RFduino - Faulty Transmissions - rfduino

I have a project where I send data to an Android phone. I get data via the serial port to the rfduino and then send this data to the phone.
First I had 20 byte data chunks. I use "Serial Event" to set a flag and then read and send the data within the main loop. The serial baud rate is 9600 as recommended by the rfduino staff.
Now I have 40 bytes of data. The Rfduino reads 40 bytes of serial data and sends it in two parts (see code). The first byte of each part is an identifier used to distunguish between the different packets.
After some successful transmissions the data becomes corrupt. Usually, once the transmission starts being faulty, I have to reinitiate the connection to get correct data.
This is a basic idea of the code:
void loop() {
if (mData)
{
mData = false;
Serial.readBytes(data, 40);
while(!RFduinoBLE.send(&data[0], 20));
while(!RFduinoBLE.send(&data[20], 20));
}
}
void serialEvent(void) {
mData = true;
}
I checked the serial data with a logic analyzer and there is nothing wrong with it. I also used wireshark to check the ble transmissions. Both 20 Byte chunks are send within the same connection interval. The data sent by the RFduino becomes corrupt after some time.
When I omit the second packet and just send 20 Bytes, the problem does not occur.
I assume, that the radio interferes with the reading of the serial port. I tried to use while(RFduinoBLE.radioActive); before the Serial.read, but I think the data is buffered before that. So this did not change anything.
Additionally I tried to lower the sending power to minimum, without any improvements.
I also tried different connection intervals. I have new data every 128ms. This limits the max. connection interval. All changes did not help at all.
I've read that the BLE radio priority takes about 5-6ms and that there is a 6 byte buffer for data. Using 9600 baud this buffer overflows.
I haven't looked for sources to those statements yet, but lowering the baud rate to 4800 seems to improve the issue with the faulty data.
Still this is no satisfying data rate and the transmission faults still occur. Not that often anymore, but still.
I've run out of ideas how to fix this and would appreciate any thought!
I mean it must be possible to send 40 bytes every 128ms... that's not that much.
I already posted this question in the RFduino Forum - without answer until now - and I wonder if anyone experienced similar issues with the RFduino.
RFduino Forum

Related

serial stops between mbed and processing

I want a solution right now...
The LPC1768 which is one of a mbed prototyping boards communicates with processing through Serial whose baud rate is 115200. However, as time passes, the serial communication stops.
As a situation, the LPC1768 sends sensor data with serial.putc() of the default serial library. On the other hand, processing receives the data with serial.read(). The processing code is the following:
if(serial.available()>1) { serial.read(); }
To explore the solution of this problem, I tired these things.
I checked serial.available() is 46 and used serial.clear() in processing, but mbed stopped and didn't send data. Because I thought the cause of this was an overflow of receiving buffer of processing.
I added serial.writable() and check the serial buffers for sending has space. If there are no space, I used the following codes and initialized the serial:
LPC_UART2->FCR |= 0x06;
serial.baud(115200);
, because I thought the cause of this was an overflow of sending buffer of mbed. However, they didn't work.
Please note that these codes work correctly and basically.
However, serial communication stops suddenly. What can I do anything else?
Best regards

Arduino Serial transmitting Missing One Charcter

I am using Arduino Leonardo to transmit an string to a wifi module. The format of command that wifi module can recognize is:
AT60,1,content to a server
I am using an virtual server(TCP/IP Builder) to test the content I can received.
Here is the content I want to send:
smart/device/deviceCmd?userId=1010002003&deviceId=A00019999990002&cmd=ON
Since I try to send it again and again, I use a loop to send it. In the virtual server side, the content I got is:
smart/device/deviceCmd?userId=1010002003&devceId=A00019999990002&cmd=ON
smart/device/deviceCmd?userId=1010002003&devceId=A00019999990002&cmd=ON
smart/device/deviceCmd?userId=1010002003&dviceId=A00019999990002&cmd=ON
smart/device/deviceCmd?userId=1010002003&eviceId=A00019999990002&cmd=ON
smart/device/deviceCmd?userId=1010002003&devieId=A00019999990002&cmd=ON
smart/device/deviceCmd?userId=1010002003deviceId=A00019999990002&cmd=ON
smart/device/deviceCmd?userId=1010002003&dviceId=A00019999990002&cmd=ON
smart/device/deviceCmd?userId=1010002003&dviceId=A00019999990002&cmd=ON
smart/device/deviceCmd?userId=1010002003&deiceId=A00019999990002&cmd=ON
smart/device/deviceCmd?userId=1010002003&dviceId=A00019999990002&cmd=ON
This is the QUESTION: There exist one terrible mistake in the content I received, which is the deviceId part never correct. It's so weird.
Here is part of related code:
//In Uart.cpp
//These three lines can sent a formatted string as "AT60,1,content"
Serial1.write("AT60,");
Serial1.write(channelID); //channel ID = 1 here
Serial1.write(reportIsFire, 76);
//In Uart.h
//Definition of the string I need to send, which has 76 characters.
char reportIsFire[76] = ",smart/device/deviceCmd?userId=1010002003&deviceId=A00019999990002&cmd=ON \n";
Here is few background of this application:
I am using Arduino 1.5.8 IDE with VisualStudio
Since the serial buffer of Arduino is only 64 Bytes, I have already
change the buffer size to 128 Bytes in "HardwareSerial.h" to send
out this large string.
The baud rate is 115200 and I am using Serial 1. I have used Serial 1
to transmit few other characters and it works fine.
I will appreciate that If you have any idea about this question.
I am betting that the serial baud rate of the Arduino is not 100% correct. Increasing the buffer size will not matter if the data is being lost due to a timing issue in the physical link.
I'd recommend double-checking the code that initializes the serial baud rate generator. It may be possible to get a closer rate to 115,200 by either adjusting the available settings, altering the main clock speed (if possible), implementing some form of flow control, or all of the above.
In extreme cases, you may consider using a special-frequency oscillator. Many Microchip PICs use an internal or external 4MHz or 8MHz crystal, but this can produce far too much timing error for lengthy serial transmissions at high speed. In that case, something special, like a 7.3728MHz crystal can be used, bringing the accuracy to exactly 100% (at least on some PIC devices.)
Lastly, another consideration is if any pre-emptive code is running on the device, such as interrupts or timers which could inadvertently interfere with the serial output.
I don't have an answer, but I suspect the most likely problem is that the Wifi card can't read characters at a sustained 115200 baud rate. If possible, set the Wifi baud rate and the Arduino Serial.begin() to a lower rate, such as 57600 or 19200.
If the Arduino baud rate was simply inaccurate, I'd expect to see the problem appearing at random locations in the string, rather than about 40 characters in.

Creating new task in FreeRTOS for USART reception

I am using EVK1105 development board with AVR Studio 5 as development IDE for my AVR project.
I am using FreeRTOS in it. I have 3 USART ports on this board. One external module is connected to my AVR32 board via USART-RS232 mode. It sends me continuous serial data to my board on USART0 with 19230 baudrate, 7-databits, odd parity, stopbit-1 and normal-channel mode. I created a new task for this purpose. After each 9 data bytes it sends '\n' and '\r'. So in my task I keep on collecting the 9 databytes in a string buffer and then transmit it on USART1. I am using polling method to collect data from USAR0 which is receiving port. But I am facing problem in receiving data. I don't know if its timing issue or something or the scheduler switches the task while collects the data. But I don't get the required data.
Following are things I have already checked as troubleshooting
1. Connected my external module to my PC hyper-terminal which gives me perfect result.
2. Implemented the same thing of using receiving from USART0 and whatever received is transmitted to USART1 as without FreeRTOS. Its works fine.
Please suggest some idea what may be wrong. I am using a queue to communicate between Tx and Rx task to pass the string buffer from USART0 to USART1. Is it problem in handling queue? How can I troubleshoot the queue?
I am using a delay of 50ms in my infinite task loop in Rx Task. Can it create a problem? If I don't use any delay the OS crashes. Please suggest some good practices to create a new task in FreeRTOS so that I will not get any timing issue.
For such a use case, I would not use a polling method with 50ms delay to retrieve data from UART peripheral. You can easily lose received data depending on the system load and UART reception buffer size.
At least use an interrupt on UART data reception that copies every received byte into a local buffer that will be read by your TX thread.
You can have an even better solution using a DMA channel to receive your data frame and be notified when 9 bytes have been received. I don't know if your AVR device has a DMA peripheral or not.
Are you still working on this? The statement of your problem is vague, but there I have several suggestions/leading questions.
1) You may want some documents to see what the registers are
Get the giant datasheet pdfs at
http://www.atmel.com/dyn/products/product_docs.asp?category_id=163&family_id=607&subfamily_id=2138&part_id=4117
2) In this and an earlier post you state that you have, in some cases, been able to RX data. You will need to find the USART HW initialization code from those example projects and get them into the freeRTOS example project. In particular calls to
gpio_enable_module() with {AVR32_USART0_RXD_0_0_PIN, AVR32_USART0_RXD_0_0_FUNCTION}
To connect to USART to CPU
and i believe
InitRs232()
Just doing this requires poking around a lot of code - there's alot of dependencies.
2) What function are you calling to retrieve data from USART0? 19kbaud is approximately 2000bytes/sec or 1 byte/0.5ms, so 50ms polling is not nearly enough. I'd suggest that your RX task poll continuously (never sleep explicitly) but at a lower priority than the TX task.
3) Concentrate on debugging the RX task at the call to retrieve data. Use the debugger to look at the hardware registers for the usart. In particular
USART0 cr register AVR32_USART_CR_RXEN_MASK should be set to enable RX
USART0 csr register AVR32_USART_CSR_RXRDY_MASK will indicate if there is new data there
You can also check the overlow flag to see if you have missed some data.
When the read of USART0 rhr occurs it should be a byte that you sent.
If you are still working on this I can look into this a bit more.

Reading multiple HID reports

I set my report size to 64 bytes and want to stream single reports (say 2 for now) to the host. My understanding is that there is a ReadFile buffer where these reports can sit. At the host, I have a 64 byte buffer that I use to read single reports. If I send one report from the device, the host reads it fine. If I use two ReadFiles in a loop, the second ReadFile times out. The device is sending two reports. I don't know if they're getting on the ReadFile buffer at the same time, so when the host reads the end point for the first report, the buffer gets purged and I lose the second report? If there are indeed 2 reports on the ReadFile buffer, do I need to read them both at once? How would I know how many reports are on the buffer?
ReadFile reads as many reports as there are in the HID driver's ring buffer up to the numberOfBytesToRead parameter.
The respective HID driver will implement everything as needed. You need not worry about whether those packets arrive "simultaneously". They won't.
The first packet should tell you the length of the report (i.e. a collection of packets), which in turn should allow you to figure out whether you have the full report, yet.
Of course you will have to keep an internal representation of the data from the report, because the packet buffers can only be at most 64 byte in size according to the specification. So to collect a full report you will have to handle that yourself or use the Hid_* routines described in the WDK.

MIDIPacketList, numPackets is always 1

I'm processing Midi on the iPad and everything is working fine and I can log everything that comes in and all works as expected. However, in trying to recieve long messages (ie Sysex), I can only get one packet with a maximum of 256 bytes and nothing afterwards.
Using the code provided by Apple:
MIDIPacket *packet = &packetList->packet[0];
for (int i = 0; i > packetList->numPackets; ++i) {
// ...
packet = MIDIPacketNext (packet);
}
packetList->numPackets is always 1. After I get that first message, no other callback methods are called until a 'new' sysex message is sent. I don't think that my MIDI processing method would be called with the full packetList (which could potentially be any size). I would have thought I would recieve the data as a stream. Is this correct?
After digging around the only thing I could find was this: http://lists.apple.com/archives/coreaudio-api/2010/May/msg00189.html, which mentions the exact same thing but was not much help. I understand I probably need to implement buffering, but I can't even see anything past the first 256 bytes so I'm not sure where to even start with it.
My gut feeling here is that the system is either cramming the entire sysex message into one packet, or breaking it up into multiple packets. According to the CoreMidi documentation, the data field of the MIDIPacket structure has some interesting properties:
A variable-length stream of MIDI messages. Running status is not allowed. In the case of system-exclusive messages, a packet may only contain a single message, or portion of one, with no other MIDI events.
The MIDI messages in the packet must always be complete, except for system-exclusive.
(This is declared to be 256 bytes in length so clients don't have to create custom data structures in simple situations.)
So basically, you should look at the declared length field of the MIDIPacket and see if it is larger than 256. According to the spec, 256 bytes is just the standard allocation, but that array can hold more if necessary. You might find that the entire message has been crammed into that array.
Otherwise, it seems that the system is breaking the sysex messages up into multiple packets. Since the spec says that running status is not allowed, then it would have to send multiple packets, each with a leading 0xF0 byte. You would then need to create your own internal buffer to store the contents of these messages, stripping away the status bytes or header as necessary, and appending the data to your buffer until you read a 0xF7 byte which denotes the end of the sequence.
I had a similar issue on iOS. You are right MIDI packets number is always 1.
In my case, when receiving multiple MIDI events with the same timestamp (MIDI events received at the same time), iOS does not split those multiple MIDI events in multiple packets, as expected.
But, fortunately nothing is lost ! Indeed instead of receiving multiple packets with their correct number of bytes, you will receive a single packet with multiple events in it and the number of bytes will be increased accordingly.
So here what you have to do is:
In your MIDI IN callback, parse all packets received (always 1 for iOS), then for each packet received you must check the length of the packet as well as the MIDI status, then loop into that packet to retrieve all MIDI events in the current packet.
For instance, if the packet contains 9 bytes, and the MIDI status is a note ON (3 bytes message), that means your current packet contains more than a single note ON, you must then parse the first Note ON (bytes 0 to 2) then check the following MIDI status from byte 3 and so on ..
Hope this helps ...
Jerome
There is a good reference of how to walk through a MIDI packet in this file of a GitHub project : https://github.com/krevis/MIDIApps/blob/master/Frameworks/SnoizeMIDI/SMMessageParser.m
(Not mine, but it helped me solve the problems that got me to this thread)

Resources