How can I generate echo path for concave polygon - algorithm

I need an algorithm to draw echo path for an arbitrary polygon. If a polygon is convex problem is quite easy to solve. To understand what I mean please look at the picture bellow where in black is original polygon and in red color echoed polygons generated from original one.
d is distance between echo paths which is given
β angle is easy to calculate knowing coordinates of vertices which we have
So as you can see for each vertex we can calculate L and thus have new vertices for next echo path.
The problem is when we have concave polygon at some point we will get an ugly picture of self crossing polygon. Please take a look to this picture.
What I want to do is generate echo polygon without self crossing part i.e. without part that is with dash lines. An algorithm or java code would be very helpful. Thanks.
Edit
Just adding piece of code that generates echo path for convex polygon as it was asked in comment.
public List<MyPath> createEchoCoCentral( List<Point> pointsOriginal, float encoderEchoDistance, int appliqueEchoCount){
List<Point> contourPoints = pointsOriginal;
List<MyPath> echoPaths = new ArrayList<>();
for (int round = 0; round < appliqueEchoCount; round++) {
List<Point> echoedPoints = new ArrayList<>();
int size = contourPoints.size()+1;//+1 because we connect end to start
Point previousPoint = contourPoints.get(contourPoints.size() - 1);
for (int i = 0; i < size; i++) {
Point currentPoint;
if (i == contourPoints.size()) {
currentPoint = new Point(contourPoints.get(0));
} else {
currentPoint = contourPoints.get(i);
}
final Point nextPoint;
if (i + 1 == contourPoints.size()) {
nextPoint = contourPoints.get(0);
} else if (i == contourPoints.size()) {
nextPoint = contourPoints.get(1);
} else {
nextPoint = contourPoints.get(i + 1);
}
if (currentPoint.x == previousPoint.x && currentPoint.y == previousPoint.y) continue;
if (currentPoint.x == nextPoint.x && currentPoint.y == nextPoint.y) continue;
// signs needed o determine to which side of polygon new point will go
float currentSlope = (float) (Math.atan((previousPoint.y - currentPoint.y) / (previousPoint.x - currentPoint.x)));
float signX = Math.signum((previousPoint.x - currentPoint.x));
float signY = Math.signum((previousPoint.y - currentPoint.y));
signX = signX == 0 ? 1 : signX;
signY = signY == 0 ? 1 : signY;
float nextSignX = Math.signum((currentPoint.x - nextPoint.x));
float nextSignY = Math.signum((currentPoint.y - nextPoint.y));
nextSignX = nextSignX == 0 ? 1 : nextSignX;
nextSignY = nextSignY == 0 ? 1 : nextSignY;
float nextSlope = (float) (Math.atan((currentPoint.y - nextPoint.y) / (currentPoint.x - nextPoint.x)));
float nextSlopeD = (float) Math.toDegrees(nextSlope);
//calculateMidAngle - is a bit tricky function that calculates angle between two adjacent edges
double S = calculateMidAngle(currentSlope, nextSlope, signX, signY, nextSignX, nextSignY);
Point p2 = new Point();
double ew = encoderEchoDistance / Math.cos(S - (Math.PI / 2));
p2.x = (int) (currentPoint.x + (Math.cos(currentSlope - S)) * ew * signX);
p2.y = (int) (currentPoint.y + (Math.sin(currentSlope - S)) * ew * signX);
echoedPoints.add(p2);
previousPoint = currentPoint;
}
//createPathFromPoints just creates MyPath objects from given Poins set
echoPaths.add(createPathFromPoints(echoedPoints));
//remove last point since it was just to connect end to first point
echoedPoints.remove(echoedPoints.size() - 1);
contourPoints = echoedPoints;
}
return echoPaths;
}

You are looking for the straight skeleton:
(Image from Wikipedia.)

This problem is called computing polygon offsetting. There are two common ways to solve this problem:
1) the most effective way is to compute offset polygon by computing winding numbers ( As I understood, this algorithm is used by Clipper library)
2) computing straight skeleton graph, which help you to build offset polygon
Interesting articles on this topic :
Chen, polygon offsetting by computing winding numbers
Felkel's algorithm to compute straight skeleton

Ok, found a library that can do what I need. It called Clipper
There is also java implementation for it here if anybody interested.
With Java library couple lines of code do the trick
Path originalPath = new Path();
for (PointF areaPoint:pointsOriginal){
originalPath.add(new LongPoint((long)areaPoint.x, (long)areaPoint.y));
}
final ClipperOffset clo = new ClipperOffset();
Paths clips = new Paths();
Paths solution = new Paths();
clips.add(originalPath);
clo.addPaths( clips, Clipper.JoinType.SQUARE, Clipper.EndType.CLOSED_LINE );
float encoderEchoDistance = (float) UnitUtils.convertInchOrMmUnitsToEncoderUnits(this, inchOrMm, appliqueEchoDistance);
clo.execute( solution, encoderEchoDistance );
// Now solution.get(0) will contain path that has offset from original path
// and what is most important it will not have self intersections.
It is open source so I will dive in for implementation details. Thanks everyone who tried to help.

Related

Least distance from a point to an area

I am trying to find a point (P2) in a closed area that has the minimum distance to a point (P1). The area is built of homogenous pixels, it is not shaped perfectly and it is not necessarily convex. This is basically a problem of reaching an area from the shortest path.
The whole space is a stored in the form of a bitmap in the memory. What is the best method to find P2? Should I go with random search (optimization) methods? Optimization methods do not give the exact minimum but they are faster than brute forcing every pixel of the area. I need to perform thousands of these decisions in a few seconds.
The MinX,MinY,MaxX,MaxY of the area is available.
Thanks.
Here is my code, it's a discrete version using discrete coordinates:
Hint: the method I used to find the circumference of the Area is simple, it's like how do you know the beach from the land ? answer: the beach is covered by Sea from one side, so in my graph matrix, NULL reference is Sea, Points are Land!
Class Point:
class Point
{
public int x;
public int y;
public Point (int X, int Y)
{
this.x = X;
this.y = Y;
}
}
Class Area:
class Area
{
public ArrayList<Point> points;
public Area ()
{
p = new ArrayList<Point>();
}
}
Discrete Distance Utility Class:
class DiscreteDistance
{
public static int distance (Point a, Point b)
{
return Math.sqrt(Math.pow(b.x - a.x,2), Math.pow(b.y - a.y,2))
}
public static int distance (Point a, Area area)
{
ArrayList<Point> cir = circumference(area);
int d = null;
for (Point b : cir)
{
if (d == null || distance(a,b) < d)
{
d = distance(a,b);
}
}
return d;
}
ArrayList<Point> circumference (Area area)
{
int minX = 0;
int minY = 0;
int maxX = 0;
int maxY = 0;
for (Point p : area.points)
{
if (p.x < minX) minX = p.x;
if (p.x > maxX) maxX = p.x;
if (p.y < minY) minY = p.y;
if (p.y > maxY) maxY = p.y;
}
int w = maxX - minX +1;
int h = maxY - minY +1;
Point[][] graph = new Point[w][h];
for (Point p : area.points)
{
graph[p.x - minX][p.y - minY] = p;
}
ArrayList<Point> cir = new ArrayList<Point>();
for (int i=0; i<w; i++)
{
for (int j=0; j<h; j++)
{
if ((i > 0 && graph[i-1][j] == null)
|| (i < (w-1) && graph[i+1][j] == null)
|| (j > 0 && graph[i][j-1] == null)
|| (i < (h-1) && graph[i][j+1] == null))
{
cir.add(graph[i][j]);
}
}
}
return cir;
}
}
We have to assume you know or can easily find at least one pixel address (x0,y0) inside the area. The fastest solution will certainly be to search from this pixel in a straight line, say in the plus x direction Alternately, since you have a bounding box, pick the compass point toward the nearest boundary and go in that direction.
When you find the edge of the region, search depth first along the boundary. For general polygons with self-intersections and/or holes, this will have to be a complete and carefully implemented DFS maintaining a set of already-visited vertices. Only if the polygon is simple will it suffice to remember only the last-visited pixel to avoid doubling back over what's already searched.
During the DFS, compute the distance squared to p1 for each boundary pixel and track the minimum.
Note, if you are really pressed for performance this distance squared can be updated incrementally to replace multiplications with additions. I.e. if you know d2=(x2-x1)^2+(y2-y1)^2 and then increment x2 by 1 to take the next step around the boundary, the new squared distance is
((x2+1) - x1)^2 + (y2-y1)^2 = d2 + 2(x2 - x1) + 1
So you can update d2 with d2 += 2(x2 - x1) + 1. The multiplication by 2 is of course just a left shift, so this is very cheap. There are similar very cheap updates for steps in each direction.
One approach might be to set for an approximate solution by first canculating a triangulation of the area; afterwards, only the corners of the triangles have to be checked. This approach could be beneficial especially if in the many evaluations you plan for, the outside point changes but the shape itself does not change.
You could find the center of the rect of the area, and use a triangle between the two points to find the angle, and then use a function f(x) = mx + b to do the pixel walk until you find a pixel of the area to calculate the distance, and then rotate the angle until you find the shortest path.

Ellipse Detection using Hough Transform

using Hough Transform, how can I detect and get coordinates of (x0,y0) and "a" and "b" of an ellipse in 2D space?
This is ellipse01.bmp:
I = imread('ellipse01.bmp');
[m n] = size(I);
c=0;
for i=1:m
for j=1:n
if I(i,j)==1
c=c+1;
p(c,1)=i;
p(c,2)=j;
end
end
end
Edges=transpose(p);
Size_Ellipse = size(Edges);
B = 1:ceil(Size_Ellipse(1)/2);
Acc = zeros(length(B),1);
a1=0;a2=0;b1=0;b2=0;
Ellipse_Minor=[];Ellipse_Major=[];Ellipse_X0 = [];Ellipse_Y0 = [];
Global_Threshold = ceil(Size_Ellipse(2)/6);%Used for Major Axis Comparison
Local_Threshold = ceil(Size_Ellipse(1)/25);%Used for Minor Axis Comparison
[Y,X]=find(Edges);
Limit=numel(Y);
Thresh = 150;
Para=[];
for Count_01 =1:(Limit-1)
for Count_02 =(Count_01+1):Limit
if ((Count_02>Limit) || (Count_01>Limit))
continue
end
a1=Y(Count_01);b1=X(Count_01);
a2=Y(Count_02);b2=X(Count_02);
Dist_01 = (sqrt((a1-a2)^2+(b1-b2)^2));
if (Dist_01 >Global_Threshold)
Center_X0 = (b1+b2)/2;Center_Y0 = (a1+a2)/2;
Major = Dist_01/2.0;Alpha = atan((a2-a1)/(b2-b1));
if(Alpha == 0)
for Count_03 = 1:Limit
if( (Count_03 ~= Count_01) || (Count_03 ~= Count_02))
a3=Y(Count_03);b3=X(Count_03);
Dist_02 = (sqrt((a3 - Center_Y0)^2+(b3 - Center_X0)^2));
if(Dist_02 > Local_Threshold)
Cos_Tau = ((Major)^2 + (Dist_02)^2 - (a3-a2)^2 - (b3-b2)^2)/(2*Major*Dist_02);
Sin_Tau = 1 - (Cos_Tau)^2;
Minor_Temp = ((Major*Dist_02*Sin_Tau)^2)/(Major^2 - ((Dist_02*Cos_Tau)^2));
if((Minor_Temp>1) && (Minor_Temp<B(end)))
Acc(round(Minor_Temp)) = Acc(round(Minor_Temp))+1;
end
end
end
end
end
Minor = find(Acc == max(Acc(:)));
if(Acc(Minor)>Thresh)
Ellipse_Minor(end+1)=Minor(1);Ellipse_Major(end+1)=Major;
Ellipse_X0(end+1) = Center_X0;Ellipse_Y0(end+1) = Center_Y0;
for Count = 1:numel(X)
Para_X = ((X(Count)-Ellipse_X0(end))^2)/(Ellipse_Major(end)^2);
Para_Y = ((Y(Count)-Ellipse_Y0(end))^2)/(Ellipse_Minor(end)^2);
if (((Para_X + Para_Y)>=-2)&&((Para_X + Para_Y)<=2))
Edges(X(Count),Y(Count))=0;
end
end
end
Acc = zeros(size(Acc));
end
end
end
Although this is an old question, perhaps what I found can help someone.
The main problem of using the normal Hough Transform to detect ellipses is the dimension of the accumulator, since we would need to vote for 5 variables (the equation is explained here):
There is a very nice algorithm where the accumulator can be a simple 1D array, for example, and that runs in . If you wanna see code, you can look at here (the image used to test was that posted above).
If you use circle for rough transform is given as rho = xcos(theta) + ysin(theta)
For ellipse since it is
You could transform the equation as
rho = axcos(theta) + bysin(theta)
Although I am not sure if you use standard Hough Transform, for ellipse-like transforms, you could manipulate the first given function.
If your ellipse is as provided, being a true ellipse and not a noisy sample of points;
the search for the two furthest points gives the ends of the major axis,
the search for the two nearest points gives the ends of the minor axis,
the intersection of these lines (you can check it's a right angle) occurs at the centre.
If you know the 'a' and 'b' of an ellipse then you can rescale the image by factor of a/b in one direction and look for circle. I am still thinking about what to do when a and b are unknown.
If you know that it is circle then use Hough transform for circles. Here is a sample code:
int accomulatorResolution = 1; // for each pixel
int minDistBetweenCircles = 10; // In pixels
int cannyThresh = 20;
int accomulatorThresh = 5*_accT+1;
int minCircleRadius = 0;
int maxCircleRadius = _maxR*10;
cvClearMemStorage(storage);
circles = cvHoughCircles( gryImage, storage,
CV_HOUGH_GRADIENT, accomulatorResolution,
minDistBetweenCircles,
cannyThresh , accomulatorThresh,
minCircleRadius,maxCircleRadius );
// Draw circles
for (int i = 0; i < circles->total; i++){
float* p = (float*)cvGetSeqElem(circles,i);
// Draw center
cvCircle(dstImage, cvPoint(cvRound(p[0]),cvRound(p[1])),
1, CV_RGB(0,255,0), -1, 8, 0 );
// Draw circle
cvCircle(dstImage, cvPoint(cvRound(p[0]),cvRound(p[1])),
cvRound(p[2]),CV_RGB(255,0,0), 1, 8, 0 );
}

Circle Separation Distance - Nearest Neighbor Problem

I have a set of circles with given locations and radii on a two dimensional plane. I want to determine for every circle if it is intersecting with any other circle and the distance that is needed to separate the two. Under my current implementation, I just go through all the possible combinations of circles and then do the calculations. Unfortunately, this algorithm is O(n^2), which is slow.
The circles will generally be clustered in groups, and they will have similar (but different) radii. The approximate maximum for the number of circles is around 200. The algorithm does not have to be exact, but it should be close.
Here is a (slow) implementation I currently have in JavaScript:
// Makes a new circle
var circle = function(x,y,radius) {
return {
x:x,
y:y,
radius:radius
};
};
// These points are not representative of the true data set. I just made them up.
var points = [
circle(3,3,2),
circle(7,5,4),
circle(16,6,4),
circle(17,12,3),
circle(26,20,1)
];
var k = 0,
len = points.length;
for (var i = 0; i < len; i++) {
for (var j = k; j < len; j++) {
if (i !== j) {
var c1 = points[i],
c2 = points[j],
radiiSum = c1.radius+c2.radius,
deltaX = Math.abs(c1.x-c2.x);
if (deltaX < radiiSum) {
var deltaY = Math.abs(c1.y-c2.y);
if (deltaY < radiiSum) {
var distance = Math.sqrt(deltaX*deltaX+deltaY*deltaY);
if (distance < radiiSum) {
var separation = radiiSum - distance;
console.log(c1,c2,separation);
}
}
}
}
}
k++;
}
Also, I would appreciate it if you explained a good algorithm (KD Tree?) in plain English :-/
For starters, your algorithm above will be greatly sped-up if you just skipped the SQRT call. That's the most well known simple optimization for comparing distances. You can also precompute the "squared radius" distance so you don't redundantly recompute it.
Also, there looks to be lots of other little bugs in some of your algorithms. Here's my take on how to fix it below.
Also, if you want to get rid of the O(N-Squared) algorithm, you can look at using a kd-tree. There's an upfront cost of building the KD-Tree but with the benefit of searching for nearest neighbors as much faster.
function Distance_Squared(c1, c2) {
var deltaX = (c1.x - c2.x);
var deltaY = (c1.y - c2.y);
return (deltaX * deltaX + deltaY * deltaY);
}
// returns false if it's possible that the circles intersect. Returns true if the bounding box test proves there is no chance for intersection
function TrivialRejectIntersection(c1, c2) {
return ((c1.left >= c2.right) || (c2.right <= c1.left) || (c1.top >= c2.bottom) || (c2.bottom <= c1.top));
}
var circle = function(x,y,radius) {
return {
x:x,
y:y,
radius:radius,
// some helper properties
radius_squared : (radius*radius), // precompute the "squared distance"
left : (x-radius),
right: (x+radius),
top : (y - radius),
bottom : (y+radius)
};
};
// These points are not representative of the true data set. I just made them up.
var points = [
circle(3,3,2),
circle(7,5,4),
circle(16,6,4),
circle(17,12,3),
circle(26,20,1)
];
var k = 0;
var len = points.length;
var c1, c2;
var distance_squared;
var deltaX, deltaY;
var min_distance;
var seperation;
for (var i = 0; i < len; i++) {
for (var j = (i+1); j < len; j++) {
c1 = points[i];
c2 = points[j];
// try for trivial rejections first. Jury is still out if this will help
if (TrivialRejectIntesection(c1, c2)) {
continue;
}
//distance_squared is the actual distance between c1 and c2 'squared'
distance_squared = Distance_Squared(c1, c2);
// min_distance_squared is how much "squared distance" is required for these two circles to not intersect
min_distance_squared = (c1.radius_squared + c2.radius_squared + (c1.radius*c2.radius*2)); // D**2 == deltaX*deltaX + deltaY*deltaY + 2*deltaX*deltaY
// and so it follows
if (distance_squared < min_distance_squared) {
// intersection detected
// now subtract actual distance from "min distance"
seperation = c1.radius + c2.radius - Math.sqrt(distance_squared);
Console.log(c1, c2, seperation);
}
}
}
This article has been dormant for a long time, but I've run into and solved this problem reasonably well, so will post so that others don't have to do the same head scratching.
You can treat the nearest circle neighbor problem as a 3d point nearest neighbor search in a kd-tree or octree. Define the distance between two circles A and B as
D(A,B) = sqrt( (xA - xB)^2 + (yA - yB)^2 ) - rA - rB
This is a negative quantity iff the circles overlap. For this discussion I'll assume an octree, but a kd-tree with k=3 is similar.
Store a triple (x,y,r) in the octree for each circle.
To find the nearest neighbor to a target circle T, use the standard algorithm:
def search(node, T, nst)
if node is a leaf
update nst with node's (x,y,r) nearest to T
else
for each cuboid C subdividing node (there are 8 of them)
if C contains any point nearer to T than nst
search(C, T, nst)
end
end
Here nst is a reference to the nearest circle to T found so far. Initially it's null.
The slightly tricky part is determining if C contains any point nearer to T than nst. For this it is sufficent to consider the unique point (x,y,r) within C that is Euclidean nearest to T in x and y and has the maximum value of the r range contained in the cuboid. In other words, the cuboid represents a set of circles with centers ranging over a rectangular area in x and y and with a range of radii. The point you want to check is the one representing the circle with center closest to T and with largest radius.
Note the radius of T plays no part in the algorithm at all. You're only concered with how far inside any other circle the center of T lies. (I wish this had been as obvious at the start as it seems now...)

How to draw a Perspective-Correct Grid in 2D

I have an application that defines a real world rectangle on top of an image/photograph, of course in 2D it may not be a rectangle because you are looking at it from an angle.
The problem is, say that the rectangle needs to have grid lines drawn on it, for example if it is 3x5 so I need to draw 2 lines from side 1 to side 3, and 4 lines from side 2 to side 4.
As of right now I am breaking up each line into equidistant parts, to get the start and end point of all the grid lines. However the more of an angle the rectangle is on, the more "incorrect" these lines become, as horizontal lines further from you should be closer together.
Does anyone know the name of the algorithm that I should be searching for?
Yes I know you can do this in 3D, however I am limited to 2D for this particular application.
Here's the solution.
The basic idea is you can find the perspective correct "center" of your rectangle by connecting the corners diagonally. The intersection of the two resulting lines is your perspective correct center. From there you subdivide your rectangle into four smaller rectangles, and you repeat the process. The number of times depends on how accurate you want it. You can subdivide to just below the size of a pixel for effectively perfect perspective.
Then in your subrectangles you just apply your standard uncorrected "textured" triangles, or rectangles or whatever.
You can perform this algorithm without going to the complex trouble of building a 'real' 3d world. it's also good for if you do have a real 3d world modeled, but your textriangles are not perspective corrected in hardware, or you need a performant way to get perspective correct planes without per pixel rendering trickery.
Image: Example of Bilinear & Perspective Transform (Note: The height of top & bottom horizontal grid lines is actually half of the rest lines height, on both drawings)
========================================
I know this is an old question, but I have a generic solution so I decided to publish it hopping it will be useful to the future readers.
The code bellow can draw an arbitrary perspective grid without the need of repetitive computations.
I begin actually with a similar problem: to draw a 2D perspective Grid and then transform the underline image to restore the perspective.
I started to read here:
http://www.imagemagick.org/Usage/distorts/#bilinear_forward
and then here (the Leptonica Library):
http://www.leptonica.com/affine.html
were I found this:
When you look at an object in a plane from some arbitrary direction at
a finite distance, you get an additional "keystone" distortion in the
image. This is a projective transform, which keeps straight lines
straight but does not preserve the angles between lines. This warping
cannot be described by a linear affine transformation, and in fact
differs by x- and y-dependent terms in the denominator.
The transformation is not linear, as many people already pointed out in this thread. It involves solving a linear system of 8 equations (once) to compute the 8 required coefficients and then you can use them to transform as many points as you want.
To avoid including all Leptonica library in my project, I took some pieces of code from it, I removed all special Leptonica data-types & macros, I fixed some memory leaks and I converted it to a C++ class (mostly for encapsulation reasons) which does just one thing:
It maps a (Qt) QPointF float (x,y) coordinate to the corresponding Perspective Coordinate.
If you want to adapt the code to another C++ library, the only thing to redefine/substitute is the QPointF coordinate class.
I hope some future readers would find it useful.
The code bellow is divided into 3 parts:
A. An example on how to use the genImageProjective C++ class to draw a 2D perspective Grid
B. genImageProjective.h file
C. genImageProjective.cpp file
//============================================================
// C++ Code Example on how to use the
// genImageProjective class to draw a perspective 2D Grid
//============================================================
#include "genImageProjective.h"
// Input: 4 Perspective-Tranformed points:
// perspPoints[0] = top-left
// perspPoints[1] = top-right
// perspPoints[2] = bottom-right
// perspPoints[3] = bottom-left
void drawGrid(QPointF *perspPoints)
{
(...)
// Setup a non-transformed area rectangle
// I use a simple square rectangle here because in this case we are not interested in the source-rectangle,
// (we want to just draw a grid on the perspPoints[] area)
// but you can use any arbitrary rectangle to perform a real mapping to the perspPoints[] area
QPointF topLeft = QPointF(0,0);
QPointF topRight = QPointF(1000,0);
QPointF bottomRight = QPointF(1000,1000);
QPointF bottomLeft = QPointF(0,1000);
float width = topRight.x() - topLeft.x();
float height = bottomLeft.y() - topLeft.y();
// Setup Projective trasform object
genImageProjective imageProjective;
imageProjective.sourceArea[0] = topLeft;
imageProjective.sourceArea[1] = topRight;
imageProjective.sourceArea[2] = bottomRight;
imageProjective.sourceArea[3] = bottomLeft;
imageProjective.destArea[0] = perspPoints[0];
imageProjective.destArea[1] = perspPoints[1];
imageProjective.destArea[2] = perspPoints[2];
imageProjective.destArea[3] = perspPoints[3];
// Compute projective transform coefficients
if (imageProjective.computeCoeefficients() != 0)
return; // This can actually fail if any 3 points of Source or Dest are colinear
// Initialize Grid parameters (without transform)
float gridFirstLine = 0.1f; // The normalized position of first Grid Line (0.0 to 1.0)
float gridStep = 0.1f; // The normalized Grd size (=distance between grid lines: 0.0 to 1.0)
// Draw Horizonal Grid lines
QPointF lineStart, lineEnd, tempPnt;
for (float pos = gridFirstLine; pos <= 1.0f; pos += gridStep)
{
// Compute Grid Line Start
tempPnt = QPointF(topLeft.x(), topLeft.y() + pos*width);
imageProjective.mapSourceToDestPoint(tempPnt, lineStart);
// Compute Grid Line End
tempPnt = QPointF(topRight.x(), topLeft.y() + pos*width);
imageProjective.mapSourceToDestPoint(tempPnt, lineEnd);
// Draw Horizontal Line (use your prefered method to draw the line)
(...)
}
// Draw Vertical Grid lines
for (float pos = gridFirstLine; pos <= 1.0f; pos += gridStep)
{
// Compute Grid Line Start
tempPnt = QPointF(topLeft.x() + pos*height, topLeft.y());
imageProjective.mapSourceToDestPoint(tempPnt, lineStart);
// Compute Grid Line End
tempPnt = QPointF(topLeft.x() + pos*height, bottomLeft.y());
imageProjective.mapSourceToDestPoint(tempPnt, lineEnd);
// Draw Vertical Line (use your prefered method to draw the line)
(...)
}
(...)
}
==========================================
//========================================
//C++ Header File: genImageProjective.h
//========================================
#ifndef GENIMAGE_H
#define GENIMAGE_H
#include <QPointF>
// Class to transform an Image Point using Perspective transformation
class genImageProjective
{
public:
genImageProjective();
int computeCoeefficients(void);
int mapSourceToDestPoint(QPointF& sourcePoint, QPointF& destPoint);
public:
QPointF sourceArea[4]; // Source Image area limits (Rectangular)
QPointF destArea[4]; // Destination Image area limits (Perspectivelly Transformed)
private:
static int gaussjordan(float **a, float *b, int n);
bool coefficientsComputed;
float vc[8]; // Vector of Transform Coefficients
};
#endif // GENIMAGE_H
//========================================
//========================================
//C++ CPP File: genImageProjective.cpp
//========================================
#include <math.h>
#include "genImageProjective.h"
// ----------------------------------------------------
// class genImageProjective
// ----------------------------------------------------
genImageProjective::genImageProjective()
{
sourceArea[0] = sourceArea[1] = sourceArea[2] = sourceArea[3] = QPointF(0,0);
destArea[0] = destArea[1] = destArea[2] = destArea[3] = QPointF(0,0);
coefficientsComputed = false;
}
// --------------------------------------------------------------
// Compute projective transform coeeeficients
// RetValue: 0: Success, !=0: Error
/*-------------------------------------------------------------*
* Projective coordinate transformation *
*-------------------------------------------------------------*/
/*!
* computeCoeefficients()
*
* Input: this->sourceArea[4]: (source 4 points; unprimed)
* this->destArea[4]: (transformed 4 points; primed)
* this->vc (computed vector of transform coefficients)
* Return: 0 if OK; <0 on error
*
* We have a set of 8 equations, describing the projective
* transformation that takes 4 points (sourceArea) into 4 other
* points (destArea). These equations are:
*
* x1' = (c[0]*x1 + c[1]*y1 + c[2]) / (c[6]*x1 + c[7]*y1 + 1)
* y1' = (c[3]*x1 + c[4]*y1 + c[5]) / (c[6]*x1 + c[7]*y1 + 1)
* x2' = (c[0]*x2 + c[1]*y2 + c[2]) / (c[6]*x2 + c[7]*y2 + 1)
* y2' = (c[3]*x2 + c[4]*y2 + c[5]) / (c[6]*x2 + c[7]*y2 + 1)
* x3' = (c[0]*x3 + c[1]*y3 + c[2]) / (c[6]*x3 + c[7]*y3 + 1)
* y3' = (c[3]*x3 + c[4]*y3 + c[5]) / (c[6]*x3 + c[7]*y3 + 1)
* x4' = (c[0]*x4 + c[1]*y4 + c[2]) / (c[6]*x4 + c[7]*y4 + 1)
* y4' = (c[3]*x4 + c[4]*y4 + c[5]) / (c[6]*x4 + c[7]*y4 + 1)
*
* Multiplying both sides of each eqn by the denominator, we get
*
* AC = B
*
* where B and C are column vectors
*
* B = [ x1' y1' x2' y2' x3' y3' x4' y4' ]
* C = [ c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7] ]
*
* and A is the 8x8 matrix
*
* x1 y1 1 0 0 0 -x1*x1' -y1*x1'
* 0 0 0 x1 y1 1 -x1*y1' -y1*y1'
* x2 y2 1 0 0 0 -x2*x2' -y2*x2'
* 0 0 0 x2 y2 1 -x2*y2' -y2*y2'
* x3 y3 1 0 0 0 -x3*x3' -y3*x3'
* 0 0 0 x3 y3 1 -x3*y3' -y3*y3'
* x4 y4 1 0 0 0 -x4*x4' -y4*x4'
* 0 0 0 x4 y4 1 -x4*y4' -y4*y4'
*
* These eight equations are solved here for the coefficients C.
*
* These eight coefficients can then be used to find the mapping
* (x,y) --> (x',y'):
*
* x' = (c[0]x + c[1]y + c[2]) / (c[6]x + c[7]y + 1)
* y' = (c[3]x + c[4]y + c[5]) / (c[6]x + c[7]y + 1)
*
*/
int genImageProjective::computeCoeefficients(void)
{
int retValue = 0;
int i;
float *a[8]; /* 8x8 matrix A */
float *b = this->vc; /* rhs vector of primed coords X'; coeffs returned in vc[] */
b[0] = destArea[0].x();
b[1] = destArea[0].y();
b[2] = destArea[1].x();
b[3] = destArea[1].y();
b[4] = destArea[2].x();
b[5] = destArea[2].y();
b[6] = destArea[3].x();
b[7] = destArea[3].y();
for (i = 0; i < 8; i++)
a[i] = NULL;
for (i = 0; i < 8; i++)
{
if ((a[i] = (float *)calloc(8, sizeof(float))) == NULL)
{
retValue = -100; // ERROR_INT("a[i] not made", procName, 1);
goto Terminate;
}
}
a[0][0] = sourceArea[0].x();
a[0][1] = sourceArea[0].y();
a[0][2] = 1.;
a[0][6] = -sourceArea[0].x() * b[0];
a[0][7] = -sourceArea[0].y() * b[0];
a[1][3] = sourceArea[0].x();
a[1][4] = sourceArea[0].y();
a[1][5] = 1;
a[1][6] = -sourceArea[0].x() * b[1];
a[1][7] = -sourceArea[0].y() * b[1];
a[2][0] = sourceArea[1].x();
a[2][1] = sourceArea[1].y();
a[2][2] = 1.;
a[2][6] = -sourceArea[1].x() * b[2];
a[2][7] = -sourceArea[1].y() * b[2];
a[3][3] = sourceArea[1].x();
a[3][4] = sourceArea[1].y();
a[3][5] = 1;
a[3][6] = -sourceArea[1].x() * b[3];
a[3][7] = -sourceArea[1].y() * b[3];
a[4][0] = sourceArea[2].x();
a[4][1] = sourceArea[2].y();
a[4][2] = 1.;
a[4][6] = -sourceArea[2].x() * b[4];
a[4][7] = -sourceArea[2].y() * b[4];
a[5][3] = sourceArea[2].x();
a[5][4] = sourceArea[2].y();
a[5][5] = 1;
a[5][6] = -sourceArea[2].x() * b[5];
a[5][7] = -sourceArea[2].y() * b[5];
a[6][0] = sourceArea[3].x();
a[6][1] = sourceArea[3].y();
a[6][2] = 1.;
a[6][6] = -sourceArea[3].x() * b[6];
a[6][7] = -sourceArea[3].y() * b[6];
a[7][3] = sourceArea[3].x();
a[7][4] = sourceArea[3].y();
a[7][5] = 1;
a[7][6] = -sourceArea[3].x() * b[7];
a[7][7] = -sourceArea[3].y() * b[7];
retValue = gaussjordan(a, b, 8);
Terminate:
// Clean up
for (i = 0; i < 8; i++)
{
if (a[i])
free(a[i]);
}
this->coefficientsComputed = (retValue == 0);
return retValue;
}
/*-------------------------------------------------------------*
* Gauss-jordan linear equation solver *
*-------------------------------------------------------------*/
/*
* gaussjordan()
*
* Input: a (n x n matrix)
* b (rhs column vector)
* n (dimension)
* Return: 0 if ok, 1 on error
*
* Note side effects:
* (1) the matrix a is transformed to its inverse
* (2) the vector b is transformed to the solution X to the
* linear equation AX = B
*
* Adapted from "Numerical Recipes in C, Second Edition", 1992
* pp. 36-41 (gauss-jordan elimination)
*/
#define SWAP(a,b) {temp = (a); (a) = (b); (b) = temp;}
int genImageProjective::gaussjordan(float **a, float *b, int n)
{
int retValue = 0;
int i, icol=0, irow=0, j, k, l, ll;
int *indexc = NULL, *indexr = NULL, *ipiv = NULL;
float big, dum, pivinv, temp;
if (!a)
{
retValue = -1; // ERROR_INT("a not defined", procName, 1);
goto Terminate;
}
if (!b)
{
retValue = -2; // ERROR_INT("b not defined", procName, 1);
goto Terminate;
}
if ((indexc = (int *)calloc(n, sizeof(int))) == NULL)
{
retValue = -3; // ERROR_INT("indexc not made", procName, 1);
goto Terminate;
}
if ((indexr = (int *)calloc(n, sizeof(int))) == NULL)
{
retValue = -4; // ERROR_INT("indexr not made", procName, 1);
goto Terminate;
}
if ((ipiv = (int *)calloc(n, sizeof(int))) == NULL)
{
retValue = -5; // ERROR_INT("ipiv not made", procName, 1);
goto Terminate;
}
for (i = 0; i < n; i++)
{
big = 0.0;
for (j = 0; j < n; j++)
{
if (ipiv[j] != 1)
{
for (k = 0; k < n; k++)
{
if (ipiv[k] == 0)
{
if (fabs(a[j][k]) >= big)
{
big = fabs(a[j][k]);
irow = j;
icol = k;
}
}
else if (ipiv[k] > 1)
{
retValue = -6; // ERROR_INT("singular matrix", procName, 1);
goto Terminate;
}
}
}
}
++(ipiv[icol]);
if (irow != icol)
{
for (l = 0; l < n; l++)
SWAP(a[irow][l], a[icol][l]);
SWAP(b[irow], b[icol]);
}
indexr[i] = irow;
indexc[i] = icol;
if (a[icol][icol] == 0.0)
{
retValue = -7; // ERROR_INT("singular matrix", procName, 1);
goto Terminate;
}
pivinv = 1.0 / a[icol][icol];
a[icol][icol] = 1.0;
for (l = 0; l < n; l++)
a[icol][l] *= pivinv;
b[icol] *= pivinv;
for (ll = 0; ll < n; ll++)
{
if (ll != icol)
{
dum = a[ll][icol];
a[ll][icol] = 0.0;
for (l = 0; l < n; l++)
a[ll][l] -= a[icol][l] * dum;
b[ll] -= b[icol] * dum;
}
}
}
for (l = n - 1; l >= 0; l--)
{
if (indexr[l] != indexc[l])
{
for (k = 0; k < n; k++)
SWAP(a[k][indexr[l]], a[k][indexc[l]]);
}
}
Terminate:
if (indexr)
free(indexr);
if (indexc)
free(indexc);
if (ipiv)
free(ipiv);
return retValue;
}
// --------------------------------------------------------------
// Map a source point to destination using projective transform
// --------------------------------------------------------------
// Params:
// sourcePoint: initial point
// destPoint: transformed point
// RetValue: 0: Success, !=0: Error
// --------------------------------------------------------------
// Notes:
// 1. You must call once computeCoeefficients() to compute
// the this->vc[] vector of 8 coefficients, before you call
// mapSourceToDestPoint().
// 2. If there was an error or the 8 coefficients were not computed,
// a -1 is returned and destPoint is just set to sourcePoint value.
// --------------------------------------------------------------
int genImageProjective::mapSourceToDestPoint(QPointF& sourcePoint, QPointF& destPoint)
{
if (coefficientsComputed)
{
float factor = 1.0f / (vc[6] * sourcePoint.x() + vc[7] * sourcePoint.y() + 1.);
destPoint.setX( factor * (vc[0] * sourcePoint.x() + vc[1] * sourcePoint.y() + vc[2]) );
destPoint.setY( factor * (vc[3] * sourcePoint.x() + vc[4] * sourcePoint.y() + vc[5]) );
return 0;
}
else // There was an error while computing coefficients
{
destPoint = sourcePoint; // just copy the source to destination...
return -1; // ...and return an error
}
}
//========================================
Using Breton's subdivision method (which is related to Mongo's extension method), will get you accurate arbitrary power-of-two divisions. To split into non-power-of-two divisions using those methods you will have to subdivide to sub-pixel spacing, which can be computationally expensive.
However, I believe you may be able to apply a variation of Haga's Theorem (which is used in origami to divide a side into Nths given a side divided into (N-1)ths) to the perspective-square subdivisions to produce arbitrary divisions from the closest power of 2 without having to continue subdividing.
The most elegant and fastest solution would be to find the homography matrix, which maps rectangle coordinates to photo coordinates.
With a decent matrix library it should not be a difficult task, as long as you know your math.
Keywords: Collineation, Homography, Direct Linear Transformation
However, the recursive algorithm above should work, but probably if your resources are limited, projective geometry is the only way to go.
I think the selected answer is not the best solution available. A better solution is to apply perspective (projective) transformation of a rectangle to simple grid as following Matlab script and image show. You can implement this algorithm with C++ and OpenCV as well.
function drawpersgrid
sz = [ 24, 16 ]; % [x y]
srcpt = [ 0 0; sz(1) 0; 0 sz(2); sz(1) sz(2)];
destpt = [ 20 50; 100 60; 0 150; 200 200;];
% make rectangular grid
[X,Y] = meshgrid(0:sz(1),0:sz(2));
% find projective transform matching corner points
tform = maketform('projective',srcpt,destpt);
% apply the projective transform to the grid
[X1,Y1] = tformfwd(tform,X,Y);
hold on;
%% find grid
for i=1:sz(2)
for j=1:sz(1)
x = [ X1(i,j);X1(i,j+1);X1(i+1,j+1);X1(i+1,j);X1(i,j)];
y = [ Y1(i,j);Y1(i,j+1);Y1(i+1,j+1);Y1(i+1,j);Y1(i,j)];
plot(x,y,'b');
end
end
hold off;
In the special case when you look perpendicular to sides 1 and 3, you can divide those sides in equal parts. Then draw a diagonal, and draw parallels to side 1 through each intersection of the diagonal and the dividing lines drawn earlier.
This a geometric solution I thought out. I do not know whether the 'algorithm' has a name.
Say you want to start by dividing the 'rectangle' into n pieces with vertical lines first.
The goal is to place points P1..Pn-1 on the top line which we can use to draw lines through them to the points where the left and right line meet or parallel to them when such point does not exist.
If the top and bottom line are parallel to each other just place thoose points to split the top line between the corners equidistantly.
Else place n points Q1..Qn on the left line so that theese and the top-left corner are equidistant and i < j => Qi is closer to the top-left cornern than Qj.
In order to map the Q-points to the top line find the intersection S of the line from Qn through the top-right corner and the parallel to the left line through the intersection of top and bottom line. Now connect S with Q1..Qn-1. The intersection of the new lines with the top line are the wanted P-points.
Do this analog for the horizontal lines.
Given a rotation around the y axis, especially if rotation surfaces are planar, the perspective is generated by vertical gradients. These get progressively closer in perspective. Instead of using diagonals to define four rectangles, which can work given powers of two... define two rectangles, left and right. They'll be higher than wide, eventually, if one continues to divide the surface into narrower vertical segments. This can accommodate surfaces that are not square. If a rotation is around the x axis, then horizontal gradients are needed.
What you need to do is represent it in 3D (world) and then project it down to 2D (screen).
This will require you to use a 4D transformation matrix which does the projection on a 4D homogeneous down to a 3D homogeneous vector, which you can then convert down to a 2D screen space vector.
I couldn't find it in Google either, but a good computer graphics books will have the details.
Keywords are projection matrix, projection transformation, affine transformation, homogeneous vector, world space, screen space, perspective transformation, 3D transformation
And by the way, this usually takes a few lectures to explain all of that. So good luck.

How can I determine whether a 2D Point is within a Polygon?

I'm trying to create a fast 2D point inside polygon algorithm, for use in hit-testing (e.g. Polygon.contains(p:Point)). Suggestions for effective techniques would be appreciated.
For graphics, I'd rather not prefer integers. Many systems use integers for UI painting (pixels are ints after all), but macOS, for example, uses float for everything. macOS only knows points and a point can translate to one pixel, but depending on monitor resolution, it might translate to something else. On retina screens half a point (0.5/0.5) is pixel. Still, I never noticed that macOS UIs are significantly slower than other UIs. After all, 3D APIs (OpenGL or Direct3D) also work with floats and modern graphics libraries very often take advantage of GPU acceleration.
Now you said speed is your main concern, okay, let's go for speed. Before you run any sophisticated algorithm, first do a simple test. Create an axis aligned bounding box around your polygon. This is very easy, fast and can already save you a lot of calculations. How does that work? Iterate over all points of the polygon and find the min/max values of X and Y.
E.g. you have the points (9/1), (4/3), (2/7), (8/2), (3/6). This means Xmin is 2, Xmax is 9, Ymin is 1 and Ymax is 7. A point outside of the rectangle with the two edges (2/1) and (9/7) cannot be within the polygon.
// p is your point, p.x is the x coord, p.y is the y coord
if (p.x < Xmin || p.x > Xmax || p.y < Ymin || p.y > Ymax) {
// Definitely not within the polygon!
}
This is the first test to run for any point. As you can see, this test is ultra fast but it's also very coarse. To handle points that are within the bounding rectangle, we need a more sophisticated algorithm. There are a couple of ways how this can be calculated. Which method works also depends on whether the polygon can have holes or will always be solid. Here are examples of solid ones (one convex, one concave):
And here's one with a hole:
The green one has a hole in the middle!
The easiest algorithm, that can handle all three cases above and is still pretty fast is named ray casting. The idea of the algorithm is pretty simple: Draw a virtual ray from anywhere outside the polygon to your point and count how often it hits a side of the polygon. If the number of hits is even, it's outside of the polygon, if it's odd, it's inside.
The winding number algorithm would be an alternative, it is more accurate for points being very close to a polygon line but it's also much slower. Ray casting may fail for points too close to a polygon side because of limited floating point precision and rounding issues, but in reality that is hardly a problem, as if a point lies that close to a side, it's often visually not even possible for a viewer to recognize if it is already inside or still outside.
You still have the bounding box of above, remember? Just pick a point outside the bounding box and use it as starting point for your ray. E.g. the point (Xmin - e/p.y) is outside the polygon for sure.
But what is e? Well, e (actually epsilon) gives the bounding box some padding. As I said, ray tracing fails if we start too close to a polygon line. Since the bounding box might equal the polygon (if the polygon is an axis aligned rectangle, the bounding box is equal to the polygon itself!), we need some padding to make this safe, that's all. How big should you choose e? Not too big. It depends on the coordinate system scale you use for drawing. If your pixel step width is 1.0, then just choose 1.0 (yet 0.1 would have worked as well)
Now that we have the ray with its start and end coordinates, the problem shifts from "is the point within the polygon" to "how often does the ray intersects a polygon side". Therefore we can't just work with the polygon points as before, now we need the actual sides. A side is always defined by two points.
side 1: (X1/Y1)-(X2/Y2)
side 2: (X2/Y2)-(X3/Y3)
side 3: (X3/Y3)-(X4/Y4)
:
You need to test the ray against all sides. Consider the ray to be a vector and every side to be a vector. The ray has to hit each side exactly once or never at all. It can't hit the same side twice. Two lines in 2D space will always intersect exactly once, unless they are parallel, in which case they never intersect. However since vectors have a limited length, two vectors might not be parallel and still never intersect because they are too short to ever meet each other.
// Test the ray against all sides
int intersections = 0;
for (side = 0; side < numberOfSides; side++) {
// Test if current side intersects with ray.
// If yes, intersections++;
}
if ((intersections & 1) == 1) {
// Inside of polygon
} else {
// Outside of polygon
}
So far so well, but how do you test if two vectors intersect? Here's some C code (not tested), that should do the trick:
#define NO 0
#define YES 1
#define COLLINEAR 2
int areIntersecting(
float v1x1, float v1y1, float v1x2, float v1y2,
float v2x1, float v2y1, float v2x2, float v2y2
) {
float d1, d2;
float a1, a2, b1, b2, c1, c2;
// Convert vector 1 to a line (line 1) of infinite length.
// We want the line in linear equation standard form: A*x + B*y + C = 0
// See: http://en.wikipedia.org/wiki/Linear_equation
a1 = v1y2 - v1y1;
b1 = v1x1 - v1x2;
c1 = (v1x2 * v1y1) - (v1x1 * v1y2);
// Every point (x,y), that solves the equation above, is on the line,
// every point that does not solve it, is not. The equation will have a
// positive result if it is on one side of the line and a negative one
// if is on the other side of it. We insert (x1,y1) and (x2,y2) of vector
// 2 into the equation above.
d1 = (a1 * v2x1) + (b1 * v2y1) + c1;
d2 = (a1 * v2x2) + (b1 * v2y2) + c1;
// If d1 and d2 both have the same sign, they are both on the same side
// of our line 1 and in that case no intersection is possible. Careful,
// 0 is a special case, that's why we don't test ">=" and "<=",
// but "<" and ">".
if (d1 > 0 && d2 > 0) return NO;
if (d1 < 0 && d2 < 0) return NO;
// The fact that vector 2 intersected the infinite line 1 above doesn't
// mean it also intersects the vector 1. Vector 1 is only a subset of that
// infinite line 1, so it may have intersected that line before the vector
// started or after it ended. To know for sure, we have to repeat the
// the same test the other way round. We start by calculating the
// infinite line 2 in linear equation standard form.
a2 = v2y2 - v2y1;
b2 = v2x1 - v2x2;
c2 = (v2x2 * v2y1) - (v2x1 * v2y2);
// Calculate d1 and d2 again, this time using points of vector 1.
d1 = (a2 * v1x1) + (b2 * v1y1) + c2;
d2 = (a2 * v1x2) + (b2 * v1y2) + c2;
// Again, if both have the same sign (and neither one is 0),
// no intersection is possible.
if (d1 > 0 && d2 > 0) return NO;
if (d1 < 0 && d2 < 0) return NO;
// If we get here, only two possibilities are left. Either the two
// vectors intersect in exactly one point or they are collinear, which
// means they intersect in any number of points from zero to infinite.
if ((a1 * b2) - (a2 * b1) == 0.0f) return COLLINEAR;
// If they are not collinear, they must intersect in exactly one point.
return YES;
}
The input values are the two endpoints of vector 1 (v1x1/v1y1 and v1x2/v1y2) and vector 2 (v2x1/v2y1 and v2x2/v2y2). So you have 2 vectors, 4 points, 8 coordinates. YES and NO are clear. YES increases intersections, NO does nothing.
What about COLLINEAR? It means both vectors lie on the same infinite line, depending on position and length, they don't intersect at all or they intersect in an endless number of points. I'm not absolutely sure how to handle this case, I would not count it as intersection either way. Well, this case is rather rare in practice anyway because of floating point rounding errors; better code would probably not test for == 0.0f but instead for something like < epsilon, where epsilon is a rather small number.
If you need to test a larger number of points, you can certainly speed up the whole thing a bit by keeping the linear equation standard forms of the polygon sides in memory, so you don't have to recalculate these every time. This will save you two floating point multiplications and three floating point subtractions on every test in exchange for storing three floating point values per polygon side in memory. It's a typical memory vs computation time trade off.
Last but not least: If you may use 3D hardware to solve the problem, there is an interesting alternative. Just let the GPU do all the work for you. Create a painting surface that is off screen. Fill it completely with the color black. Now let OpenGL or Direct3D paint your polygon (or even all of your polygons if you just want to test if the point is within any of them, but you don't care for which one) and fill the polygon(s) with a different color, e.g. white. To check if a point is within the polygon, get the color of this point from the drawing surface. This is just a O(1) memory fetch.
Of course this method is only usable if your drawing surface doesn't have to be huge. If it cannot fit into the GPU memory, this method is slower than doing it on the CPU. If it would have to be huge and your GPU supports modern shaders, you can still use the GPU by implementing the ray casting shown above as a GPU shader, which absolutely is possible. For a larger number of polygons or a large number of points to test, this will pay off, consider some GPUs will be able to test 64 to 256 points in parallel. Note however that transferring data from CPU to GPU and back is always expensive, so for just testing a couple of points against a couple of simple polygons, where either the points or the polygons are dynamic and will change frequently, a GPU approach will rarely pay off.
I think the following piece of code is the best solution (taken from here):
int pnpoly(int nvert, float *vertx, float *verty, float testx, float testy)
{
int i, j, c = 0;
for (i = 0, j = nvert-1; i < nvert; j = i++) {
if ( ((verty[i]>testy) != (verty[j]>testy)) &&
(testx < (vertx[j]-vertx[i]) * (testy-verty[i]) / (verty[j]-verty[i]) + vertx[i]) )
c = !c;
}
return c;
}
Arguments
nvert: Number of vertices in the polygon. Whether to repeat the first vertex at the end has been discussed in the article referred above.
vertx, verty: Arrays containing the x- and y-coordinates of the polygon's vertices.
testx, testy: X- and y-coordinate of the test point.
It's both short and efficient and works both for convex and concave polygons. As suggested before, you should check the bounding rectangle first and treat polygon holes separately.
The idea behind this is pretty simple. The author describes it as follows:
I run a semi-infinite ray horizontally (increasing x, fixed y) out from the test point, and count how many edges it crosses. At each crossing, the ray switches between inside and outside. This is called the Jordan curve theorem.
The variable c is switching from 0 to 1 and 1 to 0 each time the horizontal ray crosses any edge. So basically it's keeping track of whether the number of edges crossed are even or odd. 0 means even and 1 means odd.
Here is a C# version of the answer given by nirg, which comes from this RPI professor. Note that use of the code from that RPI source requires attribution.
A bounding box check has been added at the top. However, as James Brown points out, the main code is almost as fast as the bounding box check itself, so the bounding box check can actually slow the overall operation, in the case that most of the points you are checking are inside the bounding box. So you could leave the bounding box check out, or an alternative would be to precompute the bounding boxes of your polygons if they don't change shape too often.
public bool IsPointInPolygon( Point p, Point[] polygon )
{
double minX = polygon[ 0 ].X;
double maxX = polygon[ 0 ].X;
double minY = polygon[ 0 ].Y;
double maxY = polygon[ 0 ].Y;
for ( int i = 1 ; i < polygon.Length ; i++ )
{
Point q = polygon[ i ];
minX = Math.Min( q.X, minX );
maxX = Math.Max( q.X, maxX );
minY = Math.Min( q.Y, minY );
maxY = Math.Max( q.Y, maxY );
}
if ( p.X < minX || p.X > maxX || p.Y < minY || p.Y > maxY )
{
return false;
}
// https://wrf.ecse.rpi.edu/Research/Short_Notes/pnpoly.html
bool inside = false;
for ( int i = 0, j = polygon.Length - 1 ; i < polygon.Length ; j = i++ )
{
if ( ( polygon[ i ].Y > p.Y ) != ( polygon[ j ].Y > p.Y ) &&
p.X < ( polygon[ j ].X - polygon[ i ].X ) * ( p.Y - polygon[ i ].Y ) / ( polygon[ j ].Y - polygon[ i ].Y ) + polygon[ i ].X )
{
inside = !inside;
}
}
return inside;
}
Here is a JavaScript variant of the answer by M. Katz based on Nirg's approach:
function pointIsInPoly(p, polygon) {
var isInside = false;
var minX = polygon[0].x, maxX = polygon[0].x;
var minY = polygon[0].y, maxY = polygon[0].y;
for (var n = 1; n < polygon.length; n++) {
var q = polygon[n];
minX = Math.min(q.x, minX);
maxX = Math.max(q.x, maxX);
minY = Math.min(q.y, minY);
maxY = Math.max(q.y, maxY);
}
if (p.x < minX || p.x > maxX || p.y < minY || p.y > maxY) {
return false;
}
var i = 0, j = polygon.length - 1;
for (i, j; i < polygon.length; j = i++) {
if ( (polygon[i].y > p.y) != (polygon[j].y > p.y) &&
p.x < (polygon[j].x - polygon[i].x) * (p.y - polygon[i].y) / (polygon[j].y - polygon[i].y) + polygon[i].x ) {
isInside = !isInside;
}
}
return isInside;
}
Compute the oriented sum of angles between the point p and each of the polygon apices. If the total oriented angle is 360 degrees, the point is inside. If the total is 0, the point is outside.
I like this method better because it is more robust and less dependent on numerical precision.
Methods that compute evenness of number of intersections are limited because you can 'hit' an apex during the computation of the number of intersections.
EDIT: By The Way, this method works with concave and convex polygons.
EDIT: I recently found a whole Wikipedia article on the topic.
This question is so interesting. I have another workable idea different from other answers to this post. The idea is to use the sum of angles to decide whether the target is inside or outside. Better known as winding number.
Let x be the target point. Let array [0, 1, .... n] be the all the points of the area. Connect the target point with every border point with a line. If the target point is inside of this area. The sum of all angles will be 360 degrees. If not the angles will be less than 360.
Refer to this image to get a basic understanding of the idea:
My algorithm assumes the clockwise is the positive direction. Here is a potential input:
[[-122.402015, 48.225216], [-117.032049, 48.999931], [-116.919132, 45.995175], [-124.079107, 46.267259], [-124.717175, 48.377557], [-122.92315, 47.047963], [-122.402015, 48.225216]]
The following is the python code that implements the idea:
def isInside(self, border, target):
degree = 0
for i in range(len(border) - 1):
a = border[i]
b = border[i + 1]
# calculate distance of vector
A = getDistance(a[0], a[1], b[0], b[1]);
B = getDistance(target[0], target[1], a[0], a[1])
C = getDistance(target[0], target[1], b[0], b[1])
# calculate direction of vector
ta_x = a[0] - target[0]
ta_y = a[1] - target[1]
tb_x = b[0] - target[0]
tb_y = b[1] - target[1]
cross = tb_y * ta_x - tb_x * ta_y
clockwise = cross < 0
# calculate sum of angles
if(clockwise):
degree = degree + math.degrees(math.acos((B * B + C * C - A * A) / (2.0 * B * C)))
else:
degree = degree - math.degrees(math.acos((B * B + C * C - A * A) / (2.0 * B * C)))
if(abs(round(degree) - 360) <= 3):
return True
return False
The Eric Haines article cited by bobobobo is really excellent. Particularly interesting are the tables comparing performance of the algorithms; the angle summation method is really bad compared to the others. Also interesting is that optimisations like using a lookup grid to further subdivide the polygon into "in" and "out" sectors can make the test incredibly fast even on polygons with > 1000 sides.
Anyway, it's early days but my vote goes to the "crossings" method, which is pretty much what Mecki describes I think. However I found it most succintly described and codified by David Bourke. I love that there is no real trigonometry required, and it works for convex and concave, and it performs reasonably well as the number of sides increases.
By the way, here's one of the performance tables from the Eric Haines' article for interest, testing on random polygons.
number of edges per polygon
3 4 10 100 1000
MacMartin 2.9 3.2 5.9 50.6 485
Crossings 3.1 3.4 6.8 60.0 624
Triangle Fan+edge sort 1.1 1.8 6.5 77.6 787
Triangle Fan 1.2 2.1 7.3 85.4 865
Barycentric 2.1 3.8 13.8 160.7 1665
Angle Summation 56.2 70.4 153.6 1403.8 14693
Grid (100x100) 1.5 1.5 1.6 2.1 9.8
Grid (20x20) 1.7 1.7 1.9 5.7 42.2
Bins (100) 1.8 1.9 2.7 15.1 117
Bins (20) 2.1 2.2 3.7 26.3 278
Really like the solution posted by Nirg and edited by bobobobo. I just made it javascript friendly and a little more legible for my use:
function insidePoly(poly, pointx, pointy) {
var i, j;
var inside = false;
for (i = 0, j = poly.length - 1; i < poly.length; j = i++) {
if(((poly[i].y > pointy) != (poly[j].y > pointy)) && (pointx < (poly[j].x-poly[i].x) * (pointy-poly[i].y) / (poly[j].y-poly[i].y) + poly[i].x) ) inside = !inside;
}
return inside;
}
Swift version of the answer by nirg:
extension CGPoint {
func isInsidePolygon(vertices: [CGPoint]) -> Bool {
guard !vertices.isEmpty else { return false }
var j = vertices.last!, c = false
for i in vertices {
let a = (i.y > y) != (j.y > y)
let b = (x < (j.x - i.x) * (y - i.y) / (j.y - i.y) + i.x)
if a && b { c = !c }
j = i
}
return c
}
}
Most of the answers in this question are not handling all corner cases well. Some subtle corner cases like below:
This is a javascript version with all corner cases well handled.
/** Get relationship between a point and a polygon using ray-casting algorithm
* #param {{x:number, y:number}} P: point to check
* #param {{x:number, y:number}[]} polygon: the polygon
* #returns -1: outside, 0: on edge, 1: inside
*/
function relationPP(P, polygon) {
const between = (p, a, b) => p >= a && p <= b || p <= a && p >= b
let inside = false
for (let i = polygon.length-1, j = 0; j < polygon.length; i = j, j++) {
const A = polygon[i]
const B = polygon[j]
// corner cases
if (P.x == A.x && P.y == A.y || P.x == B.x && P.y == B.y) return 0
if (A.y == B.y && P.y == A.y && between(P.x, A.x, B.x)) return 0
if (between(P.y, A.y, B.y)) { // if P inside the vertical range
// filter out "ray pass vertex" problem by treating the line a little lower
if (P.y == A.y && B.y >= A.y || P.y == B.y && A.y >= B.y) continue
// calc cross product `PA X PB`, P lays on left side of AB if c > 0
const c = (A.x - P.x) * (B.y - P.y) - (B.x - P.x) * (A.y - P.y)
if (c == 0) return 0
if ((A.y < B.y) == (c > 0)) inside = !inside
}
}
return inside? 1 : -1
}
I did some work on this back when I was a researcher under Michael Stonebraker - you know, the professor who came up with Ingres, PostgreSQL, etc.
We realized that the fastest way was to first do a bounding box because it's SUPER fast. If it's outside the bounding box, it's outside. Otherwise, you do the harder work...
If you want a great algorithm, look to the open source project PostgreSQL source code for the geo work...
I want to point out, we never got any insight into right vs left handedness (also expressible as an "inside" vs "outside" problem...
UPDATE
BKB's link provided a good number of reasonable algorithms. I was working on Earth Science problems and therefore needed a solution that works in latitude/longitude, and it has the peculiar problem of handedness - is the area inside the smaller area or the bigger area? The answer is that the "direction" of the verticies matters - it's either left-handed or right handed and in this way you can indicate either area as "inside" any given polygon. As such, my work used solution three enumerated on that page.
In addition, my work used separate functions for "on the line" tests.
...Since someone asked: we figured out that bounding box tests were best when the number of verticies went beyond some number - do a very quick test before doing the longer test if necessary... A bounding box is created by simply taking the largest x, smallest x, largest y and smallest y and putting them together to make four points of a box...
Another tip for those that follow: we did all our more sophisticated and "light-dimming" computing in a grid space all in positive points on a plane and then re-projected back into "real" longitude/latitude, thus avoiding possible errors of wrapping around when one crossed line 180 of longitude and when handling polar regions. Worked great!
The trivial solution would be to divide the polygon to triangles and hit test the triangles as explained here
If your polygon is CONVEX there might be a better approach though. Look at the polygon as a collection of infinite lines. Each line dividing space into two. for every point it's easy to say if its on the one side or the other side of the line. If a point is on the same side of all lines then it is inside the polygon.
David Segond's answer is pretty much the standard general answer, and Richard T's is the most common optimization, though therre are some others. Other strong optimizations are based on less general solutions. For example if you are going to check the same polygon with lots of points, triangulating the polygon can speed things up hugely as there are a number of very fast TIN searching algorithms. Another is if the polygon and points are on a limited plane at low resolution, say a screen display, you can paint the polygon onto a memory mapped display buffer in a given colour, and check the color of a given pixel to see if it lies in the polygons.
Like many optimizations, these are based on specific rather than general cases, and yield beneifits based on amortized time rather than single usage.
Working in this field, i found Joeseph O'Rourkes 'Computation Geometry in C' ISBN 0-521-44034-3 to be a great help.
Java Version:
public class Geocode {
private float latitude;
private float longitude;
public Geocode() {
}
public Geocode(float latitude, float longitude) {
this.latitude = latitude;
this.longitude = longitude;
}
public float getLatitude() {
return latitude;
}
public void setLatitude(float latitude) {
this.latitude = latitude;
}
public float getLongitude() {
return longitude;
}
public void setLongitude(float longitude) {
this.longitude = longitude;
}
}
public class GeoPolygon {
private ArrayList<Geocode> points;
public GeoPolygon() {
this.points = new ArrayList<Geocode>();
}
public GeoPolygon(ArrayList<Geocode> points) {
this.points = points;
}
public GeoPolygon add(Geocode geo) {
points.add(geo);
return this;
}
public boolean inside(Geocode geo) {
int i, j;
boolean c = false;
for (i = 0, j = points.size() - 1; i < points.size(); j = i++) {
if (((points.get(i).getLongitude() > geo.getLongitude()) != (points.get(j).getLongitude() > geo.getLongitude())) &&
(geo.getLatitude() < (points.get(j).getLatitude() - points.get(i).getLatitude()) * (geo.getLongitude() - points.get(i).getLongitude()) / (points.get(j).getLongitude() - points.get(i).getLongitude()) + points.get(i).getLatitude()))
c = !c;
}
return c;
}
}
I realize this is old, but here is a ray casting algorithm implemented in Cocoa, in case anyone is interested. Not sure it is the most efficient way to do things, but it may help someone out.
- (BOOL)shape:(NSBezierPath *)path containsPoint:(NSPoint)point
{
NSBezierPath *currentPath = [path bezierPathByFlatteningPath];
BOOL result;
float aggregateX = 0; //I use these to calculate the centroid of the shape
float aggregateY = 0;
NSPoint firstPoint[1];
[currentPath elementAtIndex:0 associatedPoints:firstPoint];
float olderX = firstPoint[0].x;
float olderY = firstPoint[0].y;
NSPoint interPoint;
int noOfIntersections = 0;
for (int n = 0; n < [currentPath elementCount]; n++) {
NSPoint points[1];
[currentPath elementAtIndex:n associatedPoints:points];
aggregateX += points[0].x;
aggregateY += points[0].y;
}
for (int n = 0; n < [currentPath elementCount]; n++) {
NSPoint points[1];
[currentPath elementAtIndex:n associatedPoints:points];
//line equations in Ax + By = C form
float _A_FOO = (aggregateY/[currentPath elementCount]) - point.y;
float _B_FOO = point.x - (aggregateX/[currentPath elementCount]);
float _C_FOO = (_A_FOO * point.x) + (_B_FOO * point.y);
float _A_BAR = olderY - points[0].y;
float _B_BAR = points[0].x - olderX;
float _C_BAR = (_A_BAR * olderX) + (_B_BAR * olderY);
float det = (_A_FOO * _B_BAR) - (_A_BAR * _B_FOO);
if (det != 0) {
//intersection points with the edges
float xIntersectionPoint = ((_B_BAR * _C_FOO) - (_B_FOO * _C_BAR)) / det;
float yIntersectionPoint = ((_A_FOO * _C_BAR) - (_A_BAR * _C_FOO)) / det;
interPoint = NSMakePoint(xIntersectionPoint, yIntersectionPoint);
if (olderX <= points[0].x) {
//doesn't matter in which direction the ray goes, so I send it right-ward.
if ((interPoint.x >= olderX && interPoint.x <= points[0].x) && (interPoint.x > point.x)) {
noOfIntersections++;
}
} else {
if ((interPoint.x >= points[0].x && interPoint.x <= olderX) && (interPoint.x > point.x)) {
noOfIntersections++;
}
}
}
olderX = points[0].x;
olderY = points[0].y;
}
if (noOfIntersections % 2 == 0) {
result = FALSE;
} else {
result = TRUE;
}
return result;
}
Obj-C version of nirg's answer with sample method for testing points. Nirg's answer worked well for me.
- (BOOL)isPointInPolygon:(NSArray *)vertices point:(CGPoint)test {
NSUInteger nvert = [vertices count];
NSInteger i, j, c = 0;
CGPoint verti, vertj;
for (i = 0, j = nvert-1; i < nvert; j = i++) {
verti = [(NSValue *)[vertices objectAtIndex:i] CGPointValue];
vertj = [(NSValue *)[vertices objectAtIndex:j] CGPointValue];
if (( (verti.y > test.y) != (vertj.y > test.y) ) &&
( test.x < ( vertj.x - verti.x ) * ( test.y - verti.y ) / ( vertj.y - verti.y ) + verti.x) )
c = !c;
}
return (c ? YES : NO);
}
- (void)testPoint {
NSArray *polygonVertices = [NSArray arrayWithObjects:
[NSValue valueWithCGPoint:CGPointMake(13.5, 41.5)],
[NSValue valueWithCGPoint:CGPointMake(42.5, 56.5)],
[NSValue valueWithCGPoint:CGPointMake(39.5, 69.5)],
[NSValue valueWithCGPoint:CGPointMake(42.5, 84.5)],
[NSValue valueWithCGPoint:CGPointMake(13.5, 100.0)],
[NSValue valueWithCGPoint:CGPointMake(6.0, 70.5)],
nil
];
CGPoint tappedPoint = CGPointMake(23.0, 70.0);
if ([self isPointInPolygon:polygonVertices point:tappedPoint]) {
NSLog(#"YES");
} else {
NSLog(#"NO");
}
}
There is nothing more beutiful than an inductive definition of a problem. For the sake of completeness here you have a version in prolog which might also clarify the thoughs behind ray casting:
Based on the simulation of simplicity algorithm in http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html
Some helper predicates:
exor(A,B):- \+A,B;A,\+B.
in_range(Coordinate,CA,CB) :- exor((CA>Coordinate),(CB>Coordinate)).
inside(false).
inside(_,[_|[]]).
inside(X:Y, [X1:Y1,X2:Y2|R]) :- in_range(Y,Y1,Y2), X > ( ((X2-X1)*(Y-Y1))/(Y2-Y1) + X1),toggle_ray, inside(X:Y, [X2:Y2|R]); inside(X:Y, [X2:Y2|R]).
get_line(_,_,[]).
get_line([XA:YA,XB:YB],[X1:Y1,X2:Y2|R]):- [XA:YA,XB:YB]=[X1:Y1,X2:Y2]; get_line([XA:YA,XB:YB],[X2:Y2|R]).
The equation of a line given 2 points A and B (Line(A,B)) is:
(YB-YA)
Y - YA = ------- * (X - XA)
(XB-YB)
It is important that the direction of rotation for the line is
setted to clock-wise for boundaries and anti-clock-wise for holes.
We are going to check whether the point (X,Y), i.e the tested point is at the left
half-plane of our line (it is a matter of taste, it could also be
the right side, but also the direction of boundaries lines has to be changed in
that case), this is to project the ray from the point to the right (or left)
and acknowledge the intersection with the line. We have chosen to project
the ray in the horizontal direction (again it is a matter of taste,
it could also be done in vertical with similar restrictions), so we have:
(XB-XA)
X < ------- * (Y - YA) + XA
(YB-YA)
Now we need to know if the point is at the left (or right) side of
the line segment only, not the entire plane, so we need to
restrict the search only to this segment, but this is easy since
to be inside the segment only one point in the line can be higher
than Y in the vertical axis. As this is a stronger restriction it
needs to be the first to check, so we take first only those lines
meeting this requirement and then check its possition. By the Jordan
Curve theorem any ray projected to a polygon must intersect at an
even number of lines. So we are done, we will throw the ray to the
right and then everytime it intersects a line, toggle its state.
However in our implementation we are goint to check the lenght of
the bag of solutions meeting the given restrictions and decide the
innership upon it. for each line in the polygon this have to be done.
is_left_half_plane(_,[],[],_).
is_left_half_plane(X:Y,[XA:YA,XB:YB], [[X1:Y1,X2:Y2]|R], Test) :- [XA:YA, XB:YB] = [X1:Y1, X2:Y2], call(Test, X , (((XB - XA) * (Y - YA)) / (YB - YA) + XA));
is_left_half_plane(X:Y, [XA:YA, XB:YB], R, Test).
in_y_range_at_poly(Y,[XA:YA,XB:YB],Polygon) :- get_line([XA:YA,XB:YB],Polygon), in_range(Y,YA,YB).
all_in_range(Coordinate,Polygon,Lines) :- aggregate(bag(Line), in_y_range_at_poly(Coordinate,Line,Polygon), Lines).
traverses_ray(X:Y, Lines, Count) :- aggregate(bag(Line), is_left_half_plane(X:Y, Line, Lines, <), IntersectingLines), length(IntersectingLines, Count).
% This is the entry point predicate
inside_poly(X:Y,Polygon,Answer) :- all_in_range(Y,Polygon,Lines), traverses_ray(X:Y, Lines, Count), (1 is mod(Count,2)->Answer=inside;Answer=outside).
I've made a Python implementation of nirg's c++ code:
Inputs
bounding_points: nodes that make up the polygon.
bounding_box_positions: candidate points to filter. (In my implementation created from the bounding box.
(The inputs are lists of tuples in the format: [(xcord, ycord), ...])
Returns
All the points that are inside the polygon.
def polygon_ray_casting(self, bounding_points, bounding_box_positions):
# Arrays containing the x- and y-coordinates of the polygon's vertices.
vertx = [point[0] for point in bounding_points]
verty = [point[1] for point in bounding_points]
# Number of vertices in the polygon
nvert = len(bounding_points)
# Points that are inside
points_inside = []
# For every candidate position within the bounding box
for idx, pos in enumerate(bounding_box_positions):
testx, testy = (pos[0], pos[1])
c = 0
for i in range(0, nvert):
j = i - 1 if i != 0 else nvert - 1
if( ((verty[i] > testy ) != (verty[j] > testy)) and
(testx < (vertx[j] - vertx[i]) * (testy - verty[i]) / (verty[j] - verty[i]) + vertx[i]) ):
c += 1
# If odd, that means that we are inside the polygon
if c % 2 == 1:
points_inside.append(pos)
return points_inside
Again, the idea is taken from here
C# version of nirg's answer is here: I'll just share the code. It may save someone some time.
public static bool IsPointInPolygon(IList<Point> polygon, Point testPoint) {
bool result = false;
int j = polygon.Count() - 1;
for (int i = 0; i < polygon.Count(); i++) {
if (polygon[i].Y < testPoint.Y && polygon[j].Y >= testPoint.Y || polygon[j].Y < testPoint.Y && polygon[i].Y >= testPoint.Y) {
if (polygon[i].X + (testPoint.Y - polygon[i].Y) / (polygon[j].Y - polygon[i].Y) * (polygon[j].X - polygon[i].X) < testPoint.X) {
result = !result;
}
}
j = i;
}
return result;
}
VBA VERSION:
Note: Remember that if your polygon is an area within a map that Latitude/Longitude are Y/X values as opposed to X/Y (Latitude = Y, Longitude = X) due to from what I understand are historical implications from way back when Longitude was not a measurement.
CLASS MODULE: CPoint
Private pXValue As Double
Private pYValue As Double
'''''X Value Property'''''
Public Property Get X() As Double
X = pXValue
End Property
Public Property Let X(Value As Double)
pXValue = Value
End Property
'''''Y Value Property'''''
Public Property Get Y() As Double
Y = pYValue
End Property
Public Property Let Y(Value As Double)
pYValue = Value
End Property
MODULE:
Public Function isPointInPolygon(p As CPoint, polygon() As CPoint) As Boolean
Dim i As Integer
Dim j As Integer
Dim q As Object
Dim minX As Double
Dim maxX As Double
Dim minY As Double
Dim maxY As Double
minX = polygon(0).X
maxX = polygon(0).X
minY = polygon(0).Y
maxY = polygon(0).Y
For i = 1 To UBound(polygon)
Set q = polygon(i)
minX = vbMin(q.X, minX)
maxX = vbMax(q.X, maxX)
minY = vbMin(q.Y, minY)
maxY = vbMax(q.Y, maxY)
Next i
If p.X < minX Or p.X > maxX Or p.Y < minY Or p.Y > maxY Then
isPointInPolygon = False
Exit Function
End If
' SOURCE: http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html
isPointInPolygon = False
i = 0
j = UBound(polygon)
Do While i < UBound(polygon) + 1
If (polygon(i).Y > p.Y) Then
If (polygon(j).Y < p.Y) Then
If p.X < (polygon(j).X - polygon(i).X) * (p.Y - polygon(i).Y) / (polygon(j).Y - polygon(i).Y) + polygon(i).X Then
isPointInPolygon = True
Exit Function
End If
End If
ElseIf (polygon(i).Y < p.Y) Then
If (polygon(j).Y > p.Y) Then
If p.X < (polygon(j).X - polygon(i).X) * (p.Y - polygon(i).Y) / (polygon(j).Y - polygon(i).Y) + polygon(i).X Then
isPointInPolygon = True
Exit Function
End If
End If
End If
j = i
i = i + 1
Loop
End Function
Function vbMax(n1, n2) As Double
vbMax = IIf(n1 > n2, n1, n2)
End Function
Function vbMin(n1, n2) As Double
vbMin = IIf(n1 > n2, n2, n1)
End Function
Sub TestPointInPolygon()
Dim i As Integer
Dim InPolygon As Boolean
' MARKER Object
Dim p As CPoint
Set p = New CPoint
p.X = <ENTER X VALUE HERE>
p.Y = <ENTER Y VALUE HERE>
' POLYGON OBJECT
Dim polygon() As CPoint
ReDim polygon(<ENTER VALUE HERE>) 'Amount of vertices in polygon - 1
For i = 0 To <ENTER VALUE HERE> 'Same value as above
Set polygon(i) = New CPoint
polygon(i).X = <ASSIGN X VALUE HERE> 'Source a list of values that can be looped through
polgyon(i).Y = <ASSIGN Y VALUE HERE> 'Source a list of values that can be looped through
Next i
InPolygon = isPointInPolygon(p, polygon)
MsgBox InPolygon
End Sub
.Net port:
static void Main(string[] args)
{
Console.Write("Hola");
List<double> vertx = new List<double>();
List<double> verty = new List<double>();
int i, j, c = 0;
vertx.Add(1);
vertx.Add(2);
vertx.Add(1);
vertx.Add(4);
vertx.Add(4);
vertx.Add(1);
verty.Add(1);
verty.Add(2);
verty.Add(4);
verty.Add(4);
verty.Add(1);
verty.Add(1);
int nvert = 6; //Vértices del poligono
double testx = 2;
double testy = 5;
for (i = 0, j = nvert - 1; i < nvert; j = i++)
{
if (((verty[i] > testy) != (verty[j] > testy)) &&
(testx < (vertx[j] - vertx[i]) * (testy - verty[i]) / (verty[j] - verty[i]) + vertx[i]))
c = 1;
}
}
Surprised nobody brought this up earlier, but for the pragmatists requiring a database: MongoDB has excellent support for Geo queries including this one.
What you are looking for is:
db.neighborhoods.findOne({ geometry: { $geoIntersects: { $geometry: {
type: "Point", coordinates: [ "longitude", "latitude" ] } } }
})
Neighborhoods is the collection that stores one or more polygons in standard GeoJson format. If the query returns null it is not intersected otherwise it is.
Very well documented here:
https://docs.mongodb.com/manual/tutorial/geospatial-tutorial/
The performance for more than 6,000 points classified in a 330 irregular polygon grid was less than one minute with no optimization at all and including the time to update documents with their respective polygon.
Heres a point in polygon test in C that isn't using ray-casting. And it can work for overlapping areas (self intersections), see the use_holes argument.
/* math lib (defined below) */
static float dot_v2v2(const float a[2], const float b[2]);
static float angle_signed_v2v2(const float v1[2], const float v2[2]);
static void copy_v2_v2(float r[2], const float a[2]);
/* intersection function */
bool isect_point_poly_v2(const float pt[2], const float verts[][2], const unsigned int nr,
const bool use_holes)
{
/* we do the angle rule, define that all added angles should be about zero or (2 * PI) */
float angletot = 0.0;
float fp1[2], fp2[2];
unsigned int i;
const float *p1, *p2;
p1 = verts[nr - 1];
/* first vector */
fp1[0] = p1[0] - pt[0];
fp1[1] = p1[1] - pt[1];
for (i = 0; i < nr; i++) {
p2 = verts[i];
/* second vector */
fp2[0] = p2[0] - pt[0];
fp2[1] = p2[1] - pt[1];
/* dot and angle and cross */
angletot += angle_signed_v2v2(fp1, fp2);
/* circulate */
copy_v2_v2(fp1, fp2);
p1 = p2;
}
angletot = fabsf(angletot);
if (use_holes) {
const float nested = floorf((angletot / (float)(M_PI * 2.0)) + 0.00001f);
angletot -= nested * (float)(M_PI * 2.0);
return (angletot > 4.0f) != ((int)nested % 2);
}
else {
return (angletot > 4.0f);
}
}
/* math lib */
static float dot_v2v2(const float a[2], const float b[2])
{
return a[0] * b[0] + a[1] * b[1];
}
static float angle_signed_v2v2(const float v1[2], const float v2[2])
{
const float perp_dot = (v1[1] * v2[0]) - (v1[0] * v2[1]);
return atan2f(perp_dot, dot_v2v2(v1, v2));
}
static void copy_v2_v2(float r[2], const float a[2])
{
r[0] = a[0];
r[1] = a[1];
}
Note: this is one of the less optimal methods since it includes a lot of calls to atan2f, but it may be of interest to developers reading this thread (in my tests its ~23x slower then using the line intersection method).
If you're using Google Map SDK and want to check if a point is inside a polygon, you can try to use GMSGeometryContainsLocation. It works great!! Here is how that works,
if GMSGeometryContainsLocation(point, polygon, true) {
print("Inside this polygon.")
} else {
print("outside this polygon")
}
Here is the reference: https://developers.google.com/maps/documentation/ios-sdk/reference/group___geometry_utils#gaba958d3776d49213404af249419d0ffd
This is a presumably slightly less optimized version of the C code from here which was sourced from this page.
My C++ version uses a std::vector<std::pair<double, double>> and two doubles as an x and y. The logic should be exactly the same as the original C code, but I find mine easier to read. I can't speak for the performance.
bool point_in_poly(std::vector<std::pair<double, double>>& verts, double point_x, double point_y)
{
bool in_poly = false;
auto num_verts = verts.size();
for (int i = 0, j = num_verts - 1; i < num_verts; j = i++) {
double x1 = verts[i].first;
double y1 = verts[i].second;
double x2 = verts[j].first;
double y2 = verts[j].second;
if (((y1 > point_y) != (y2 > point_y)) &&
(point_x < (x2 - x1) * (point_y - y1) / (y2 - y1) + x1))
in_poly = !in_poly;
}
return in_poly;
}
The original C code is
int pnpoly(int nvert, float *vertx, float *verty, float testx, float testy)
{
int i, j, c = 0;
for (i = 0, j = nvert-1; i < nvert; j = i++) {
if ( ((verty[i]>testy) != (verty[j]>testy)) &&
(testx < (vertx[j]-vertx[i]) * (testy-verty[i]) / (verty[j]-verty[i]) + vertx[i]) )
c = !c;
}
return c;
}
Yet another numpyic implementation which I believe is the most concise one out of all the answers so far.
For example, let's say we have a polygon with polygon hollows that looks like this:
The 2D coordinates for the vertices of the large polygon are
[[139, 483], [227, 792], [482, 849], [523, 670], [352, 330]]
The coordinates for the vertices of the square hollow are
[[248, 518], [336, 510], [341, 614], [250, 620]]
The coordinates for the vertices of the triangle hollow are
[[416, 531], [505, 517], [495, 616]]
Say we want to test two points [296, 557] and [422, 730] if they are within the red area (excluding the edges). If we locate the two points, it will look like this:
Obviously, [296, 557] is not inside the read area, whereas [422, 730] is.
My solution is based on the winding number algorithm. Below is my 4-line python code using only numpy:
def detect(points, *polygons):
import numpy as np
endpoint1 = np.r_[tuple(np.roll(p, 1, 0) for p in polygons)][:, None] - points
endpoint2 = np.r_[polygons][:, None] - points
p1, p2 = np.cross(endpoint1, endpoint2), np.einsum('...i,...i', endpoint1, endpoint2)
return ~((p1.sum(0) < 0) ^ (abs(np.arctan2(p1, p2).sum(0)) > np.pi) | ((p1 == 0) & (p2 <= 0)).any(0))
To test the implementation:
points = [[296, 557], [422, 730]]
polygon1 = [[139, 483], [227, 792], [482, 849], [523, 670], [352, 330]]
polygon2 = [[248, 518], [336, 510], [341, 614], [250, 620]]
polygon3 = [[416, 531], [505, 517], [495, 616]]
print(detect(points, polygon1, polygon2, polygon3))
Output:
[False True]
For Detecting hit on Polygon we need to test two things:
If Point is inside polygon area. (can be accomplished by Ray-Casting Algorithm)
If Point is on the polygon border(can be accomplished by same algorithm which is used for point detection on polyline(line)).
To deal with the following special cases in Ray casting algorithm:
The ray overlaps one of the polygon's side.
The point is inside of the polygon and the ray passes through a vertex of the polygon.
The point is outside of the polygon and the ray just touches one of the polygon's angle.
Check Determining Whether A Point Is Inside A Complex Polygon. The article provides an easy way to resolve them so there will be no special treatment required for the above cases.
You can do this by checking if the area formed by connecting the desired point to the vertices of your polygon matches the area of the polygon itself.
Or you could check if the sum of the inner angles from your point to each pair of two consecutive polygon vertices to your check point sums to 360, but I have the feeling that the first option is quicker because it doesn't involve divisions nor calculations of inverse of trigonometric functions.
I don't know what happens if your polygon has a hole inside it but it seems to me that the main idea can be adapted to this situation
You can as well post the question in a math community. I bet they have one million ways of doing that
If you are looking for a java-script library there's a javascript google maps v3 extension for the Polygon class to detect whether or not a point resides within it.
var polygon = new google.maps.Polygon([], "#000000", 1, 1, "#336699", 0.3);
var isWithinPolygon = polygon.containsLatLng(40, -90);
Google Extention Github

Resources