented triangles:
The remaining points are subdivided in two sets:
Black points - above the plane containing the triangles - are associated with the triangle having normal oriented upward.
Red points - below the plane containing the triangles - are associated with the triangle having normal oriented downward.
On the following steps, the algorithm always associates each point currently outside the convex set with one of the boundary triangles that is "visible" from the point (point is within positive half-space of that triangle). More precisely each outside point is associated with the triangle, for which the distance between the point and the plane containing the triangle is the largest.
On each step of algorithm the furthest outside point is selected, then all faces of the current convex set visible from it are identified, these faces are removed from the convex set and replaced with the triangles having one vertex in furthest point and two other points on the horizon ridge (boundary of removed visible faces).
On the next figure the furthest point is pointed by green arrow and three visible triangles are highlighted in red:
Visible triangles deleted, back faces and inside points can be seen in the hole, horizon ridge is shown with red color:
5 new triangles (joining at the added point) patch the hole in the surface:
The points previously associated with the removed triangles are either become inner for the updated convex set or redistributed among new triangles.
The last figure also presents the final result of convex hull computation without any remaining outside points. (The figures were prepared in MeshInspector application, having this algorithm implemented.)

rectilinear polygon intersection

I am looking for / trying to develop an optimal algorithm for rectilinear polygon intersection with rectangles. The polygons I am testing do not have holes.
Answers like those given here and here are for very general polygons, and the solutions are understandably quite complex.
Hoping that the S.O. community can help me document algorithms for the special cases with just rectilinear polygons.
I am looking for the polygon filled in green in the image below:
The book Computational Geometry: an Introduction by Preparata and Shamos has a chapter on rectilinear polygons.
Use a sweep line algorithm, making use of the fact that a rectilinear polygon is defined by its vertices.
Represent the vertices along with the rectangle that they belong to, i.e. something like (x, y, #rect). To this set of points, add those points that result from the intersections of all edges. These new points are of the form (x, y, final), since we already know that they belong to the resulting set of points.
Now:
sort all points by their x-value
use a sweep line, starting at the first x-coordinate; for each new point:
if it's a "start point", add it to a temporary set T. Mark it "final" if it's a point from rectangle A and between y-coordinates from points from rectangle B in T (or vice versa).
if it's an "end point", remove it and its corresponding start point from T.
After that, all points that are marked "final" denote the vertices of the resulting polygon.
Let N be the total number of points. Further assuming that testing whether we should mark a point as being "final" takes time O(log(n)) by looking up T, this whole algorithm is in O(N*log(N)).
Note that the task of finding all intersections can be incorporated into the above algorithm, since finding all intersections efficiently is itself a sweep line algorithm usually. Also note that the resulting set of points may contain more than one polygon, which makes it slightly harder to reconstruct the solution polygons out of the "final" vertices.

Resources