io.MultiWriter vs. golang's pass-by-value - go

I'd like to create a situation where everything set to a particular log.Logger is also appended to a particular variable's array of strings.
The variable's type implements the io.Writer interface so it should be easy to add that via io.MultiWriter to log.New(), but I seem to have run into an intractable problem: the io.Writer interface is fixed and it's impossible for the variable to reference itself given golang's pass-by-value.
Maybe it will make more sense with an example:
package main
import "fmt"
import "io"
import "log"
import "os"
import "strings"
var Log *log.Logger
type Job_Result struct {
Job_ID int64
// other stuff
Log_Lines []string
}
// satisfies io.Writer interface
func (jr Job_Result) Write (p []byte) (n int, err error) {
s := strings.TrimRight(string(p),"\n ")
jr.Log_Lines= append(jr.Log_Lines,s)
return len(s), nil
}
func (jr Job_Result) Dump() {
fmt.Println("\nHere is a dump of the job result log lines:")
for n, s := range jr.Log_Lines{
fmt.Printf("\tline %d: %s\n",n,s)
}
}
func main() {
// make a Job_Result
var jr Job_Result
jr.Job_ID = 123
jr.Log_Lines = make([]string,0)
// create an io.MultiWriter that points to both stdout
// and that Job_Result var
var writers io.Writer
writers = io.MultiWriter(os.Stdout,jr)
Log = log.New(writers,
"",
log.Ldate|log.Ltime|log.Lshortfile)
// send some stuff to the log
Log.Println("program starting")
Log.Println("something happened")
Log.Printf("last thing that happened, should be %drd line\n",3)
jr.Dump()
}
This is the output, which is not surprising:
2016/07/28 07:20:07 testjob.go:43: program starting
2016/07/28 07:20:07 testjob.go:44: something happened
2016/07/28 07:20:07 testjob.go:45: last thing that happened, should be 3rd line
Here is a dump of the job result log lines:
I understand the problem - Write() is getting a copy of the Job_Result variable, so it's dutifully appending and then the copy vanishes as it's local. I should pass it a pointer to the Job_Result...but I'm not the one calling Write(), it's done by the Logger, and I can't change that.
I thought this was a simple solution to capturing log output into an array (and there is other subscribe/unsubscribe stuff I didn't show), but it all comes down to this problematic io.Write() interface.
Pilot error? Bad design? Something I'm not grokking? Thanks for any advice.

redefine the write function (is now pointer receiver)
// satisfies io.Writer interface
func (jr *Job_Result) Write (p []byte) (n int, err error) {
s := strings.TrimRight(string(p),"\n ")
jr.Log_Lines= append(jr.Log_Lines,s)
return len(s), nil
}
initialize
jr := new(Job_Result) // makes a pointer.
rest stays as is. This way, *Job_Result still implements io.Writer, but doesn't lose state.
The go tutorial already said, when a method modifies the receiver, you should probably use a pointer receiver, or the changes may be lost. Working with a pointer instead of the actual object has little downside, when you want to make sure, there is exactly one object. (And yes, it technically isn't an object).

Related

Using reflect to update value by reference when argument is not a pointer in go

I've had difficulty learning the basics of reflect, pointers and interface in go, so here's another entry level question I can't seem to figure out.
This code does what I want it to do - I'm using reflect to add another record to a slice that's typed as an interface.
package main
import (
"reflect"
"log"
)
type Person struct {
Name string
}
func Add(slice interface{}) {
s := reflect.ValueOf(slice).Elem()
// in my actual code, p is declared via the use of reflect.New([Type])
p := Person{Name:"Sam"}
s.Set(reflect.Append(s,reflect.ValueOf(p)))
}
func main() {
p := []Person{}
Add(&p)
log.Println(p)
}
If I changed the Add and main function to this, things don't work the way I want it to.
func Add(slice interface{}) {
s := reflect.ValueOf(&slice).Elem()
p := Person{Name:"Sam"}
s.Set(reflect.Append(reflect.ValueOf(slice),reflect.ValueOf(p)))
log.Println(s)
}
func main() {
p := []Person{}
Add(p)
log.Println(p)
}
That is, the log.Println(p) at the end doesn't show a slice with the record Sam in it like the way I had hoped. So my question is whether it's possible for me to have Add() receive a slice that is not a pointer, and for me to still write some code in Add() that will produce the outcome shown in my first scenario?
A lot of my recent questions dance around this kind of subject, so it's still taking me a while to figure out how to use the reflect package effectively.
No, it's not possible to append to a slice in a function without passing in a pointer to the slice. This isn't related to reflection, but to how variables are passed in to functions. Here's the same code, modified to not use reflection:
package main
import (
"log"
)
type Person struct {
Name string
}
func AddWithPtr(slicep interface{}) {
sp := slicep.(*[]Person)
// This modifies p1 itself, since *sp IS p1
*sp = append(*sp, Person{"Sam"})
}
func Add(slice interface{}) {
// s is now a copy of p2
s := slice.([]Person)
sp := &s
// This modifies a copy of p2 (i.e. s), not p2 itself
*sp = append(*sp, Person{"Sam"})
}
func main() {
p1 := []Person{}
// This passes a reference to p1
AddWithPtr(&p1)
log.Println("Add with pointer: ", p1)
p2 := []Person{}
// This passes a copy of p2
Add(p2)
log.Println("Add without pointer:", p2)
}
(Above, when it says 'copy' of the slice, it doesn't mean the copy of the underlying data - just the slice)
When you pass in a slice, the function effectively gets a new slice that refers to the same data as the original. Appending to the slice in the function increases the length of the new slice, but doesn't change the length of the original slice that was passed in. That's why the original slice remains unchanged.

Passing pointer to string when the function takes an interface?

I am passing a pointer to a string, to a method which takes an interface (I have multiple versions of the method, with different receivers, so I am trying to work with empty interfaces, so that I don't end up with a ton of boilerplate madness. Essentially, I want to populate the string with the first value in the slice. I am able to see the value get populated inside the function, but then for some reason, in my application which calls it, tha value doesn't change. I suspect this is some kind of pointer arithmetic problem, but could really use some help!
I have the following interface :
type HeadInterface interface{
Head(interface{})
}
And then I have the following functions :
func Head(slice HeadInterface, result interface{}){
slice.Head(result)
}
func (slice StringSlice) Head(result interface{}){
result = reflect.ValueOf(slice[0])
fmt.Println(result)
}
and... here is my call to the function from an application which calls the mehtod...
func main(){
test := x.StringSlice{"Phil", "Jessica", "Andrea"}
// empty result string for population within the function
var result string = ""
// Calling the function (it is a call to 'x.Head' because I lazily just called th import 'x')
x.Head(test, &result)
// I would have thought I would have gotten "Phil" here, but instead, it is still empty, despite the Println in the function, calling it "phil.
fmt.Println(result)
}
*NOTE : I am aware that getting the first element doesn't need to be this complicated, and could be slice[0] as a straight assertion, but this is more of an exercise in reusable code, and also in trying to get a grasp of pointers, so please don't point out that solution - I would get much more use out of a solution to my actual problem here * :)
As you said in your NOTE, I'm pretty sure this doesn't have to be this complicated, but to make it work in your context:
package main
import (
"fmt"
"reflect"
)
type HeadInterface interface {
Head(interface{})
}
func Head(slice HeadInterface, result interface{}) {
slice.Head(result)
}
type StringSlice []string
func (slice StringSlice) Head(result interface{}) {
switch result := result.(type) {
case *string:
*result = reflect.ValueOf(slice[0]).String()
fmt.Println("inside Head:", *result)
default:
panic("can't handle this type!")
}
}
func main() {
test := StringSlice{"Phil", "Jessica", "Andrea"}
// empty result string for population within the function
var result string = ""
// Calling the function (it is a call to 'x.Head' because I lazily just called th import 'x')
Head(test, &result)
// I would have thought I would have gotten "Phil" here, but instead, it is still empty, despite the Println in the function, calling it "phil.
fmt.Println("outside:", result)
}
The hard part about working with interface{} is that it's hard to be specific about a type's behavior given that interface{} is the most un-specific type. To modify a variable that you pass as a pointer to a function, you have to use the asterisk (dereference) (for example *result) on the variable in order to change the value it points to, not the pointer itself. But to use the asterisk, you have to know it's actually a pointer (something interface{} doesn't tell you) so that's why I used the type switch to be sure it's a pointer to a string.

How do I print the entire url.URL struct?

I have the following https://play.golang.org/p/utnlHJqlX1:
package main
import (
"fmt"
"net/url"
)
func main() {
u, err := url.Parse("http://www.something.com")
if err != nil {
fmt.Println(err)
}
fmt.Printf("%+v", u)
}
I was expecting the "%+v" to print the struct and the fields. Instead it prints: "http://www.something.com"
It seems to be because Parse is returning a pointer to the struct.
Try with this (note the *):
fmt.Printf("%+v\n", *u)
Modified playground:
https://play.golang.org/p/Grjrp2QriK
EDIT
To expand on this, the reason for this is that fmt treats structs that implement Stringer differently when doing %+v.
This is the relevant code: https://golang.org/src/fmt/print.go?s=4772:4849#L577
Since *URL implements Stringer: https://golang.org/pkg/net/url/#URL.String
That's the string being used.
By dereferencing the pointer, we get an URL, which does not implement the interface (cause the receiver in the String method is a pointer).
You can always use the %#v formatting verb to print the Go syntax representation for any value. For example:
fmt.Printf("%#v\n",u)
This can be handy for debugging & automatic code generation. Since the output is the Go representation, this could be pasted into a test or similar as a variable.
This way you don't need to worry about type that override fmt.Stringer

Turning []interface{} into arguments to a non-variadic function

I am looking for an elegant way to unzip a list of arguments in Go. I do not want to use a variadic function for that purpose because in my usecase when writing a function I already know the number of arguments and I want to keep that part simple. However in my usecase the parameters arrive as []interface{}.
I could not find a solution but hey maybe someone out there already knows how to do that?
package main
import (
"fmt"
)
// NON-VARIADIC greater
func greet(n1, n2 string) {
fmt.Printf("%s %s\n", n1, n2)
}
func main() {
l := []interface{}{"hello", "world"}
// works
greet(l[0].(string), l[1].(string))
// does not work: "./args.go:20: not enough arguments in call to greet"
//greet(l...)
// is there something more elegant to unzip the list?
}
You could create a "generic" caller using reflect package, although this comes with overhead and lacks type safety. Unless you have some special case situation and don't know what you want to call in the code, it would be wiser to use the snippet from your question which works, but you consider not elegant.
Example usage of reflect which could be your starting point:
package main
import (
"fmt"
"reflect"
)
func call(f interface{}, args []interface{}) {
// Convert arguments to reflect.Value
vs := make([]reflect.Value, len(args))
for n := range args {
vs[n] = reflect.ValueOf(args[n])
}
// Call it. Note it panics if f is not callable or arguments don't match
reflect.ValueOf(f).Call(vs)
}
func greet(n1, n2 string) {
fmt.Printf("%s %s\n", n1, n2)
}
func main() {
l := []interface{}{"hello", "world"}
call(greet, l)
}
// Output: hello world
https://play.golang.org/p/vbi3CChCdV
I'm not quite sure what you're trying to do. If you want a way to easily pass a slice of two empty interfaces to a function that accepts two strings, you can create a little helper:
func twoStrings(vs []interface{}) (string, string) {
return vs[0].(string), vs[1].(string)
}
Use it as
greet(twoStrings(l))
Playground: http://play.golang.org/p/R8KFwMUT_V.
But honestly, it seems like you're doing something wrong, trying to make the Go type system to do something it cannot do.

How to change pointer slice in golang

I'm trying to get a better understanding of go. I created a little exercise for myself: pass a pointer slice to a function and modify it.
This is what I came up with:
package main
import (
"fmt"
"unsafe"
)
func main() {
var data *[]byte
fillData(data)
fmt.Println((*data)[0:5])
}
func fillData(data *[]byte) {
b := []byte("hello")
fmt.Println(b[0:5])
fmt.Println(string(b[0:5]))
data = (*[]byte)(unsafe.Pointer(&b[0]))
}
But it gives an invalid memory address or nil pointer dereference error. I know I wouldn't use something like this in real code but I was just curious how to pass a slice and modify it without returning it.
https://play.golang.org/p/_K5ltKKKNV
When you try to update data in fillData, you make two errors. First, you update the pointer rather than what it's pointed to. Second, data is a nil pointer, so writing through that pointer will cause a nil pointer error.
Here's one possible way to write the code. data starts as a zero'ed slice, and gets updated inside fillData. This will copy the slice information (len, cap, and pointer to array) from b to *data which means that data will share information with b (importantly, including sharing the underlying array).
package main
import "fmt"
func main() {
var data []byte
fillData(&data)
fmt.Println(data, data[0:5])
}
func fillData(data *[]byte) {
b := []byte("hello")
*data = b[0:1]
}
Another way would be to have data being a pointer, and updating it. Then you have to pass a double pointer into fillData. That would look like this:
package main
import "fmt"
func main() {
var data *[]byte
fillData(&data)
fmt.Println((*data)[0:5])
}
func fillData(data **[]byte) {
b := []byte("hello")
*data = &b
}
Finally, the best way to write this code isn't to use pointers at all, and just return the slice. Unlike C or C++, it's rarely needed to use "output" parameters to functions. That's because go allows multiple return values.
package main
import "fmt"
func main() {
data := getData()
fmt.Println(data, data[0:5])
}
func getData() []byte {
return []byte("hello")[:1]
}

Resources