Better approach for too many if else statement - algorithm

if ( x < 275 && x >= 0 )
f = 275
else if ( x < 450 && x >= 275) (right side comparison always previous left side default comparison value
f = 450
else if ( x < 700 && x >= 450)
f = 700
else if ( x < 1000 && x >= 700)
f = 1000
..... and more
is there any way or mathematical formula approach to eliminate this multiple if else statement for less code require?

Here is something in C (but easy enough to port to almost anything). It misses a couple of conditions (x < 0 and x > "biggest known") It doesn't add much value when you only have 4 values, but the more values you have, the more code this removes. Note that it will slow things down, but doubtful that you'd notice it unless you had a huge list of possible values.
int getF(int x)
{
/* possibleValues must be sorted in ascending order */
int possibleValues[] = { 275, 450, 700, 1000 };
for(int i = 0; i < sizeof(possibleValues) / sizeof(possibleValues[0]); i++)
{
int pv = possibleValues[i];
if (x < pv)
{
return pv;
}
}
/* fall thru "error" handle as you see fit */
return x;
}

if(x>0)
{
if(x<275)
f = 275;
else if(x<450)
f = 450;
else if(x<700)
f = 700;
else if(x<1000)
f = 1000;
else //and so on

Assuming that x>0. Just avoiding if-else, this also shall suffice the conditions -
x<275 ? 275 : (x<450 ? 450 : (x<700 ? 700 : (x<1000 ? 1000 :
Though if there is any defined type range of inputs like INT, BIG etc instead of 275, 450.. you can check the type of input. Also you can so the same using iteration as suggested by #John3136.

Related

Most Frequent Digit In a Specific Range

First of all: before you downgrade THIS IS NOT MY HOMEWORK, this question belongs to codingbat or eulerproject or another website. I am NOT asking you to give me a fully completed and coded answer I am asking you to give me some ideas to HELP me.
Later on, I am having a time limit trouble with this problem. I actually solved it but my solution is too slow. It needs to be done within at 0 to 1 second. In the worst case scenario my code consumes more than 8 seconds. If you could help me with some ideas or if you could show me a more accurate solution pseudo code etc. I would really appreciate it.
First input means how many times we are going to process. Later on, user enters two numbers [X, Y], (0 < X < Y < 100000) We need to compute the most frequent digit in the range of these two numbers X and Y. (including X and Y) Besides, If multiple digits have the same maximum frequency than we suppose to print the smallest of them.
To illustrate:
User first enters number of test cases: 7
User enters X and Y(first test case): 0 21
Now I did open all digits in my solution you may have another idea you are free to use it but to give you a hint: We need to treat numbers like this: 0 1 2 3 ... (here we should open 10 as 1 and 0 same for all of them) 1 0 1 1 1 2 1 3 ... 1 9 2 0 2 1 than we show the most frequent digit between 0 and 21 (In this case: 1)
More examples: (Test cases if you want to check your solution)
X: 7 Y: 956 Result: 1
X: 967 Y: 8000 Result: 7
X: 420 Y: 1000 Result: 5 etc.
Here's my code so far:
package most_frequent_digit;
import java.util.HashMap;
import java.util.Map;
import java.util.Scanner;
import java.util.Set;
public class Main
{
public static int secondP = 0;
public static void getPopularElement(int[] list)
{
Map<Integer, Integer> map = new HashMap<Integer, Integer>();
for (Integer nextInt : list)
{
Integer count = map.get(nextInt);
if (count == null)
{
count = 1;
} else
{
count = count + 1;
}
map.put(nextInt, count);
}
Integer mostRepeatedNumber = null;
Integer mostRepeatedCount = null;
Set<Integer> keys = map.keySet();
for (Integer key : keys)
{
Integer count = map.get(key);
if (mostRepeatedNumber == null)
{
mostRepeatedNumber = key;
mostRepeatedCount = count;
} else if (count > mostRepeatedCount)
{
mostRepeatedNumber = key;
mostRepeatedCount = count;
} else if (count == mostRepeatedCount && key < mostRepeatedNumber)
{
mostRepeatedNumber = key;
mostRepeatedCount = count;
}
}
System.out.println(mostRepeatedNumber);
}
public static void main(String[] args)
{
#SuppressWarnings("resource")
Scanner read = new Scanner(System.in);
int len = read.nextInt();
for (int w = 0; w < len; w++)
{
int x = read.nextInt();
int y = read.nextInt();
String list = "";
for (int i = x; i <= y; i++)
{
list += i;
}
String newList = "";
newList += list.replaceAll("", " ").trim();
int[] listArr = new int[list.length()];
for (int j = 0; j < newList.length(); j += 2)
{
listArr[secondP] = Character.getNumericValue(newList.charAt(j));
secondP++;
}
getPopularElement(listArr);
secondP = 0;
}
}
}
As you can see it takes too long if user enters X: 0 Y: 1000000 like 8 - 9 seconds. But it supposed to return answer in 1 second. Thanks for checking...
Listing all digits and then count them is a very slow way to do this.
There are some simple cases:
X = 10n, X = 10n+1-1 (n > 0) :
The digits 1 to 9 are appearing 10n + n⋅(10n-10n-1) times, 0 appears n⋅(10n-10n-1) times.
E.g.
10, 99: the digits 1 to 9 are appearing 19 times, 0 appears 9 times.
100, 999: the digits 1 to 9 are appearing 280 times, 0 appears 180 times.
X = a⋅10ⁿ, Y = (a+1)⋅10ⁿ-1 (1 ≤ a ≤ 9):
All digits except for a appears n⋅10n-1, the digit a appears 10n + n⋅10n-1 times.
E.g.
10, 19: all digits except for 1 appear one time, 1 appears 11 times.
20, 299: all digits except for 2 appear 20 times, 2 appears 120 times.
With this cases you can split off the input into sub cases. E.g.
X = 0, Y = 21. Split it up into
X₁ = 0, Y₁ = 9 (special case, but very simple),
X₂ = 10, Y₂ = 19 (case 2),
X₃ = 20, Y₃ = 21 (case 3)
X = 0, Y = 3521. Split it up into
X₁ = 0, Y₁ = 9 (special case, but very simple),
X₂ = 10, Y₂ = 99 (case 1),
X₃ = 100, Y₃ = 999 (case 1),
X₄ = 1000, Y₄ = 1999 (case 2),
X₅ = 2000, Y₅ = 2999 (case 2),
X₆ = 3000, Y₆ = 3521 (case 3)
I left case 3 open. The case looks like X = a⋅10ⁿ, Y = a⋅10ⁿ + b (1 ≤ a ≤ 9, 0 ≤ b < 10ⁿ).
Here you know you get the digit a b-times plus the number of appearances in 0 to b. Since X and Y are n+1 digit numbers, b has n digits, with leading zeros.
The missing parts of case 3 have to be filled by the reader.

Fastest solution for all possible combinations, taking k elements out of n possible with k>2 and n large

I am using MATLAB to find all of the possible combinations of k elements out of n possible elements. I stumbled across this question, but unfortunately it does not solve my problem. Of course, neither does nchoosek as my n is around 100.
Truth is, I don't need all of the possible combinations at the same time. I will explain what I need, as there might be an easier way to achieve the desired result. I have a matrix M of 100 rows and 25 columns.
Think of a submatrix of M as a matrix formed by ALL columns of M and only a subset of the rows. I have a function f that can be applied to any matrix which gives a result of either -1 or 1. For example, you can think of the function as sign(det(A)) where A is any matrix (the exact function is irrelevant for this part of the question).
I want to know what is the biggest number of rows of M for which the submatrix A formed by these rows is such that f(A) = 1. Notice that if f(M) = 1, I am done. However, if this is not the case then I need to start combining rows, starting of all combinations with 99 rows, then taking the ones with 98 rows, and so on.
Up to this point, my implementation had to do with nchoosek which worked when M had only a few rows. However, now that I am working with a relatively bigger dataset, things get stuck. Do any of you guys think of a way to implement this without having to use the above function? Any help would be gladly appreciated.
Here is my minimal working example, it works for small obs_tot but fails when I try to use bigger numbers:
value = -1; obs_tot = 100; n_rows = 25;
mat = randi(obs_tot,n_rows);
while value == -1
posibles = nchoosek(1:obs_tot,i);
[num_tries,num_obs] = size(possibles);
num_try = 1;
while value == 0 && num_try <= num_tries
check = mat(possibles(num_try,:),:);
value = sign(det(check));
num_try = num_try + 1;
end
i = i - 1;
end
obs_used = possibles(num_try-1,:)';
Preamble
As yourself noticed in your question, it would be nice not to have nchoosek to return all possible combinations at the same time but rather to enumerate them one by one in order not to explode memory when n becomes large. So something like:
enumerator = CombinationEnumerator(k, n);
while(enumerator.MoveNext())
currentCombination = enumerator.Current;
...
end
Here is an implementation of such enumerator as a Matlab class. It is based on classic IEnumerator<T> interface in C# / .NET and mimics the subfunction combs in nchoosek (the unrolled way):
%
% PURPOSE:
%
% Enumerates all combinations of length 'k' in a set of length 'n'.
%
% USAGE:
%
% enumerator = CombinaisonEnumerator(k, n);
% while(enumerator.MoveNext())
% currentCombination = enumerator.Current;
% ...
% end
%
%% ---
classdef CombinaisonEnumerator < handle
properties (Dependent) % NB: Matlab R2013b bug => Dependent must be declared before their get/set !
Current; % Gets the current element.
end
methods
function [enumerator] = CombinaisonEnumerator(k, n)
% Creates a new combinations enumerator.
if (~isscalar(n) || (n < 1) || (~isreal(n)) || (n ~= round(n))), error('`n` must be a scalar positive integer.'); end
if (~isscalar(k) || (k < 0) || (~isreal(k)) || (k ~= round(k))), error('`k` must be a scalar positive or null integer.'); end
if (k > n), error('`k` must be less or equal than `n`'); end
enumerator.k = k;
enumerator.n = n;
enumerator.v = 1:n;
enumerator.Reset();
end
function [b] = MoveNext(enumerator)
% Advances the enumerator to the next element of the collection.
if (~enumerator.isOkNext),
b = false; return;
end
if (enumerator.isInVoid)
if (enumerator.k == enumerator.n),
enumerator.isInVoid = false;
enumerator.current = enumerator.v;
elseif (enumerator.k == 1)
enumerator.isInVoid = false;
enumerator.index = 1;
enumerator.current = enumerator.v(enumerator.index);
else
enumerator.isInVoid = false;
enumerator.index = 1;
enumerator.recursion = CombinaisonEnumerator(enumerator.k - 1, enumerator.n - enumerator.index);
enumerator.recursion.v = enumerator.v((enumerator.index + 1):end); % adapt v (todo: should use private constructor)
enumerator.recursion.MoveNext();
enumerator.current = [enumerator.v(enumerator.index) enumerator.recursion.Current];
end
else
if (enumerator.k == enumerator.n),
enumerator.isInVoid = true;
enumerator.isOkNext = false;
elseif (enumerator.k == 1)
enumerator.index = enumerator.index + 1;
if (enumerator.index <= enumerator.n)
enumerator.current = enumerator.v(enumerator.index);
else
enumerator.isInVoid = true;
enumerator.isOkNext = false;
end
else
if (enumerator.recursion.MoveNext())
enumerator.current = [enumerator.v(enumerator.index) enumerator.recursion.Current];
else
enumerator.index = enumerator.index + 1;
if (enumerator.index <= (enumerator.n - enumerator.k + 1))
enumerator.recursion = CombinaisonEnumerator(enumerator.k - 1, enumerator.n - enumerator.index);
enumerator.recursion.v = enumerator.v((enumerator.index + 1):end); % adapt v (todo: should use private constructor)
enumerator.recursion.MoveNext();
enumerator.current = [enumerator.v(enumerator.index) enumerator.recursion.Current];
else
enumerator.isInVoid = true;
enumerator.isOkNext = false;
end
end
end
end
b = enumerator.isOkNext;
end
function [] = Reset(enumerator)
% Sets the enumerator to its initial position, which is before the first element.
enumerator.isInVoid = true;
enumerator.isOkNext = (enumerator.k > 0);
end
function [c] = get.Current(enumerator)
if (enumerator.isInVoid), error('Enumerator is positioned (before/after) the (first/last) element.'); end
c = enumerator.current;
end
end
properties (GetAccess=private, SetAccess=private)
k = [];
n = [];
v = [];
index = [];
recursion = [];
current = [];
isOkNext = false;
isInVoid = true;
end
end
We can test implementation is ok from command window like this:
>> e = CombinaisonEnumerator(3, 6);
>> while(e.MoveNext()), fprintf(1, '%s\n', num2str(e.Current)); end
Which returns as expected the following n!/(k!*(n-k)!) combinations:
1 2 3
1 2 4
1 2 5
1 2 6
1 3 4
1 3 5
1 3 6
1 4 5
1 4 6
1 5 6
2 3 4
2 3 5
2 3 6
2 4 5
2 4 6
2 5 6
3 4 5
3 4 6
3 5 6
4 5 6
Implementation of this enumerator may be further optimized for speed, or by enumerating combinations in an order more appropriate for your case (e.g., test some combinations first rather than others) ... Well, at least it works! :)
Problem solving
Now solving your problem is really easy:
n = 100;
m = 25;
matrix = rand(n, m);
k = n;
cont = true;
while(cont && (k >= 1))
e = CombinationEnumerator(k, n);
while(cont && e.MoveNext());
cont = f(matrix(e.Current(:), :)) ~= 1;
end
if (cont), k = k - 1; end
end

Number distribution

Problem: We have x checkboxes and we want to check y of them evenly.
Example 1: select 50 checkboxes of 100 total.
[-]
[x]
[-]
[x]
...
Example 2: select 33 checkboxes of 100 total.
[-]
[-]
[x]
[-]
[-]
[x]
...
Example 3: select 66 checkboxes of 100 total:
[-]
[x]
[x]
[-]
[x]
[x]
...
But we're having trouble to come up with a formula to check them in code, especially once you go 11/111 or something similar. Anyone has an idea?
Let's first assume y is divisible by x. Then we denote p = y/x and the solution is simple. Go through the list, every p elements, mark 1 of them.
Now, let's say r = y%x is non zero. Still p = y/x where / is integer devision. So, you need to:
In the first p-r elements, mark 1 elements
In the last r elements, mark 2 elements
Note: This depends on how you define evenly distributed. You might want to spread the r sections withx+1 elements in between p-r sections with x elements, which indeed is again the same problem and could be solved recursively.
Alright so it wasn't actually correct. I think this would do though:
Regardless of divisibility:
if y > 2*x, then mark 1 element every p = y/x elements, x times.
if y < 2*x, then mark all, and do the previous step unmarking y-x out of y checkboxes (so like in the previous case, but x is replaced by y-x)
Note: This depends on how you define evenly distributed. You might want to change between p and p+1 elements for example to distribute them better.
Here's a straightforward solution using integer arithmetic:
void check(char boxes[], int total_count, int check_count)
{
int i;
for (i = 0; i < total_count; i++)
boxes[i] = '-';
for (i = 0; i < check_count; i++)
boxes[i * total_count / check_count] = 'x';
}
total_count is the total number of boxes, and check_count is the number of boxes to check.
First, it sets every box to unchecked. Then, it checks check_count boxes, scaling the counter to the number of boxes.
Caveat: this is left-biased rather than right-biased like in your examples. That is, it prints x--x-- rather than --x--x. You can turn it around by replacing
boxes[i * total_count / check_count] = 'x';
with:
boxes[total_count - (i * total_count / check_count) - 1] = 'x';
Correctness
Assuming 0 <= check_count <= total_count, and that boxes has space for at least total_count items, we can prove that:
No check marks will overlap. i * total_count / check_count increments by at least one on every iteration, because total_count >= check_count.
This will not overflow the buffer. The subscript i * total_count / check_count
Will be >= 0. i, total_count, and check_count will all be >= 0.
Will be < total_count. When n > 0 and d > 0:
(n * d - 1) / d < n
In other words, if we take n * d / d, and nudge the numerator down, the quotient will go down, too.
Therefore, (check_count - 1) * total_count / check_count will be less than total_count, with the assumptions made above. A division by zero won't happen because if check_count is 0, the loop in question will have zero iterations.
Say number of checkboxes is C and the number of Xes is N.
You example states that having C=111 and N=11 is your most troublesome case.
Try this: divide C/N. Call it D. Have index in the array as double number I. Have another variable as counter, M.
double D = (double)C / (double)N;
double I = 0.0;
int M = N;
while (M > 0) {
if (checkboxes[Round(I)].Checked) { // if we selected it, skip to next
I += 1.0;
continue;
}
checkboxes[Round(I)].Checked = true;
M --;
I += D;
if (Round(I) >= C) { // wrap around the end
I -= C;
}
}
Please note that Round(x) should return nearest integer value for x.
This one could work for you.
I think the key is to keep count of how many boxes you expect to have per check.
Say you want 33 checks in 100 boxes. 100 / 33 = 3.030303..., so you expect to have one check every 3.030303... boxes. That means every 3.030303... boxes, you need to add a check. 66 checks in 100 boxes would mean one check every 1.51515... boxes, 11 checks in 111 boxes would mean one check every 10.090909... boxes, and so on.
double count = 0;
for (int i = 0; i < boxes; i++) {
count += 1;
if (count >= boxes/checks) {
checkboxes[i] = true;
count -= count.truncate(); // so 1.6 becomes 0.6 - resetting the count but keeping the decimal part to keep track of "partial boxes" so far
}
}
You might rather use decimal as opposed to double for count, or there's a slight chance the last box will get skipped due to rounding errors.
Bresenham-like algorithm is suitable to distribute checkboxes evenly. Output of 'x' corresponds to Y-coordinate change. It is possible to choose initial err as random value in range [0..places) to avoid biasing.
def Distribute(places, stars):
err = places // 2
res = ''
for i in range(0, places):
err = err - stars
if err < 0 :
res = res + 'x'
err = err + places
else:
res = res + '-'
print(res)
Distribute(24,17)
Distribute(24,12)
Distribute(24,5)
output:
x-xxx-xx-xx-xxx-xx-xxx-x
-x-x-x-x-x-x-x-x-x-x-x-x
--x----x----x---x----x--
Quick html/javascript solution:
<html>
<body>
<div id='container'></div>
<script>
var cbCount = 111;
var cbCheckCount = 11;
var cbRatio = cbCount / cbCheckCount;
var buildCheckCount = 0;
var c = document.getElementById('container');
for (var i=1; i <= cbCount; i++) {
// make a checkbox
var cb = document.createElement('input');
cb.type = 'checkbox';
test = i / cbRatio - buildCheckCount;
if (test >= 1) {
// check the checkbox we just made
cb.checked = 'checked';
buildCheckCount++;
}
c.appendChild(cb);
c.appendChild(document.createElement('br'));
}
</script>
</body></html>
Adapt code from one question's answer or another answer from earlier this month. Set N = x = number of checkboxes and M = y = number to be checked and apply formula (N*i+N)/M - (N*i)/M for section sizes. (Also see Joey Adams' answer.)
In python, the adapted code is:
N=100; M=33; p=0;
for i in range(M):
k = (N+N*i)/M
for j in range(p,k-1): print "-",
print "x",
p=k
which produces
- - x - - x - - x - - x - - [...] x - - x - - - x where [...] represents 25 --x repetitions.
With M=66 the code gives
x - x x - x x - x x - x x - [...] x x - x x - x - x where [...] represents mostly xx- repetitions, with one x- in the middle.
Note, in C or java: Substitute for (i=0; i<M; ++i) in place of for i in range(M):. Substitute for (j=p; j<k-1; ++j) in place of for j in range(p,k-1):.
Correctness: Note that M = x boxes get checked because print "x", is executed M times.
What about using Fisher–Yates shuffle ?
Make array, shuffle and pick first n elements. You do not need to shuffle all of them, just first n of array. Shuffling can be find in most language libraries.

Number of 1s in the two's complement binary representations of integers in a range

This problem is from the 2011 Codesprint (http://csfall11.interviewstreet.com/):
One of the basics of Computer Science is knowing how numbers are represented in 2's complement. Imagine that you write down all numbers between A and B inclusive in 2's complement representation using 32 bits. How many 1's will you write down in all ?
Input:
The first line contains the number of test cases T (<1000). Each of the next T lines contains two integers A and B.
Output:
Output T lines, one corresponding to each test case.
Constraints:
-2^31 <= A <= B <= 2^31 - 1
Sample Input:
3
-2 0
-3 4
-1 4
Sample Output:
63
99
37
Explanation:
For the first case, -2 contains 31 1's followed by a 0, -1 contains 32 1's and 0 contains 0 1's. Thus the total is 63.
For the second case, the answer is 31 + 31 + 32 + 0 + 1 + 1 + 2 + 1 = 99
I realize that you can use the fact that the number of 1s in -X is equal to the number of 0s in the complement of (-X) = X-1 to speed up the search. The solution claims that there is a O(log X) recurrence relation for generating the answer but I do not understand it. The solution code can be viewed here: https://gist.github.com/1285119
I would appreciate it if someone could explain how this relation is derived!
Well, it's not that complicated...
The single-argument solve(int a) function is the key. It is short, so I will cut&paste it here:
long long solve(int a)
{
if(a == 0) return 0 ;
if(a % 2 == 0) return solve(a - 1) + __builtin_popcount(a) ;
return ((long long)a + 1) / 2 + 2 * solve(a / 2) ;
}
It only works for non-negative a, and it counts the number of 1 bits in all integers from 0 to a inclusive.
The function has three cases:
a == 0 -> returns 0. Obviously.
a even -> returns the number of 1 bits in a plus solve(a-1). Also pretty obvious.
The final case is the interesting one. So, how do we count the number of 1 bits from 0 to an odd number a?
Consider all of the integers between 0 and a, and split them into two groups: The evens, and the odds. For example, if a is 5, you have two groups (in binary):
000 (aka. 0)
010 (aka. 2)
100 (aka. 4)
and
001 (aka 1)
011 (aka 3)
101 (aka 5)
Observe that these two groups must have the same size (because a is odd and the range is inclusive). To count how many 1 bits there are in each group, first count all but the last bits, then count the last bits.
All but the last bits looks like this:
00
01
10
...and it looks like this for both groups. The number of 1 bits here is just solve(a/2). (In this example, it is the number of 1 bits from 0 to 2. Also, recall that integer division in C/C++ rounds down.)
The last bit is zero for every number in the first group and one for every number in the second group, so those last bits contribute (a+1)/2 one bits to the total.
So the third case of the recursion is (a+1)/2 + 2*solve(a/2), with appropriate casts to long long to handle the case where a is INT_MAX (and thus a+1 overflows).
This is an O(log N) solution. To generalize it to solve(a,b), you just compute solve(b) - solve(a), plus the appropriate logic for worrying about negative numbers. That is what the two-argument solve(int a, int b) is doing.
Cast the array into a series of integers. Then for each integer do:
int NumberOfSetBits(int i)
{
i = i - ((i >> 1) & 0x55555555);
i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
return (((i + (i >> 4)) & 0x0F0F0F0F) * 0x01010101) >> 24;
}
Also this is portable, unlike __builtin_popcount
See here: How to count the number of set bits in a 32-bit integer?
when a is positive, the better explanation was already been posted.
If a is negative, then on a 32-bit system each negative number between a and zero will have 32 1's bits less the number of bits in the range from 0 to the binary representation of positive a.
So, in a better way,
long long solve(int a) {
if (a >= 0){
if (a == 0) return 0;
else if ((a %2) == 0) return solve(a - 1) + noOfSetBits(a);
else return (2 * solve( a / 2)) + ((long long)a + 1) / 2;
}else {
a++;
return ((long long)(-a) + 1) * 32 - solve(-a);
}
}
In the following code, the bitsum of x is defined as the count of 1 bits in the two's complement representation of the numbers between 0 and x (inclusive), where Integer.MIN_VALUE <= x <= Integer.MAX_VALUE.
For example:
bitsum(0) is 0
bitsum(1) is 1
bitsum(2) is 1
bitsum(3) is 4
..etc
10987654321098765432109876543210 i % 10 for 0 <= i <= 31
00000000000000000000000000000000 0
00000000000000000000000000000001 1
00000000000000000000000000000010 2
00000000000000000000000000000011 3
00000000000000000000000000000100 4
00000000000000000000000000000101 ...
00000000000000000000000000000110
00000000000000000000000000000111 (2^i)-1
00000000000000000000000000001000 2^i
00000000000000000000000000001001 (2^i)+1
00000000000000000000000000001010 ...
00000000000000000000000000001011 x, 011 = x & (2^i)-1 = 3
00000000000000000000000000001100
00000000000000000000000000001101
00000000000000000000000000001110
00000000000000000000000000001111
00000000000000000000000000010000
00000000000000000000000000010001
00000000000000000000000000010010 18
...
01111111111111111111111111111111 Integer.MAX_VALUE
The formula of the bitsum is:
bitsum(x) = bitsum((2^i)-1) + 1 + x - 2^i + bitsum(x & (2^i)-1 )
Note that x - 2^i = x & (2^i)-1
Negative numbers are handled slightly differently than positive numbers. In this case the number of zeros is subtracted from the total number of bits:
Integer.MIN_VALUE <= x < -1
Total number of bits: 32 * -x.
The number of zeros in a negative number x is equal to the number of ones in -x - 1.
public class TwosComplement {
//t[i] is the bitsum of (2^i)-1 for i in 0 to 31.
private static long[] t = new long[32];
static {
t[0] = 0;
t[1] = 1;
int p = 2;
for (int i = 2; i < 32; i++) {
t[i] = 2*t[i-1] + p;
p = p << 1;
}
}
//count the bits between x and y inclusive
public static long bitsum(int x, int y) {
if (y > x && x > 0) {
return bitsum(y) - bitsum(x-1);
}
else if (y >= 0 && x == 0) {
return bitsum(y);
}
else if (y == x) {
return Integer.bitCount(y);
}
else if (x < 0 && y == 0) {
return bitsum(x);
} else if (x < 0 && x < y && y < 0 ) {
return bitsum(x) - bitsum(y+1);
} else if (x < 0 && x < y && 0 < y) {
return bitsum(x) + bitsum(y);
}
throw new RuntimeException(x + " " + y);
}
//count the bits between 0 and x
public static long bitsum(int x) {
if (x == 0) return 0;
if (x < 0) {
if (x == -1) {
return 32;
} else {
long y = -(long)x;
return 32 * y - bitsum((int)(y - 1));
}
} else {
int n = x;
int sum = 0; //x & (2^i)-1
int j = 0;
int i = 1; //i = 2^j
int lsb = n & 1; //least significant bit
n = n >>> 1;
while (n != 0) {
sum += lsb * i;
lsb = n & 1;
n = n >>> 1;
i = i << 1;
j++;
}
long tot = t[j] + 1 + sum + bitsum(sum);
return tot;
}
}
}

simple logic question: check if x is between 2 numbers

I want to see if a variable is between a range of values, for example if x is between 20 and 30 return true.
What's the quickest way to do this (with any C based language)?
It can obviously be done with a for loop:
function inRange(x, lowerbound, upperbound)
{
for(i = lowerbound; i < upperbound; i++)
{
if(x == i) return TRUE;
else return FALSE;
}
}
//in the program
if(inRange(x, 20, 30))
//do stuff
but it's awful tedious to do if(inRange(x, 20, 30)) is there simpler logic than this that doesn't use built in functions?
The expression you want is
20 <= x && x <= 30
EDIT:
Or simply put in in a function
function inRange(x, lowerbound, upperbound)
{
return lowerbound <= x && x <= upperbound;
}
Python has an in operator:
>>> r = range(20, 31)
>>> 19 in r
False
>>> 20 in r
True
>>> 30 in r
True
>>> 31 in r
False
Also in Python, and this is pretty cool -- comparison operators are chained! This is totally unlike C and Java. See http://en.wikipedia.org/wiki/Python_syntax_and_semantics#Comparison_operators
So you can write
low <= x <= high
In Python -10 <= -5 <= -1 is True, but in C it would be false. Try it. :)
Why not just x >= lowerbound && x <= upperbound ?

Resources