Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 6 years ago.
Improve this question
Given an array of 0 and 1, e.g. array[] = {0, 1, 0, 0, 0, 1, ...}, how I can predict what the next value will be with the best possible accuracy?
What kind of methods are best suited for this kind of task?
The prediction method would depend on the interpretation of data.
However, it looks like in this particular case we can make some general assumptions that might justify use of certain machine learning techniques.
Values are generated one after another in chronological order
Values depend on some (possibly non-observable) external state. If the state repeats itself, so do the values.
This is a pretty common scenario in many machine learning contexts. One example is the prediction of stock prices based on history.
Now, to build the predictive model you'll need to define the training data set. Assume our model looks at the last k values. In case if k=1, we might end up with something similar to a Markov chain model.
Our training data set will consist of k-dimensional data points together with their respective dependent values. For example, suppose k=3 and we have the following input data
0,0,1,1,0,1,0,1,1,1,1,0,1,0,0,1...
We'll have the following training data:
(0,0,1) -> 1
(0,1,1) -> 0
(1,1,0) -> 1
(1,0,1) -> 0
(0,1,0) -> 1
(1,0,1) -> 1
(0,1,1) -> 1
(1,1,1) -> 1
(1,1,1) -> 0
(1,1,0) -> 1
(1,0,1) -> 0
(0,1,0) -> 0
(1,0,0) -> 1
Now, let's say you want to predict the next value in the sequence. The last 3 values are 0,0,1, so the model must predict the value of the function at (0,0,1), based on the training data.
A popular and relatively simple approach would be to use a multivariate linear regression on a k-dimensional data space. Alternatively, consider using a neural network if linear regression underfits the training data set.
You might need to try out different values of k and test against your validation set.
You could use a maximum likelihood estimator for the Bernoulli distribution. In essence you would:
look at all observed values and estimate parameter p
then use p to determine the next value
In Python this could look like this:
#!/usr/bin/env python
from __future__ import division
signal = [1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0]
def maximum_likelihood(s, last=None):
"""
The maximum likelihood estimator selects the parameter value which gives
the observed data the largest possible probability.
http://mathworld.wolfram.com/MaximumLikelihood.html
If `last` is given, only use the last `n` values.
"""
if not last:
return sum(s) / len(s)
return sum(s[:-last]) / last
if __name__ == '__main__':
hits = []
print('p\tpredicted\tcorrect\tsignal')
print('-\t---------\t-------\t------')
for i in range(1, len(signal) - 1):
p = maximum_likelihood(signal[:i]) # p = maximum_likelihood(signal[:i], last=2)
prediction = int(p >= 0.5)
hits.append(prediction == signal[i])
print('%0.3f\t%s\t\t%s\t%s' % (
p, prediction, prediction == signal[i], signal[:i]))
print('accuracy: %0.3f' % (sum(hits) / len(hits)))
The output would like this:
# p predicted correct signal
# - --------- ------- ------
# 1.000 1 False [1]
# 0.500 1 True [1, 0]
# 0.667 1 True [1, 0, 1]
# 0.750 1 False [1, 0, 1, 1]
# 0.600 1 False [1, 0, 1, 1, 0]
# 0.500 1 True [1, 0, 1, 1, 0, 0]
# 0.571 1 False [1, 0, 1, 1, 0, 0, 1]
# 0.500 1 True [1, 0, 1, 1, 0, 0, 1, 0]
# 0.556 1 True [1, 0, 1, 1, 0, 0, 1, 0, 1]
# 0.600 1 False [1, 0, 1, 1, 0, 0, 1, 0, 1, 1]
# 0.545 1 True [1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0]
# 0.583 1 True [1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1]
# 0.615 1 True [1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1]
# 0.643 1 True [1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1]
# 0.667 1 True [1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1]
# 0.688 1 False [1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1]
# 0.647 1 True [1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0]
# 0.667 1 False [1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1]
# 0.632 1 True [1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0]
# 0.650 1 True [1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1]
# accuracy: 0.650
You could vary the window size for performance reasons or to favor recent events.
In above example, if we would estimate the the next value by looking only at the last 3 observed values, we could increase our accuracy to 0.7.
Update: Inspired by Narek's answer I added a logistic regression classifier example to the gist.
You can predict by calculating the probabilities of 0s and 1s and make their probability ranges and then draw a random number between 0 and 1 to predict.....
If these are series of numbers that are generated each time after some reset event, and next numbers are somehow related to previous ones, you could create a tree (binary tree with two branches at each node in your case) and feed in such historical series from the root, adjusting weights (say a count) on each branch you follow.
Could divide such counts by the number of series you entered before using them, or keep a number on each node too, increased before choosing a branch. That way root node contains number of series entered.
Then, as you feed it a new sequence you can see which branch is "hotter" (would make nice visualization as heatmap/tree btw) to follow, especially if sequence is long enough. That is, assuming order of items in sequence plays a role in what comes next.
Related
I have an array of variable length containing all unique values and I need to find all combinations of values whose indices are next to each other and always include a specified value. The order of values in each resulting combination doesn't matter (However I kept them in order in my example to better illustrate).
As an example: [5, 4, 2, 0, 1, 3]
If the specific value chosen is 0, we would end up with the following 12 combinations:
0
0, 1
2, 0
0, 1, 3
2, 0, 1
4, 2, 0
2, 0, 1, 3
4, 2, 0, 1
5, 4, 2, 0
4, 2, 0, 1, 3
5, 4, 2, 0, 1
5, 4, 2, 0, 1, 3
If the specific value chosen is 3, we would end up with the following 6 combinations:
3
1, 3
0, 1, 3
2, 0, 1, 3
4, 2, 0, 1, 3
5, 4, 2, 0, 1, 3
Answers in any programming language will work.
EDIT: I believe this can be brute forced by finding all combinations of all numbers and then narrowing that list to make sure each combination meets the requirements...its not ideal but should work.
This problem could be solved in O(n^3) time-complexity using the following algorithm:
Step-1: Find the index of the target element.
Step-2: Iterate through an index of the target to the rightmost index. Let's call this iterator as idx.
Step-3: Then iterate from the target index to the leftmost index. Let's call this index as i.
Step-4: Print all the elements between the indices idx and i.
Following the above steps will print all the combinations.
The code for the above algorithm is implemented using python below.
def solution(array,target):
index = -1
for idx,element in enumerate(array):
if(element == target):
index = idx
n = len(array)
for idx in range(n-1,index-1,-1):
for i in range(index,-1,-1):
for j in range(i,idx+1):
print(array[j],end = ",")
print()
arr = [5, 4, 2, 0, 1, 3]
target = 0
solution(arr,target)
Given an array of n numbers find all the ways of inserting + and - between them so that the result of the expression is positive.
I've found this problem recently and I thought it was interesting, but I'm not exactly sure how to solve it. I think I should try backtracking, no?
Any help or hints are deeply appreciated!
Edit: Would this be a correct solution? (I wrote it in python)
def outputSolution(list):
print(list)
def solution(x, dim):
return len(x) == dim-1
def consistent(list, array):
partial_sum = array[0]
for i in range(len(list)):
if list[i] == 0:
partial_sum = partial_sum - array[i+1]
if list[i] == 1:
partial_sum = partial_sum + array[i+1]
absolute_remaining_sum = 0
for i in range(len(list)+1, len(array)): #the remaining elements in array
absolute_remaining_sum =absolute_remaining_sum + abs(array[i])
if partial_sum + absolute_remaining_sum < 0:
return False
else:
return True
def solve(list, array):
"""
array - the array of n given integers
list - the candidate to a solution
"""
dim = len(array)
for el in range(2): # el = 0 or 1 (0 for - and 1 for +)
if len(list) < dim - 1:
list.append(el)
if consistent(list, array):
if solution(list, dim):
outputSolution(list)
solve(list[:], array)
list.pop()
solve([], array)
My thought process was that there are n-1 gaps between those numbers. Each gap can have a '+' or a '-' in it. And so I build a list where list[i] is equal with 0 if between array[i] and array[i+1] there is an "-", and list[i] is equal with 0 if between array[i] and array[i+1] there is an "+". And I generated all the possible ways of choosing the values in the list, then I checked if that possible candidate is consistent or not. And I said that if the partial sum (calculated using the + and - in our current list) added to the maximum sum of the remaining elements of the given array is a negative number, then the candidate is inconsistent. If the candidate is consistent and it has the required length, then I said that it is a solution.
For example, if I had the array "array = [1,2,3,4,5,6,7]" as input, I was given the following solutions:
[0, 0, 0, 1, 1, 1]
[0, 0, 1, 0, 1, 1]
[0, 0, 1, 1, 0, 1]
[0, 0, 1, 1, 1, 0]
[0, 0, 1, 1, 1, 1]
[0, 1, 0, 0, 1, 1]
[0, 1, 0, 1, 0, 1]
[0, 1, 0, 1, 1, 0]
[0, 1, 0, 1, 1, 1]
[0, 1, 1, 0, 0, 1]
[0, 1, 1, 0, 1, 0]
[0, 1, 1, 0, 1, 1]
[0, 1, 1, 1, 0, 1]
[0, 1, 1, 1, 1, 0]
[0, 1, 1, 1, 1, 1]
[1, 0, 0, 0, 1, 1]
[1, 0, 0, 1, 0, 1]
[1, 0, 0, 1, 1, 0]
[1, 0, 0, 1, 1, 1]
[1, 0, 1, 0, 0, 1]
[1, 0, 1, 0, 1, 1]
[1, 0, 1, 1, 0, 1]
[1, 0, 1, 1, 1, 0]
[1, 0, 1, 1, 1, 1]
[1, 1, 0, 0, 1, 1]
[1, 1, 0, 1, 0, 1]
[1, 1, 0, 1, 1, 0]
[1, 1, 0, 1, 1, 1]
[1, 1, 1, 0, 0, 1]
[1, 1, 1, 0, 1, 0]
[1, 1, 1, 0, 1, 1]
[1, 1, 1, 1, 0, 0]
[1, 1, 1, 1, 0, 1]
[1, 1, 1, 1, 1, 0]
[1, 1, 1, 1, 1, 1]
Backtracking is indeed a reasonable strategy. Since you need to enumerate, there's only one pruning trick that makes an asymptotic difference. Suppose that the array starts with a very large negative number, e.g.,
−50 10 10 10 10 1 2 3 4 5
The sum always includes a −50 term, so the sign for each 10 must be positive since otherwise the remaining numbers aren't large enough to make the overall sum positive. By making the example bigger (more and bigger numbers), we can create an exponential gap between the complexity of naive backtracking and the number of solutions.
If we implement the usual depth-first backtracking strategy and maintain the sum of the absolute values of the remaining array elements, then we can prune every node where the partial sum plus the sum of absolute values is not positive. Since every node not pruned yields at least one solution, we end up with an optimal output-sensitive time complexity.
I am trying to edit an algorithm found here.
I want the adjacency matrix to be loaded from file (formatting of the file doesn't matter to me, it can be either like this [0,1,1,0] or just 0110) with G = file.read().split("\n")
However, I get an error no implicit conversion of Fixnum into String (TypeError)
And I already know I need to convert this string to ints, but how to do it properly to not lose the formatting required by this DFS method?
I guess it's pretty easy, but I'm a begginer in Ruby (and graphs :v) and can't get it to work...
Edit:
So the code I'm using to read from file to an array of arrays is:
def read_array(file_path)
File.foreach(file_path).with_object([]) do |line, result|
result << line.split.map(&:to_i)
end
end
And the result I get from a file (for example)
01101010
01010101
01010110
10101011
01011111
is this:
=> [[[1101010], [1010101], [1010110], [10101011], [1011111]]]
What I need, however, is:
=> [[[1,1,0,1,0,1,0], [1,0,1,0,1,0,1], [1,0,1,0,1,1,0], [1,0,1,0,1,0,1,1], [1,0,1,1,1,1,1]]]
So that it would work with the algorithm mentioned in the first line of my post (I'll copy it here, if it takes too much place I can delete it and leave link only):
G = [0,1,1,0,0,1,1], # A
[1,0,0,0,0,0,0],
[1,0,0,0,0,0,0],
[0,0,0,0,1,1,0],
[0,0,0,1,0,1,1],
[1,0,0,1,1,0,0],
[1,0,0,0,1,0,0] # G
LABLES = %w(A B C D E F G)
def dfs(vertex)
print "#{LABLES[vertex]} " # visited
edge = 0
while edge < G.size
G[vertex][edge] = 0
edge += 1
end
edge = 0
while edge < G.size
if ( G[edge][vertex] != 0 && edge != vertex)
dfs(edge)
end
edge += 1
end
end
dfs(0)
split's default separator is a whitespace. To make it split every char you need to explicitly say it:
'01101101'.split.map(&:to_i)
# => [ 1101101 ]
'01101101'.split('').map(&:to_i)
# => [ 0, 1, 1, 0, 1, 1, 0, 1 ]
you can also use chars to do the same job:
'01101101'.chars.map(&:to_i)
# => [ 0, 1, 1, 0, 1, 1, 0, 1 ]
I don't know how your read_array is used, but it can be simplified to:
def read_array(file_path)
File.foreach(file_path).map do |line|
line.chomp.chars.map(&:to_i)
end
end
read_array('my_file.txt')
# => [[1, 1, 0, 1, 0, 1, 0], [1, 0, 1, 0, 1, 0, 1], [1, 0, 1, 0, 1, 1, 0], [1, 0, 1, 0, 1, 0, 1, 1], [1, 0, 1, 1, 1, 1, 1]]
If you still get the extra [, you can either take only the first item:
my_array[0]
Or (if there is more than one item the uber-array) - use flat_map:
uber_array = [[[1, 0, 1, 0, 1, 0, 1], [1, 0, 1, 0, 1, 1, 0], [1, 0, 1, 0, 1, 0, 1, 1]],
[[1, 0, 1, 0, 1, 0, 1, 1], [1, 0, 1, 1, 1, 1, 1]]]
uber_array.flat_map { |a| a }
# => [[1, 0, 1, 0, 1, 0, 1], [1, 0, 1, 0, 1, 1, 0], [1, 0, 1, 0, 1, 0, 1, 1], [1, 0, 1, 0, 1, 0, 1, 1], [1, 0, 1, 1, 1, 1, 1]]
Im trying to write a prolog program that receives a representation of an unsolved Hashi board and answers all the possible solutions, using restrictions. Im having an hard time figuring out which is the best (or a very good) way of representing the board with the bridges and without. The program is supposed to draw the boards for an easy reading of the solutions.
board(
[[3, 0, 6, 0, 0, 0, 6, 0, 3],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[2, 0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 3, 0, 0, 2, 0, 0, 0],
[0, 3, 0, 0, 0, 0, 4, 0, 1]]
).
For example, this representation is only good without the bridges, since it holds no info about them. The drawing of this board would be basicly turning the 0's into spaces, and the board would be drawn like this:
3 6 6 3
1
2 1
1 3 2
3 4 1
which is a decent representation of a real hashi board.
The point now is to be able to draw the same thing, but also draw bridges if there's any. I must be able to do so before i even think of making the restrictions themselves, since going at it with a bad way of representation will make my job alot more difficult.
I started thinking of solutions like this:
if every element of the board would be a list:
[NumberOfConnections, [ListOfConnections]]
but this gives me no info for the drawing, and what would the list of connections really have?
maybe this:
[Index, NumberOfConnections, [ListOfIndex]]
this way every "island" would have a unique ID and the list of connections would have ids
but drawing still sounds kinda hard, in the end the bridges can only be horizontal or vertical
Anyway, anyone can think of a better way of representation that makes it the easiest to achive the final goal of the program?
Nice puzzle, I agree. Here is a half-way solution in ECLiPSe, a Prolog dialect with constraints (http://eclipseclp.org).
The idea is to have, for every field of the board, four variables N, E, S, W (for North, East, etc) that can take values 0..2 and represent the number of connections on that edge of the field. For the node-fields, these connections must sum up to the given number. For the empty fields, the connections must go through (N=S, E=W) and not cross (N=S=0 or E=W=0).
Your example solves correctly:
?- hashi(stackoverflow).
3 = 6 = = = 6 = 3
| X X |
| 1 X X |
| | X X |
2 | X 1 X |
| | X | X |
| | X | X |
1 | 3 - - 2 X |
3 = = = = 4 1
but the wikipedia one doesn't, because there is no connectedness constraint yet!
:- lib(ic). % uses the integer constraint library
hashi(Name) :-
board(Name, Board),
dim(Board, [Imax,Jmax]),
dim(NESW, [Imax,Jmax,4]), % 4 variables N,E,S,W for each field
( foreachindex([I,J],Board), param(Board,NESW,Imax,Jmax) do
Sum is Board[I,J],
N is NESW[I,J,1],
E is NESW[I,J,2],
S is NESW[I,J,3],
W is NESW[I,J,4],
( I > 1 -> N #= NESW[I-1,J,3] ; N = 0 ),
( I < Imax -> S #= NESW[I+1,J,1] ; S = 0 ),
( J > 1 -> W #= NESW[I,J-1,2] ; W = 0 ),
( J < Jmax -> E #= NESW[I,J+1,4] ; E = 0 ),
( Sum > 0 ->
[N,E,S,W] #:: 0..2,
N+E+S+W #= Sum
;
N = S, E = W,
(N #= 0) or (E #= 0)
)
),
% find a solution
labeling(NESW),
print_board(Board, NESW).
print_board(Board, NESW) :-
( foreachindex([I,J],Board), param(Board,NESW) do
( J > 1 -> true ; nl ),
Sum is Board[I,J],
( Sum > 0 ->
write(Sum)
;
NS is NESW[I,J,1],
EW is NESW[I,J,2],
symbol(NS, EW, Char),
write(Char)
),
write(' ')
),
nl.
symbol(0, 0, ' ').
symbol(0, 1, '-').
symbol(0, 2, '=').
symbol(1, 0, '|').
symbol(2, 0, 'X').
% Examples
board(stackoverflow,
[]([](3, 0, 6, 0, 0, 0, 6, 0, 3),
[](0, 0, 0, 0, 0, 0, 0, 0, 0),
[](0, 1, 0, 0, 0, 0, 0, 0, 0),
[](0, 0, 0, 0, 0, 0, 0, 0, 0),
[](2, 0, 0, 0, 0, 1, 0, 0, 0),
[](0, 0, 0, 0, 0, 0, 0, 0, 0),
[](0, 0, 0, 0, 0, 0, 0, 0, 0),
[](1, 0, 3, 0, 0, 2, 0, 0, 0),
[](0, 3, 0, 0, 0, 0, 4, 0, 1))
).
board(wikipedia,
[]([](2, 0, 4, 0, 3, 0, 1, 0, 2, 0, 0, 1, 0),
[](0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 1),
[](0, 0, 0, 0, 2, 0, 3, 0, 2, 0, 0, 0, 0),
[](2, 0, 3, 0, 0, 2, 0, 0, 0, 3, 0, 1, 0),
[](0, 0, 0, 0, 2, 0, 5, 0, 3, 0, 4, 0, 0),
[](1, 0, 5, 0, 0, 2, 0, 1, 0, 0, 0, 2, 0),
[](0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 4, 0, 2),
[](0, 0, 4, 0, 4, 0, 0, 3, 0, 0, 0, 3, 0),
[](0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
[](2, 0, 2, 0, 3, 0, 0, 0, 3, 0, 2, 0, 3),
[](0, 0, 0, 0, 0, 2, 0, 4, 0, 4, 0, 3, 0),
[](0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0),
[](3, 0, 0, 0, 0, 3, 0, 1, 0, 2, 0, 0, 2))
).
For drawing bridges, you could use ASCII 179 for single vertical bridges, 186 for double vertical bridges, 196 for single horizontal bridges, and 205 for double horizontal bridges. This depends on which extended ASCII set is in use, though. It works in the most common.
For internal representation, I'd use -1 and -2 for single and double bridges in one direction, and -3 and -4 in the other. You could use just about any symbol that isn't 0-8, but this has the added benefit of simply adding the bridges to the island (converting (-3, -4) to (-1, -2)) to check the solution. If the sum is 0, that island is solved.
What a cool puzzle! I did a few myself, and I don't see an obvious way to make solving them deterministic, which is a nice property for a puzzle to have. Games like Tetris derive much of their ongoing play value from the fact that you don't get bored--even a good strategy can continually be refined. This has a practical ramification: if I were coding this, I would spend no further time trying to find a deterministic algorithm. I would instead focus on the generate/test paradigm Prolog excels at.
If you know you're going to do generate-and-test, you know already where all your effort at optimization is going to go: making your generator more intelligent (so it generates better candidates) and making your test fast. So I'm looking at your board representation and I'm asking myself: is it going to be easy and fast to generate alternatives from this? And we both know the answer is no, for several reasons:
Finding alternative islands to connect to from any particular island is going to be highly inefficient: searching a list forward and backward and then indexing all the other lists by the current offset. This is a huge amount of list finagling, which won't be cheap.
Detecting and preventing a bridge crossing is going to be interesting.
More to the point, the proper way to encode bridges is not obvious with this design. Islands can be separated by great distances--are you going to put a 0/1/2 in every connecting cell? If so, you have a data duplication problem; if not, you're going to have some fun calculating which location should hold the bridge count.
It's just an intuition, but having a heterogeneous data structure like this where the "kind" of element is determined entirely by whether the indices are odd or even, strikes me as unwelcome.
I think what you've got for the board layout is a great input format, but I don't think it's going to serve you well as an intermediate representation. The game is clearly a graph problem. This suggests one of the two classic graph data structures might be more helpful: the adjacency list, or the edge matrix. Either of these will expedite choosing alternatives for bridge layout, but it's not obvious to me (maybe to someone who does more graph theory) how one would prevent bridge crossings. Ideally, your data structure would simply prevent bridge crossings from occurring. Next best would be preventing the generator from generating candidate solutions with bridge crossings; worst would be to simply fail them at the test stage.
Given a list of integers like {2,1,1,0} I'd like to list all permutations of that list that are not equivalent under given group. For instance, using symmetry of the square, the result would be {{2, 1, 1, 0}, {2, 1, 0, 1}}.
Approach below (Mathematica 8) generates all permutations, then weeds out the equivalent ones. I can't use it because I can't afford to generate all permutations, is there a more efficient way?
Update: actually, the bottleneck is in DeleteCases. The following list {2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0} has about a million permutations and takes 0.1 seconds to compute. Apparently there are supposed to be 1292 orderings after removing symmetries, but my approach doesn't finish in 10 minutes
removeEquivalent[{}] := {};
removeEquivalent[list_] := (
Sow[First[list]];
equivalents = Permute[First[list], #] & /# GroupElements[group];
DeleteCases[list, Alternatives ## equivalents]
);
nonequivalentPermutations[list_] := (
reaped = Reap#FixedPoint[removeEquivalent, Permutations#list];
reaped[[2, 1]]
);
group = DihedralGroup[4];
nonequivalentPermutations[{2, 1, 1, 0}]
What's wrong with:
nonequivalentPermutations[list_,group_]:= Union[Permute[list,#]& /# GroupElements[group];
nonequivalentPermutations[{2,1,1,0},DihedralGroup[4]]
I don't have Mathematica 8, so I can't test this. I just have Mathematica 7.
I got an elegant and fast solution from Maxim Rytin, relying on ConnectedComponents function
Module[{gens, verts, edges},
gens = PermutationList /# GroupGenerators#DihedralGroup[16];
verts =
Permutations#{2, 2, 2, 2, 2, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0};
edges = Join ## (Transpose#{verts, verts[[All, #]]} &) /# gens;
Length#ConnectedComponents#Graph[Rule ### Union#edges]] // Timing