Quadratic Equation From Points - algorithm

I need to implement a function that finds the trajectory of a projectile and I have three points - origin, destination and the point of maximum height.
I need to find the correct quadratic function that includes these points.
I'm having a hard time figuring out what to do. Where should I start?

Assume you have your origin and destination on the y-axis,namely x1 and x2. If not you can shift them later.
a*x*x + b*x + c = 0//equation
x1*x2=(c/a);
c = (x1*x2)*a;
x1+x2=(-b/a);
b = (x1+x2)/(-a);
a*((x1+x2)/2)^2 + b*((x1+x2)/2) + c = h//max height
let X=(x1+x2)/2;
a*X*X + ((2*X)/(-a))*X + (x1*x2)*a - h = 0;
Now you can iterate through a=0 until the above equation is true as you have all the values X ,x1 , x2 and h.
double eqn = (-h),a=0;//a=0.Assuming you have declared x1,x2 and X already
while(eqn!=0)
{
a++;
eqn = a*X*X + ((2*X)/(-a))*X + (x1*x2)*a - h;
}
b = (x1+x2)/(-a);
c = (x1*x2)*a;
Thus you got all your coeffecients.

Related

Finite difference method for solving the Klein-Gordon equation in Matlab

I am trying to numerically solve the Klein-Gordon equation that can be found here. To make sure I solved it correctly, I am comparing it with an analytical solution that can be found on the same link. I am using the finite difference method and Matlab. The initial spatial conditions are known, not the initial time conditions.
I start off by initializing the constants and the space-time coordinate system:
close all
clear
clc
%% Constant parameters
A = 2;
B = 3;
lambda = 2;
mu = 3;
a = 4;
b = - (lambda^2 / a^2) + mu^2;
%% Coordinate system
number_of_discrete_time_steps = 300;
t = linspace(0, 2, number_of_discrete_time_steps);
dt = t(2) - t(1);
number_of_discrete_space_steps = 100;
x = transpose( linspace(0, 1, number_of_discrete_space_steps) );
dx = x(2) - x(1);
Next, I define and plot the analitical solution:
%% Analitical solution
Wa = cos(lambda * x) * ( A * cos(mu * t) + B * sin(mu * t) );
figure('Name', 'Analitical solution');
surface(t, x, Wa, 'edgecolor', 'none');
colormap(jet(256));
colorbar;
xlabel('t');
ylabel('x');
title('Wa(x, t) - analitical solution');
The plot of the analytical solution is shown here.
In the end, I define the initial spatial conditions, execute the finite difference method algorithm and plot the solution:
%% Numerical solution
Wn = zeros(number_of_discrete_space_steps, number_of_discrete_time_steps);
Wn(1, :) = Wa(1, :);
Wn(2, :) = Wa(2, :);
for j = 2 : (number_of_discrete_time_steps - 1)
for i = 2 : (number_of_discrete_space_steps - 1)
Wn(i + 1, j) = dx^2 / a^2 ...
* ( ( Wn(i, j + 1) - 2 * Wn(i, j) + Wn(i, j - 1) ) / dt^2 + b * Wn(i - 1, j - 1) ) ...
+ 2 * Wn(i, j) - Wn(i - 1, j);
end
end
figure('Name', 'Numerical solution');
surface(t, x, Wn, 'edgecolor', 'none');
colormap(jet(256));
colorbar;
xlabel('t');
ylabel('x');
title('Wn(x, t) - numerical solution');
The plot of the numerical solution is shown here.
The two plotted graphs are not the same, which is proof that I did something wrong in the algorithm. The problem is, I can't find the errors. Please help me find them.
To summarize, please help me change the code so that the two plotted graphs become approximately the same. Thank you for your time.
The finite difference discretization of w_tt = a^2 * w_xx - b*w is
( w(i,j+1) - 2*w(i,j) + w(i,j-1) ) / dt^2
= a^2 * ( w(i+1,j) - 2*w(i,j) + w(i-1,j) ) / dx^2 - b*w(i,j)
In your order this gives the recursion equation
w(i,j+1) = dt^2 * ( (a/dx)^2 * ( w(i+1,j) - 2*w(i,j) + w(i-1,j) ) - b*w(i,j) )
+2*w(i,j) - w(i,j-1)
The stability condition is that at least a*dt/dx < 1. For the present parameters this is not satisfied, they give this ratio as 2.6. Increasing the time discretization to 1000 points is sufficient.
Next up is the boundary conditions. Besides the two leading columns for times 0 and dt one also needs to set the values at the boundaries for x=0 and x=1. Copy also them from the exact solution.
Wn(:,1:2) = Wa(:,1:2);
Wn(1,:)=Wa(1,:);
Wn(end,:)=Wa(end,:);
Then also correct the definition (and use) of b to that in the source
b = - (lambda^2 * a^2) + mu^2;
and the resulting numerical image looks identical to the analytical image in the color plot. The difference plot confirms the closeness

Solving linear equations

I have to find out the integral solution of a equation ax+by=c such that x>=0 and y>=0 and value of (x+y) is minimum.
I know if c%gcd(a,b)}==0 then it's always possible. How to find the values of x and y?
My approach
for(i 0 to 2*c):
x=i
y= (c-a*i)/b
if(y is integer)
ans = min(ans,x+y)
Is there any better way to do this ? Having better time complexity.
Using the Extended Euclidean Algorithm and the theory of linear Diophantine equations there is no need to search. Here is a Python 3 implementation:
def egcd(a,b):
s,t = 1,0 #coefficients to express current a in terms of original a,b
x,y = 0,1 #coefficients to express current b in terms of original a,b
q,r = divmod(a,b)
while(r > 0):
a,b = b,r
old_x, old_y = x,y
x,y = s - q*x, t - q*y
s,t = old_x, old_y
q,r = divmod(a,b)
return b, x ,y
def smallestSolution(a,b,c):
d,x,y = egcd(a,b)
if c%d != 0:
return "No integer solutions"
else:
u = a//d #integer division
v = b//d
w = c//d
x = w*x
y = w*y
k1 = -x//v if -x % v == 0 else 1 + -x//v #k1 = ceiling(-x/v)
x1 = x + k1*v # x + k1*v is solution with smallest x >= 0
y1 = y - k1*u
if y1 < 0:
return "No nonnegative integer solutions"
else:
k2 = y//u #floor division
x2 = x + k2*v #y-k2*u is solution with smallest y >= 0
y2 = y - k2*u
if x2 < 0 or x1+y1 < x2+y2:
return (x1,y1)
else:
return (x2,y2)
Typical run:
>>> smallestSolution(1001,2743,160485)
(111, 18)
The way it works: first use the extended Euclidean algorithm to find d = gcd(a,b) and one solution, (x,y). All other solutions are of the form (x+k*v,y-k*u) where u = a/d and v = b/d. Since x+y is linear, it has no critical points, hence is minimized in the first quadrant when either x is as small as possible or y is as small as possible. The k above is an arbitrary integer parameter. By appropriate use of floor and ceiling you can locate the integer points with either x as small as possible or y is as small as possible. Just take the one with the smallest sum.
On Edit: My original code used the Python function math.ceiling applied to -x/v. This is problematic for very large integers. I tweaked it so that the ceiling is computed with just int operations. It can now handle arbitrarily large numbers:
>>> a = 236317407839490590865554550063
>>> b = 127372335361192567404918884983
>>> c = 475864993503739844164597027155993229496457605245403456517677648564321
>>> smallestSolution(a,b,c)
(2013668810262278187384582192404963131387, 120334243940259443613787580180)
>>> x,y = _
>>> a*x+b*y
475864993503739844164597027155993229496457605245403456517677648564321
Most of the computation takes place in the running the extended Euclidean algorithm, which is known to be O(min(a,b)).
First let assume a,b,c>0 so:
a.x+b.y = c
x+y = min(xi+yi)
x,y >= 0
a,b,c > 0
------------------------
x = ( c - b.y )/a
y = ( c - a.x )/b
c - a.x >= 0
c - b.y >= 0
c >= b.y
c >= a.x
x <= c/x
y <= c/b
So naive O(n) solution is in C++ like this:
void compute0(int &x,int &y,int a,int b,int c) // naive
{
int xx,yy;
xx=-1; yy=-1;
for (y=0;;y++)
{
x = c - b*y;
if (x<0) break; // y out of range stop
if (x%a) continue; // non integer solution
x/=a; // remember minimal solution
if ((xx<0)||(x+y<=xx+yy)) { xx=x; yy=y; }
}
x=xx; y=yy;
}
if no solution found it returns -1,-1 If you think about the equation a bit then you should realize that min solution will be when x or y is minimal (which one depends on a<b condition) so adding such heuristics we can increase only the minimal coordinate until first solution found. This will speed up considerably the whole thing:
void compute1(int &x,int &y,int a,int b,int c)
{
if (a<=b){ for (x=0,y=c;y>=0;x++,y-=a) if (y%b==0) { y/=b; return; } }
else { for (y=0,x=c;x>=0;y++,x-=b) if (x%a==0) { x/=a; return; } }
x=-1; y=-1;
}
I measured this on my setup:
x y ax+by x+y a=50 b=105 c=500000000
[ 55.910 ms] 10 4761900 500000000 4761910 naive
[ 0.000 ms] 10 4761900 500000000 4761910 opt
x y ax+by x+y a=105 b=50 c=500000000
[ 99.214 ms] 4761900 10 500000000 4761910 naive
[ 0.000 ms] 4761900 10 500000000 4761910 opt
The ~2.0x difference for naive method times is due to a/b=~2.0and selecting worse coordinate to iterate in the second run.
Now just handle special cases when a,b,c are zero (to avoid division by zero)...

Find area of two overlapping circles using monte carlo method

Actually i have two intersecting circles as specified in the figure
i want to find the area of each part separately using Monte carlo method in Matlab .
The code doesn't draw the rectangle or the circles correctly so
i guess what is wrong is my calculation for the x and y and i am not much aware about the geometry equations for solving it so i need help about the equations.
this is my code so far :
n=1000;
%supposing that a rectangle will contain both circles so :
% the mid point of the distance between 2 circles will be (0,6)
% then by adding the radius of the left and right circles the total distance
% will be 27 , 11 from the left and 16 from the right
% width of rectangle = 24
x=27.*rand(n-1)-11;
y=24.*rand(n-1)+2;
count=0;
for i=1:n
if((x(i))^2+(y(i))^2<=25 && (x(i))^2+(y(i)-12)^2<=100)
count=count+1;
figure(2);
plot(x(i),y(i),'b+')
hold on
elseif(~(x(i))^2+(y(i))^2<=25 &&(x(i))^2+(y(i)-12)^2<=100)
figure(2);
plot(x(i),y(i),'y+')
hold on
else
figure(2);
plot(x(i),y(i),'r+')
end
end
Here are the errors I found:
x = 27*rand(n,1)-5
y = 24*rand(n,1)-12
The rectangle extents were incorrect, and if you use rand(n-1) will give you a (n-1) by (n-1) matrix.
and
first If:
(x(i))^2+(y(i))^2<=25 && (x(i)-12)^2+(y(i))^2<=100
the center of the large circle is at x=12 not y=12
Second If:
~(x(i))^2+(y(i))^2<=25 &&(x(i)-12)^2+(y(i))^2<=100
This code can be improved by using logical indexing.
For example, using R, you could do (Matlab code is left as an excercise):
n = 10000
x = 27*runif(n)-5
y = 24*runif(n)-12
plot(x,y)
r = (x^2 + y^2)<=25 & ((x-12)^2 + y^2)<=100
g = (x^2 + y^2)<=25
b = ((x-12)^2 + y^2)<=100
points(x[g],y[g],col="green")
points(x[b],y[b],col="blue")
points(x[r],y[r],col="red")
which gives:
Here is my generic solution for any two circles (without any hardcoded value):
function [ P ] = circles_intersection_area( k1, k2, N )
%CIRCLES_INTERSECTION_AREA Summary...
% Adnan A.
x1 = k1(1);
y1 = k1(2);
r1 = k1(3);
x2 = k2(1);
y2 = k2(2);
r2 = k2(3);
if sqrt((x1-x2)*(x1-x2) + (y1-y2)*(y1-y2)) >= (r1 + r2)
% no intersection
P = 0;
return
end
% Wrapper rectangle config
a_min = x1 - r1 - 2*r2;
a_max = x1 + r1 + 2*r2;
b_min = y1 - r1 - 2*r2;
b_max = y1 + r1 + 2*r2;
% Monte Carlo algorithm
n = 0;
for i = 1:N
rand_x = unifrnd(a_min, a_max);
rand_y = unifrnd(b_min, b_max);
if sqrt((rand_x - x1)^2 + (rand_y - y1)^2) < r1 && sqrt((rand_x - x2)^2 + (rand_y - y2)^2) < r2
% is a point in the both of circles
n = n + 1;
plot(rand_x,rand_y, 'go-');
hold on;
else
plot(rand_x,rand_y, 'ko-');
hold on;
end
end
P = (a_max - a_min) * (b_max - b_min) * n / N;
end
Call it like: circles_intersection_area([-0.4,0,1], [0.4,0,1], 10000) where the first param is the first circle (x,y,r) and the second param is the second circle.
Without using For loop.
n = 100000;
data = rand(2,n);
data = data*2*30 - 30;
x = data(1,:);
y = data(2,:);
plot(x,y,'ro');
inside5 = find(x.^2 + y.^2 <=25);
hold on
plot (x(inside5),y(inside5),'bo');
hold on
inside12 = find(x.^2 + (y-12).^2<=144);
plot (x(inside12),y(inside12),'g');
hold on
insidefinal1 = find(x.^2 + y.^2 <=25 & x.^2 + (y-12).^2>=144);
insidefinal2 = find(x.^2 + y.^2 >=25 & x.^2 + (y-12).^2<=144);
% plot(x(insidefinal1),y(insidefinal1),'bo');
hold on
% plot(x(insidefinal2),y(insidefinal2),'ro');
insidefinal3 = find(x.^2 + y.^2 <=25 & x.^2 + (y-12).^2<=144);
% plot(x(insidefinal3),y(insidefinal3),'ro');
area1=(60^2)*(length(insidefinal1)/n);
area3=(60^2)*(length(insidefinal2)/n);
area2= (60^2)*(length(insidefinal3)/n);

Supercover DDA algorithm

I'm trying to figure out how to make a supercover DDA algorithm. Or in other words, a DDA algorithm that will cover ALL grid points crossed by a line. See the image below.
The image was drawn by me and might not be 100% accurate but it shows the general idea. I also want to note the examples on the lower half of the image do not have integer start and end coordinates, this is necessary.
If you need to know, I intend to use this for line of sight ray casting.
I'm capable of implementing a typical DDA algorithm, but my problem is, how can I modify it to cover all points?
Thanks!
My current implementation of the DDA algorithm in Lua
function dline(x0,y0, x1,y1) -- floating point input
local dx = x1-x0
local dy = y1-y0
local s = math.max(math.abs(dx),math.abs(dy))
dx = dx/s
dy = dy/s
local x = x0
local y = y0
local i = 0
return function() -- iterator intended for a for loop
if i <= s then
local rx,ry = x,y
x = x+dx
y = y+dy
i = i+1
return rx,ry
end
end
end
Sorry, I don't ask questions too often, mainly because I'm not that good. But I'll tell you what I am good at! Solving my own problem! :D
As a note, the image in my question shows the lines crossing diagonals if the line passes through a point precisely, this algorithm does not, but after some thought, crossing diagonals is not desirable for me.
Thanks to this article I found.
Here's the new implementation
function line(x0,y0, x1,y1)
local vx,vy = x1-x0, y1-y0 -- get the differences
local dx = math.sqrt(1 + (vy/vx)^2) -- length of vector <1, slope>
local dy = math.sqrt(1 + (vx/vy)^2) -- length of vector <1/slope, 1>
local ix,iy = math.floor(x0), math.floor(y0) -- initialize starting positions
local sx,ex -- sx is the increment direction
-- ex is the distance from x0 to ix
if vx < 0 then
sx = -1
ex = (x0-ix) * dx
else
sx = 1
ex = (ix + 1-x0) * dx -- subtract from 1 instead of 0
-- to make up for flooring ix
end
local sy,ey
if vy < 0 then
sy = -1
ey = (y0-iy) * dy
else
sy = 1
ey = (iy + 1-y0) * dy
end
local done = false
local len = math.sqrt(vx^2 + vy^2)
return function()
if math.min(ex,ey) <= len then
local rx,ry = ix,iy
if ex < ey then
ex = ex + dx
ix = ix + sx
else
ey = ey + dy
iy = iy + sy
end
return rx,ry
elseif not done then -- return the final two coordinates
done = true
return ix,iy
end
end
end
You can do it in the same time complexity as a normal dda algorithm by simply adding a few checks on adjacent squares.

Trilateration and locating the point (x,y,z)

I want to find the coordinate of an unknown node which lie somewhere in the space which has its reference distance away from 3 or more nodes which all of them have known coordinate.
This problem is exactly like Trilateration as described here Trilateration.
However, I don't understand the part about "Preliminary and final computations" (refer to the wikipedia site). I don't get where I could find P1, P2 and P3 just so I can put to those equation?
Thanks
Trilateration is the process of finding the center of the area of intersection of three spheres. The center point and radius of each of the three spheres must be known.
Let's consider your three example centerpoints P1 [-1,1], P2 [1,1], and P3 [-1,-1]. The first requirement is that P1' be at the origin, so let us adjust the points accordingly by adding an offset vector V [1,-1] to all three:
P1' = P1 + V = [0, 0]
P2' = P2 + V = [2, 0]
P3' = P3 + V = [0,-2]
Note: Adjusted points are denoted by the ' (prime) annotation.
P2' must also lie on the x-axis. In this case it already does, so no adjustment is necessary.
We will assume the radius of each sphere to be 2.
Now we have 3 equations (given) and 3 unknowns (X, Y, Z of center-of-intersection point).
Solve for P4'x:
x = (r1^2 - r2^2 + d^2) / 2d //(d,0) are coords of P2'
x = (2^2 - 2^2 + 2^2) / 2*2
x = 1
Solve for P4'y:
y = (r1^2 - r3^2 + i^2 + j^2) / 2j - (i/j)x //(i,j) are coords of P3'
y = (2^2 - 2^2 + 0 + -2^2) / 2*-2 - 0
y = -1
Ignore z for 2D problems.
P4' = [1,-1]
Now we translate back to original coordinate space by subtracting the offset vector V:
P4 = P4' - V = [0,0]
The solution point, P4, lies at the origin as expected.
The second half of the article is describing a method of representing a set of points where P1 is not at the origin or P2 is not on the x-axis such that they fit those constraints. I prefer to think of it instead as a translation, but both methods will result in the same solution.
Edit: Rotating P2' to the x-axis
If P2' does not lie on the x-axis after translating P1 to the origin, we must perform a rotation on the view.
First, let's create some new vectors to use as an example:
P1 = [2,3]
P2 = [3,4]
P3 = [5,2]
Remember, we must first translate P1 to the origin. As always, the offset vector, V, is -P1. In this case, V = [-2,-3]
P1' = P1 + V = [2,3] + [-2,-3] = [0, 0]
P2' = P2 + V = [3,4] + [-2,-3] = [1, 1]
P3' = P3 + V = [5,2] + [-2,-3] = [3,-1]
To determine the angle of rotation, we must find the angle between P2' and [1,0] (the x-axis).
We can use the dot product equality:
A dot B = ||A|| ||B|| cos(theta)
When B is [1,0], this can be simplified: A dot B is always just the X component of A, and ||B|| (the magnitude of B) is always a multiplication by 1, and can therefore be ignored.
We now have Ax = ||A|| cos(theta), which we can rearrange to our final equation:
theta = acos(Ax / ||A||)
or in our case:
theta = acos(P2'x / ||P2'||)
We calculate the magnitude of P2' using ||A|| = sqrt(Ax + Ay + Az)
||P2'|| = sqrt(1 + 1 + 0) = sqrt(2)
Plugging that in we can solve for theta
theta = acos(1 / sqrt(2)) = 45 degrees
Now let's use the rotation matrix to rotate the scene by -45 degrees.
Since P2'y is positive, and the rotation matrix rotates counter-clockwise, we'll use a negative rotation to align P2 to the x-axis (if P2'y is negative, don't negate theta).
R(theta) = [cos(theta) -sin(theta)]
[sin(theta) cos(theta)]
R(-45) = [cos(-45) -sin(-45)]
[sin(-45) cos(-45)]
We'll use double prime notation, '', to denote vectors which have been both translated and rotated.
P1'' = [0,0] (no need to calculate this one)
P2'' = [1 cos(-45) - 1 sin(-45)] = [sqrt(2)] = [1.414]
[1 sin(-45) + 1 cos(-45)] = [0] = [0]
P3'' = [3 cos(-45) - (-1) sin(-45)] = [sqrt(2)] = [ 1.414]
[3 sin(-45) + (-1) cos(-45)] = [-2*sqrt(2)] = [-2.828]
Now you can use P1'', P2'', and P3'' to solve for P4''. Apply the reverse rotation to P4'' to get P4', then the reverse translation to get P4, your center point.
To undo the rotation, multiply P4'' by R(-theta), in this case R(45). To undo the translation, subtract the offset vector V, which is the same as adding P1 (assuming you used -P1 as your V originally).
This is the algorithm I use in a 3D printer firmware. It avoids rotating the coordinate system, but it may not be the best.
There are 2 solutions to the trilateration problem. To get the second one, replace "- sqrtf" by "+ sqrtf" in the quadratic equation solution.
Obviously you can use doubles instead of floats if you have enough processor power and memory.
// Primary parameters
float anchorA[3], anchorB[3], anchorC[3]; // XYZ coordinates of the anchors
// Derived parameters
float Da2, Db2, Dc2;
float Xab, Xbc, Xca;
float Yab, Ybc, Yca;
float Zab, Zbc, Zca;
float P, Q, R, P2, U, A;
...
inline float fsquare(float f) { return f * f; }
...
// Precompute the derived parameters - they don't change unless the anchor positions change.
Da2 = fsquare(anchorA[0]) + fsquare(anchorA[1]) + fsquare(anchorA[2]);
Db2 = fsquare(anchorB[0]) + fsquare(anchorB[1]) + fsquare(anchorB[2]);
Dc2 = fsquare(anchorC[0]) + fsquare(anchorC[1]) + fsquare(anchorC[2]);
Xab = anchorA[0] - anchorB[0];
Xbc = anchorB[0] - anchorC[0];
Xca = anchorC[0] - anchorA[0];
Yab = anchorA[1] - anchorB[1];
Ybc = anchorB[1] - anchorC[1];
Yca = anchorC[1] - anchorA[1];
Zab = anchorB[2] - anchorC[2];
Zbc = anchorB[2] - anchorC[2];
Zca = anchorC[2] - anchorA[2];
P = ( anchorB[0] * Yca
- anchorA[0] * anchorC[1]
+ anchorA[1] * anchorC[0]
- anchorB[1] * Xca
) * 2;
P2 = fsquare(P);
Q = ( anchorB[1] * Zca
- anchorA[1] * anchorC[2]
+ anchorA[2] * anchorC[1]
- anchorB[2] * Yca
) * 2;
R = - ( anchorB[0] * Zca
+ anchorA[0] * anchorC[2]
+ anchorA[2] * anchorC[0]
- anchorB[2] * Xca
) * 2;
U = (anchorA[2] * P2) + (anchorA[0] * Q * P) + (anchorA[1] * R * P);
A = (P2 + fsquare(Q) + fsquare(R)) * 2;
...
// Calculate Cartesian coordinates given the distances to the anchors (La, Lb and Lc)
// First calculate PQRST such that x = (Qz + S)/P, y = (Rz + T)/P.
// P, Q and R depend only on the anchor positions, so they are pre-computed
const float S = - Yab * (fsquare(Lc) - Dc2)
- Yca * (fsquare(Lb) - Db2)
- Ybc * (fsquare(La) - Da2);
const float T = - Xab * (fsquare(Lc) - Dc2)
+ Xca * (fsquare(Lb) - Db2)
+ Xbc * (fsquare(La) - Da2);
// Calculate quadratic equation coefficients
const float halfB = (S * Q) - (R * T) - U;
const float C = fsquare(S) + fsquare(T) + (anchorA[1] * T - anchorA[0] * S) * P * 2 + (Da2 - fsquare(La)) * P2;
// Solve the quadratic equation for z
float z = (- halfB - sqrtf(fsquare(halfB) - A * C))/A;
// Substitute back for X and Y
float x = (Q * z + S)/P;
float y = (R * z + T)/P;
Here are the Wikipedia calculations, presented in an OpenSCAD script, which I think helps to understand the problem in a visual wayand provides an easy way to check that the results are correct. Example output from the script
// Trilateration example
// from Wikipedia
//
// pA, pB and pC are the centres of the spheres
// If necessary the spheres must be translated
// and rotated so that:
// -- all z values are 0
// -- pA is at the origin
pA = [0,0,0];
// -- pB is on the x axis
pB = [10,0,0];
pC = [9,7,0];
// rA , rB and rC are the radii of the spheres
rA = 9;
rB = 5;
rC = 7;
if ( pA != [0,0,0]){
echo ("ERROR: pA must be at the origin");
assert(false);
}
if ( (pB[2] !=0 ) || pC[2] !=0){
echo("ERROR: all sphere centers must be in z = 0 plane");
assert(false);
}
if (pB[1] != 0){
echo("pB centre must be on the x axis");
assert(false);
}
// show the spheres
module spheres(){
translate (pA){
sphere(r= rA, $fn = rA * 10);
}
translate(pB){
sphere(r = rB, $fn = rB * 10);
}
translate(pC){
sphere (r = rC, $fn = rC * 10);
}
}
function unit_vector( v) = v / norm(v);
ex = unit_vector(pB - pA) ;
echo(ex = ex);
i = ex * ( pC - pA);
echo (i = i);
ey = unit_vector(pC - pA - i * ex);
echo (ey = ey);
d = norm(pB - pA);
echo (d = d);
j = ey * ( pC - pA);
echo (j = j);
x = (pow(rA,2) - pow(rB,2) + pow(d,2)) / (2 * d);
echo( x = x);
// size of the cube to subtract to show
// the intersection of the spheres
cube_size = [10,10,10];
if ( ((d - rA) >= rB) || ( rB >= ( d + rA)) ){
echo ("Error Y not solvable");
}else{
y = (( pow(rA,2) - pow(rC,2) + pow(i,2) + pow(j,2)) / (2 * j))
- ( i / j) * x;
echo(y = y);
zpow2 = pow(rA,2) - pow(x,2) - pow(y,2);
if ( zpow2 < 0){
echo ("z not solvable");
}else{
z = sqrt(zpow2);
echo (z = z);
// subtract a cube with one of its corners
// at the point where the sphers intersect
difference(){
spheres();
translate ([x,y - cube_size[1],z]){
cube(cube_size);
}
}
translate ([x,y - cube_size[1],z]){
%cube(cube_size);
}
}
}

Resources