"Saving" BigQuery Views for use in Tableau - view

I'm trying to make faster dashboards in Tableau by creating views of my calculations directly in BigQuery.
Based on my understating if the gcloud documentation here, the view will re-execute the query once it is accessed, so it kinda defeats my goal.*
*My goal is to eliminate calculations on the fly, be it in Tableau or BigQuery.
Is it possible to "save" these views, by way of scheduled scripts or workflows?
Thanks,

A view is best thought of as a way to reformat a table to make it look more convenient to further queries. The query still has to run on BigQuery so the benefits will be that the view may look simpler to Tableau than the raw table (particularly convenient if the view uses some complex SQL to create some of its columns). But it won't save calculation time.
But, if your view is doing some complex consolidation of a larger table then it might be worth saving the results as a new table instead of creating a view. This is OK if your underlying table doesn't change frequently (rule of thumb if you use the results every day and the table changes weekly, it is probably worthwhile and certainly so if the changes are monthly). Then Tableau will be querying pre-consolidated results rather than the much larger raw table. BigQuery storage and processing is cheap so this is often a reasonable solution.
Another alternative is to use a Tableau extract to bring the data into your local drive or server. This is only practical if the table is small enough to fit locally and will only work really well for speed if it fits into local memory (which can be a lot more than you might think). But extracts, at least on Tableau server, can be set to refresh on a schedule, making much faster user interaction and absolving you of having to remember to manually update the consolidated table.

Related

Oracle materialized view vs JPA query

My case is that a third party prepares a table in our schema domain on which we run different spring batch jobs that look for mutations (diff between the given third party table and our own tables). This table will contain about 200k records on average.
My question is simply: does generating a material view up front provide any benefits vs running the query at runtime?
Since the third party table will be populated on our command (basically it's a db boolean field that is set to 1, after which a scheduler picks it up to populate the table. Don't ask me why it's done this way), the query needs to run anyway.
Obviously from an application point of view, it seems more performant to query a flat material view. However, I'm not sure if there is any real performance benefit, since the material view needs to be built on db level.
Thanks.
The benefit of a materialized view here is if you are running the multiple times (more so if the query is expensive and / or there is a big drop in cardinality).
If you are only hitting the query once then you there isn't going to be a huge amount in it. You are running the same query either way and you have the overhead of inserting into the materialized view but you also have the benefit that you can tune this a lot easier than you could querying via JPA and could apply things like compression so less data is transferred back to the application but for 200k rows any difference is likely to be small.
All in all, unless you are running the same query multiple times then I wouldn't bother.
Update
One other thing to consider is coupling. Referencing a materialized view directly in JPA would allow you to update any logic without updating the application but the flip side of this is that logic is hidden outside the application which can make debugging a pain.
Also if you are just referencing a materialized view directly and not using any query rewrite or rollup features then am simple table created via CTAS would actually be better as you still have the precomputed data without the (small) overhead of maintaining the materialized view.

How to do real time data ingestion from Transactional tables to a Flat table

We have transaction tables in Oracle and for reporting purposes we need this data transfered in real time to another flat Oracle table in another database. The performance of the report is great with table placed in this flat table.
Currently we are using golden gate for replication to the other database and using materialized view for this but due to some problems we need to switch to some other way of populating/maintaining this flat table. What options do we have?
It is a pretty basic requirement but the solutions I can see are for batch processing. Also if there are any other solutions you feel would better serve this purpose. Changing the target database to something other is also an option as there might be more such reports coming ahead.

How can I load large amount of data into oracle database from .csv -file without risking to drop och mismatch data?

I’m in the middle of trying to migrate a large amount of data into a oracle database from existing excel-files.
Due to the large amount of rows loaded (10 000 and more) every time, it is not possible to use SQL Developer for this tasks.
In every work-sheet there’s data that need to go into different tables, but at the same time keep the relations and not dropping any data.
As for now, I use one .CSV file for each table and mapping them together afterwards. This is thou combined with a great risk of adding the wrong FK and with that screw up the hole shit. And I don’t have the time, energy or will for clean ups even if it is my own mess…
My initial thought was if I could bulk transfer with sql loader using some kind of plsql-script in maybe an ctl-file (the used for mapping the properties) but it seems like I.m quite out in the bush with that one… (or am I…? )
The other thought was to create a simple program In c# and use fastMember and load the database that way. (But that means that I need to take the time to actually make the program, however small it is).
I can’t possible be the only one that have had this issue, but trying to us my notToElevatedNinjaGoogling-skills ends up with either using sql developer (witch is not an alternative) or the bulk copy thing from sql load (and where I need to map it all together afterwards).
Is there any alternative solutions for my problem or is the above solutions the one that I need to cope with?
Did you consider using CSV files as external tables? As they act as if they were ordinary Oracle tables, you can write (PL/)SQL against them, inserting data into different tables in the target schema. That might give you some more freedom & control over what you are doing.
Behind the scene, it is still SQL*Loader.

Best strategy for retrieving large dynamically-specified tables on an ASP.NET page

Looking for a bit of advice on how to optimise one of our projects. We have a ASP.NET/C# system that retrieves data from a SQL2008 data and presents it on a DevExpress ASPxGridView. The data that's retrieved can come from one of a number of databases - all of which are slightly different and are being added and removed regularly. The user is presented with a list of live "companies", and the data is retrieved from the corresponding database.
At the moment, data is being retrieved using a standard SqlDataSource and a dynamically-created SQL SELECT statement. There are a few JOINs in the statement, as well as optional WHERE constraints, again dynamically-created depending on the database and the user's permission level.
All of this works great (honest!), apart from performance. When it comes to some databases, there are several hundreds of thousands of rows, and retrieving and paging through the data is quite slow (the databases are already properly indexed). I've therefore been looking at ways of speeding the system up, and it seems to boil down to two choices: XPO or LINQ.
LINQ seems to be the popular choice, but I'm not sure how easy it will be to implement with a system that is so dynamic in nature - would I need to create "definitions" for each database that LINQ could access? I'm also a bit unsure about creating the LINQ queries dynamically too, although looking at a few examples that part at least seems doable.
XPO, on the other hand, seems to allow me to create a XPO Data Source on the fly. However, I can't find too much information on how to JOIN to other tables.
Can anyone offer any advice on which method - if any - is the best to try and retro-fit into this project? Or is the dynamic SQL model currently used fundamentally different from LINQ and XPO and best left alone?
Before you go and change the whole way that your app talks to the database, have you had a look at the following:
Run your code through a performance profiler (such as Redgate's performance profiler), the results are often surprising.
If you are constructing the SQL string on the fly, are you using .Net best practices such as String.Concat("str1", "str2") instead of "str1" + "str2". Remember, multiple small gains add up to big gains.
Have you thought about having a summary table or database that is periodically updated (say every 15 mins, you might need to run a service to update this data automatically.) so that you are only hitting one database. New connections to databases are quiet expensive.
Have you looked at the query plans for the SQL that you are running. Today, I moved a dynamically created SQL string to a sproc (only 1 param changed) and shaved 5-10 seconds off the running time (it was being called 100-10000 times depending on some conditions).
Just a warning if you do use LINQ. I have seen some developers who have decided to use LINQ write more inefficient code because they did not know what they are doing (pulling 36,000 records when they needed to check for 1 for example). This things are very easily overlooked.
Just something to get you started on and hopefully there is something there that you haven't thought of.
Cheers,
Stu
As far as I understand you are talking about so called server mode when all data manipulations are done on the DB server instead of them to the web server and processing them there. In this mode grid works very fast with data sources that can contain hundreds thousands records. If you want to use this mode, you should either create the corresponding LINQ classes or XPO classes. If you decide to use LINQ based server mode, the LINQServerModeDataSource provides the Selecting event which can be used to set a custom IQueryable and KeyExpression. I would suggest that you use LINQ in your application. I hope, this information will be helpful to you.
I guess there are two points where performance might be tweaked in this case. I'll assume that you're accessing the database directly rather than through some kind of secondary layer.
First, you don't say how you're displaying the data itself. If you're loading thousands of records into a grid, that will take time no matter how fast everything else is. Obviously the trick here is to show a subset of the data and allow the user to page, etc. If you're not doing this then that might be a good place to start.
Second, you say that the tables are properly indexed. If this is the case, and assuming that you're not loading 1,000 records into the page at once and retreiving only subsets at a time, then you should be OK.
But, if you're only doing an ExecuteQuery() against an SQL connection to get a dataset back I don't see how Linq or anything else will help you. I'd say that the problem is obviously on the DB side.
So to solve the problem with the database you need to profile the different SELECT statements you're running against it, examine the query plan and identify the places where things are slowing down. You might want to start by using the SQL Server Profiler, but if you have a good DBA, sometimes just looking at the query plan (which you can get from Management Studio) is usually enough.

How to access data in Dynamics CRM?

What is the best way in terms of speed of the platform and maintainability to access data (read only) on Dynamics CRM 4? I've done all three, but interested in the opinions of the crowd.
Via the API
Via the webservices directly
Via DB calls to the views
...and why?
My thoughts normally center around DB calls to the views but I know there are purists out there.
Given both requirements I'd say you want to call the views. Properly crafted SQL queries will fly.
Going through the API is required if you plan to modify data, but it isnt the fastest approach around because it doesnt allow deep loading of entities. For instance if you want to look at customers and their orders you'll have to load both up individually and then join them manually. Where as a SQL query will already have the data joined.
Nevermind that the TDS stream is a lot more effecient that the SOAP messages being used by the API & webservices.
UPDATE
I should point out in regard to the views and CRM database in general: CRM does not optimize the indexes on the tables or views for custom entities (how could it?). So if you have a truckload entity that you lookup by destination all the time you'll need to add an index for that property. Depending upon your application it could make a huge difference in performance.
I'll add to jake's comment by saying that querying against the tables directly instead of the views (*base & *extensionbase) will be even faster.
In order of speed it'd be:
direct table query
view query
filterd view query
api call
Direct table updates:
I disagree with Jake that all updates must go through the API. The correct statement is that going through the API is the only supported way to do updates. There are in fact several instances where directly modifying the tables is the most reasonable option:
One time imports of large volumes of data while the system is not in operation.
Modification of specific fields across large volumes of data.
I agree that this sort of direct modification should only be a last resort when the performance of the API is unacceptable. However, if you want to modify a boolean field on thousands of records, doing a direct SQL update to the table is a great option.
Relative Speed
I agree with XVargas as far as relative speed.
Unfiltered Views vs Tables: I have not found the performance advantage to be worth the hassle of manually joining the base and extension tables.
Unfiltered views vs Filtered views: I recently was working with a complicated query which took about 15 minutes to run using the filtered views. After switching to the unfiltered views this query ran in about 10 seconds. Looking at the respective query plans, the raw query had 8 operations while the query against the filtered views had over 80 operations.
Unfiltered Views vs API: I have never compared querying through the API against querying views, but I have compared the cost of writing data through the API vs inserting directly through SQL. Importing millions of records through the API can take several days, while the same operation using insert statements might take several minutes. I assume the difference isn't as great during reads but it is probably still large.

Resources