BufferAttribute Size for IndexedBufferGeometry - three.js

What should be the correct length of other (custom) attributes
if
length of my position attribute is m and
length of my index attribute is n ?
Example, If I have a rectangular surface to draw;
4 points => 4*3 = length of positions is 12,
2 triangles => 2*3 = length of index attribute is 6
if I need color attribute (rgba) what should be the length of the array?
4 * 4 = 16 or 6*4 = 24 ?

attribute has itemSize property that determines how many numbers are meant for a single vector
position attribute has itemSize == 3
it does not matter whether your geometry is indexed as every vertex needs to have defined every attribute for itself
you can get the number of vertices with positionAttribute.count that is effectively positionAttribute.array.length / positionAttribute.itemSize
so your RGBA color attribute needs itemSize = 4 thus it needs to have array of length 4 * positionAttribute.count
var rbgaAttribute = new THREE.BufferAttribute(new Float32Array(4 * positionAttribute.count), 4);

Related

Why does the .getAttrbute('position').array of a plane return a vector longer than its widthSegments multiplied by its heightSegments in Three.js?

I'm new to three.js and 3d in general, but here's a example:
const geometry = new Three.PlaneBufferGeometry(1, 1, 8, 8)
let positions = this.geometry.getAttribute('position').array
console.log(positions.length)
Just from my basic understanding, I would guess before seeing the result is that positions.length is 8*8*3 or 192 elements wide because as far as I know, a vertex in three.js takes a block of 3 values (x, y, z?), then the next vertex takes 3, and so on, travelling along the vector of values. A plane is formed of these vertices, and I would assume (again, pre-run) this plane has 64 vertices.
However, when I run this, I get a logged value of 243.
What am I misunderstanding here? 243 doesn't seem like a cleanly divisible number any way I look at it. My ultimate goal is to manipulate each vertex by some amount along the Z-axis, before the render.
To form 8 segments, there must be 9 points.
Thus, in case of an indexed geometry (PlaneGeometry is of that type), the amount of points per dimension is amount_of_segments + 1.
So, in your case, a plane of 8 x 8 segments will have (8 + 1) * (8 + 1) = 9 * 9 = 81 vertices. And the length of geometry.attributes.position.array will be 81 * 3 = 243.

How to construct a loop with reducing iterations

In MATLAB, I have a 256x256 RGB image and a 3x3 kernel that passes over it. The 3x3 kernel computes the colour-euclidean distance between every pair combination of the 9 pixels in the kernel, and stores the maximum value in an array. It then moves by 1 pixel and performs the same computation, and so on.
I can easily code the movement of the kernel over the image, as well as the extraction of the RGB values from the pixels in the kernel.
HOWEVER, I do have trouble efficiently computing the colour-euclidean distance operation for every pair combination of pixels.
For example if I had a 3x3 matrix with the following values:
[55 12 5; 77 15 99; 124 87 2]
I need to code a loop such that the 1st element performs an operation with the 2nd,3rd...9th element. Then the 2nd element performs the operation with the 3rd,4th...9th element and so on until finally the 8th element performs the operation with the 9th element. Preferrably, the same pixel combination shouldn't compute again (like if you computed 2nd with 7th, don't compute 7th with 2nd).
Thank you in advance.
EDIT: My code so far
K=3;
s=1; %If S=0, don't reject, If S=1 Reject first max distance pixel pair
OI=imread('onion.png');
Rch = im2col(OI(:,:,1),[K,K],'sliding')
Gch = im2col(OI(:,:,2),[K,K],'sliding')
Bch = im2col(OI(:,:,3),[K,K],'sliding')
indexes = bsxfun(#gt,(1:K^2)',1:K^2)
a=find(indexes);
[idx1,idx2] = find(indexes);
Rsqdiff = (Rch(idx2,:) - Rch(idx1,:)).^2
Gsqdiff = (Gch(idx2,:) - Gch(idx1,:)).^2
Bsqdiff = (Bch(idx2,:) - Bch(idx1,:)).^2
dists = sqrt(double(Rsqdiff + Gsqdiff + Bsqdiff)) %Distance values for all 36 combinations in 1 column
[maxdist,idx3] = max(dists,[],1) %idx3 is each column's index of max value
if s==0
y = reshape(maxdist,size(OI,1)-K+1,[]) %max value of each column (each column has 36 values)
elseif s==1
[~,I]=max(maxdist);
idx3=idx3(I);
n=size(idx3,2);
for i=1:1:n
idx3(i)=a(idx3(i));
end
[I,J]=ind2sub([K*K K*K],idx3);
for j=1:1:a
[M,N]=ind2sub([K*K K*K],dists(j,:));
M(I,:)=0;
N(:,J)=0;
dists(j,:)=sub2ind; %Incomplete line, don't know what to do here
end
[maxdist,idx3] = max(dists,[],1);
y = reshape(maxdist,size(OI,1)-K+1,[]);
end
If I understood the question correctly, you are looking to form unique pairwise combinations within a sliding 3x3 window, perform euclidean distance calculations consider all three channels, which we are calling as colour-euclidean distances and finally picking out the largest of all distances for each sliding window. So, for a 3x3 window that has 9 elements, you would have 36 unique pairs. If the image size is MxN, because of the sliding nature, you would have (M-3+1)*(N-3+1) = 64516 (for 256x256 case) such sliding windows with 36 pairs each, and therefore the distances array would be 36x64516 sized and the output array of maximum distances would be of size 254x254. The implementation suggested here involves im2col to extract sliding windowed elements as columns, nchoosek to form the pairs and finally performing the square-root of squared differences between three channels of such pairs and would look something like this -
K = 3; %// Kernel size
Rch = im2col(img(:,:,1),[K,K],'sliding')
Gch = im2col(img(:,:,2),[K,K],'sliding')
Bch = im2col(img(:,:,3),[K,K],'sliding')
[idx1,idx2] = find(bsxfun(#gt,(1:K^2)',1:K^2)); %//'
Rsqdiff = (Rch(idx2,:) - Rch(idx1,:)).^2
Gsqdiff = (Gch(idx2,:) - Gch(idx1,:)).^2
Bsqdiff = (Bch(idx2,:) - Bch(idx1,:)).^2
dists = sqrt(Rsqdiff + Gsqdiff + Bsqdiff)
out = reshape(max(dists,[],1),size(img,1)-K+1,[])
Your question is interesting and caught my attention. As far as I understood, you need to calculate euclidean distance between RGB color values of all cells inside 3x3 kernel and to find the largest one. I suggest a possible way to do this by using circshift function and 4D array operations:
Firstly, we pad the input array and create 8 shifted versions of it for each direction:
DIM = 256;
A = zeros(DIM,DIM,3,9);
A(:,:,:,1) = round(255*rand(DIM,DIM,3));%// random 256x256 array (suppose it is your image)
A = padarray(A,[1,1]);%// add zeros on each side of image
%// compute shifted versions of the input array
%// and write them as 4th dimension starting from shifted up clockwise:
A(:,:,:,2) = circshift(A(:,:,:,1),[-1, 0]);
A(:,:,:,3) = circshift(A(:,:,:,1),[-1, 1]);
A(:,:,:,4) = circshift(A(:,:,:,1),[ 0, 1]);
A(:,:,:,5) = circshift(A(:,:,:,1),[ 1, 1]);
A(:,:,:,6) = circshift(A(:,:,:,1),[ 1, 0]);
A(:,:,:,7) = circshift(A(:,:,:,1),[ 1,-1]);
A(:,:,:,8) = circshift(A(:,:,:,1),[ 0,-1]);
A(:,:,:,9) = circshift(A(:,:,:,1),[-1,-1]);
Next, we create an array that calculates the difference for all the possible combinations between all the above arrays:
q = nchoosek(1:9,2);
B = zeros(DIM+2,DIM+2,3,size(q,1));
for i = 1:size(q,1)
B(:,:,:,i) = (A(:,:,:,q(i,1)) - A(:,:,:,q(i,2))).^2;
end
C = sqrt(sum(B,3));
Finally, what we have is all the euclidean distances between all possible pairs within a 3x3 kernel. All we have to do is to extract the maximum values. As far as I understood, you do not consider image edges, so:
C = sqrt(sum(B,3));
D = zeros(DIM-2);
for i = 3:DIM
for j = 3:DIM
temp = C(i-1:i+1,j-1:j+1);
D(i-2,j-2) = max(temp(:));
end
end
D is the 254x254 array with maximum Euclidean distances for A(2:255,2:255), i.e. we exclude image edges.
Hope that helps.
P.S. I am amazed by the shortness of the code provided by #Divakar.

RGB histogram using bitshift in matlab

I'm trying to create a mozaic image in Matlab. The database consists of mostly RGB images but also some gray scale images.
I need to calculate the histograms - like in the example of the Wikipedia article about color histograms - for the RGB images and thought about using the bitshift operator in Matlab to combine the R,G and B channels.
nbins = 4;
nbits = 8;
index = bitshift(bitshift(image(:,:,1), log2(nbins)-nbits), 2*log2(nbins)) + ...
+ bitshift(bitshift(image(:,:,2), log2(nbins)-nbits), log2(nbins)) + ...
+ bitshift(image(:,:,3), log2(nbins)-nbits) + 1;
index is now a matrix of the same size as image with the index to the corresponding bin for the pixel value.
How can I sum the occurences of all unique values in this matrix to get the histogram of the RGB image?
Is there a better approach than bitshift to calculate the histogram of an RGB image?
Calculating Indices
The bitshift operator seems OK to do. Me what I would personally do is create a lookup relationship that relates RGB value to bin value. You first have to figure out how many bins in each dimension that you want. For example, let's say we wanted 8 bins in each channel. This means that we would have a total of 512 bins all together. Assuming we have 8 bits per channel, you would produce a relationship that creates an index like so:
% // Figure out where to split our bins
accessRed = floor(256 / NUM_RED_BINS);
accessGreen = floor(256 / NUM_GREEN_BINS);
accessBlue = floor(256 / NUM_BLUE_BINS);
%// Figures out where to index the histogram
redChan = floor(red / accessRed);
greenChan = floor(green / accessGreen);
blueChan = floor(blue / accessBlue);
%// Find single index
out = 1 + redChan + (NUM_RED_BINS)*greenChan + (NUM_RED_BINS*NUM_GREEN_BINS)*blueChan;
This assumes we have split our channels into red, green and blue. We also offset our indices by 1 as MATLAB indexes arrays starting at 1. This makes more sense to me, but the bitshift operator looks more efficient.
Onto your histogram question
Now, supposing you have the indices stored in index, you can use the accumarray function that will help you do that. accumarray takes in a set of locations in your array, as well as "weights" for each location. accumarray will find the corresponding locations as well as the weights and aggregate them together. In your case, you can use sum. accumarray isn't just limited to sum. You can use any operation that provides a 1-to-1 relationship. As an example, suppose we had the following variables:
index =
1
2
3
4
5
1
1
2
2
3
3
weights =
1
1
1
2
2
2
3
3
3
4
4
What accumarray will do is for each value of weights, take a look at the corresponding value in index, and accumulate this value into its corresponding slot.
As such, by doing this you would get (make sure that index and weights are column vectors):
out = accumarray(index, weights);
out =
6
7
9
2
2
If you take a look, all indices that have a value of 1, any values in weights that share the same index of 1 get summed into the first slot of out. We have three values: 1, 2 and 3. Similarly, with the index 2 we have values of 1, 3 and 3, which give us 7.
Now, to apply this to your application, given your code, your indices look like they start at 1. To calculate the histogram of your image, all we have to do is set all of the weights to 1 and use accumarray to accumulate the entries. Therefore:
%// Make sure these are column vectors
index = index(:);
weights = ones(numel(index), 1);
%// Calculate histogram
h = accumarray(index, weights);
%// You can also do:
%// h = accumarray(index, 1); - This is a special case if every value
%// in weights is the same number
accumarray's behaviour by default invokes sum. This should hopefully give you what you need. Also, should there be any indices that are missing values, (for example, suppose the index of 2 is missing from your index matrix), accumarray will conveniently place a zero in this location when you aggregate. Makes sense right?
Good luck!

THREE.js, BufferGeometry, array.length / itemSize != numItems?

Take a look at the example http://mrdoob.github.com/three.js/examples/webgl_buffergeometry_particles.html
The way the positions buffer is setup is as follows:
var particles = 500000;
var geometry = new THREE.BufferGeometry();
geometry.attributes = {
position: {
itemSize: 3,
array: new Float32Array( particles * 3 ),
numItems: particles * 3
},
Should it not always be the case that, if T = geometry.attributes.position, then T.array.length / T.itemSize === T.numItems? If the array has a length of L slots, and each item occupies K slots, it would stand to reason there are L / K items. Yet it seems the example sattes the array has L items? L items would occupy L * K slots :s
I hit this issue with positions as well, and only the first 1/3rd of my vertices were being rendered, because I used the number of vertices as numItems, and itemSize = 3, with a Float32Array of length numItems * itemSize.
What am I misunderstanding?
Thanks!
You are not misunderstanding anything. The nomenclature could be improved.
Think of it this way:
itemSize = (number of components) / vertex
numItems = (number of components)
= (number of vertices) * itemSize
Think of numItems as the number of items in the array sent to the GPU.
three.js r.57

Algorithm for fitting points to a grid

I have a list of points in 2D space that form an (imperfect) grid:
x x x x
x x x x
x
x x x
x x x x
What's the best way to fit these to a rigid grid (i.e. create a two-dimendional array and work out where each point fits in that array)?
There are no holes in the grid, but I don't know in advance what its dimensions are.
EDIT: The grid is not necessarily regular (not even spacing between rows/cols)
A little bit of an image processing approach:
If you think of what you have as a binary image where the X is 1 and the rest is 0, you can sum up rows and columns, and use a peak finding algorithm to identify peaks which would correspond to x and y lines of the grid:
Your points as a binary image:
Sums of row/columns
Now apply some smoothing technique to the signal (e.g. lowess):
I'm sure you get the idea :-)
Good luck
The best I could come up with is a brute-force solution that calculates the grid dimensions that minimize the error in the square of the Euclidean distance between the point and its nearest grid intersection.
This assumes that the number of points p is exactly equal to the number of columns times the number of rows, and that each grid intersection has exactly one point on it. It also assumes that the minimum x/y value for any point is zero. If the minimum is greater than zero, just subtract the minimum x value from each point's x coordinate and the minimum y value from each point's y coordinate.
The idea is to create all of the possible grid dimensions given the number of points. In the example above with 16 points, we would make grids with dimensions 1x16, 2x8, 4x4, 8x2 and 16x1. For each of these grids we calculate where the grid intersections would lie by dividing the maximum width of the points by the number of columns minus 1, and the maximum height of the points by the number of rows minus 1. Then we fit each point to its closest grid intersection and find the error (square of the distance) between the point and the intersection. (Note that this only works if each point is closer to its intended grid intersection than to any other intersection.)
After summing the errors for each grid configuration individually (e.g. getting one error value for the 1x16 configuration, another for the 2x8 configuration and so on), we select the configuration with the lowest error.
Initialization:
P is the set of points such that P[i][0] is the x-coordinate and
P[i][1] is the y-coordinate
Let p = |P| or the number of points in P
Let max_x = the maximum x-coordinate in P
Let max_y = the maximum y-coordinate in P
(minimum values are assumed to be zero)
Initialize min_error_dist = +infinity
Initialize min_error_cols = -1
Algorithm:
for (col_count = 1; col_count <= n; col_count++) {
// only compute for integer # of rows and cols
if ((p % col_count) == 0) {
row_count = n/col_count;
// Compute the width of the columns and height of the rows
// If the number of columns is 1, let the column width be max_x
// (and similarly for rows)
if (col_count > 1) col_width = max_x/(col_count-1);
else col_width=max_x;
if (row_count > 1) row_height = max_y/(row_count-1);
else row_height=max_y;
// reset the error for the new configuration
error_dist = 0.0;
for (i = 0; i < n; i++) {
// For the current point, normalize the x- and y-coordinates
// so that it's in the range 0..(col_count-1)
// and 0..(row_count-1)
normalized_x = P[i][0]/col_width;
normalized_y = P[i][1]/row_height;
// Error is the sum of the squares of the distances between
// the current point and the nearest grid point
// (in both the x and y direction)
error_dist += (normalized_x - round(normalized_x))^2 +
(normalized_y - round(normalized_y))^2;
}
if (error_dist < min_error_dist) {
min_error_dist = error_dist;
min_error_cols = col_count;
}
}
}
return min_error_cols;
Once you've got the number of columns (and thus the number of rows) you can recompute the normalized values for each point and round them to get the grid intersection they belong to.
In the end I used this algorithm, inspired by beaker's:
Calculate all the possible dimensions of the grid, given the total number of points
For each possible dimension, fit the points to that dimension and calculate the variance in alignment:
Order the points by x-value
Group the points into columns: the first r points form the first column, where r is the number of rows
Within each column, order the points by y-value to determine which row they're in
For each row/column, calcuate the range of y-values/x-values
The variance in alignment is the maximum range found
Choose the dimension with the least variance in alignment
I wrote this algorithm that accounts for missing coordinates as well as coordinates with errors.
Python Code
# Input [x, y] coordinates of a 'sparse' grid with errors
xys = [[103,101],
[198,103],
[300, 99],
[ 97,205],
[304,202],
[102,295],
[200,303],
[104,405],
[205,394],
[298,401]]
def row_col_avgs(num_list, ratio):
# Finds the average of each row and column. Coordinates are
# assigned to a row and column by specifying an error ratio.
last_num = 0
sum_nums = 0
count_nums = 0
avgs = []
num_list.sort()
for num in num_list:
if num > (1 + ratio) * last_num and count_nums != 0:
avgs.append(int(round(sum_nums/count_nums,0)))
sum_nums = num
count_nums = 1
else:
sum_nums = sum_nums + num
count_nums = count_nums + 1
last_num = num
avgs.append(int(round(sum_nums/count_nums,0)))
return avgs
# Split coordinates into two lists of x's and y's
xs, ys = map(list, zip(*xys))
# Find averages of each row and column within a specified error.
x_avgs = row_col_avgs(xs, 0.1)
y_avgs = row_col_avgs(ys, 0.1)
# Return Completed Averaged Grid
avg_grid = []
for y_avg in y_avgs:
avg_row = []
for x_avg in x_avgs:
avg_row.append([int(x_avg), int(y_avg)])
avg_grid.append(avg_row)
print(avg_grid)
Code Output
[[[102, 101], [201, 101], [301, 101]],
[[102, 204], [201, 204], [301, 204]],
[[102, 299], [201, 299], [301, 299]],
[[102, 400], [201, 400], [301, 400]]]
I am also looking for another solution using linear algebra. See my question here.

Resources