DLL dependencies and allowing one to fail - visual-studio

I am currently looking at an issue where a project is generating a DLL. Now it is built upon a chain of other projects which are all C++, so they're just .lib files being linked in.
In this case one project uses OpenCL, however I don't believe those code paths are being run. However it would appear that just having OpenCL linked in causes the output .DLL to have a dependency on OpenCL.dll.
Please correct me if I am wrong here (in which case I'll go over the code with a fine-toothed comb to ensure no OpenCL calls are being executed).
I am not sure how Visual Studio (or dependency walker?) figures out which DLL's are dependencies for a given DLL. However I don't want the OpenCL.dll dependency.
What are my options?
One possible one is to take the project with the OpenCL code and refactor so some portion of it can be build with the OpenCL portion excluded from the build. However this will be a fair chunk of work so I am really hoping for something simpler.

If you link a lib you depend on the dll. The easiest thing for you would be to add /DELAYLOAD for this dll:
The /DELAYLOAD option causes the DLL that's specified by dllname to be loaded only on the first call by the program to a function in that DLL.
This generates a 'soft' dependency which only kicks in if you call a function that actually needs the DLL. Make sure you read Constraints of Delay Loading DLLs.
The other option (which I don't recommend) is to use runtime binding via LoadModule and GetProcAddress, then invoke functions via the pointer to function. This removes any dependency, but you are tasked to implement all check, all errors if the DLL is missing, and it can easy go astray if you mismatch the function signature/call convention. Ultimately, you'd be implementing /DELOAYLOAD manually.

Related

Why would a library consist of both a .lib and .dll file? [duplicate]

I know very little about DLL's and LIB's other than that they contain vital code required for a program to run properly - libraries. But why do compilers generate them at all? Wouldn't it be easier to just include all the code in a single executable? And what's the difference between DLL's and LIB's?
There are static libraries (LIB) and dynamic libraries (DLL) - but note that .LIB files can be either static libraries (containing object files) or import libraries (containing symbols to allow the linker to link to a DLL).
Libraries are used because you may have code that you want to use in many programs. For example if you write a function that counts the number of characters in a string, that function will be useful in lots of programs. Once you get that function working correctly you don't want to have to recompile the code every time you use it, so you put the executable code for that function in a library, and the linker can extract and insert the compiled code into your program. Static libraries are sometimes called 'archives' for this reason.
Dynamic libraries take this one step further. It seems wasteful to have multiple copies of the library functions taking up space in each of the programs. Why can't they all share one copy of the function? This is what dynamic libraries are for. Rather than building the library code into your program when it is compiled, it can be run by mapping it into your program as it is loaded into memory. Multiple programs running at the same time that use the same functions can all share one copy, saving memory. In fact, you can load dynamic libraries only as needed, depending on the path through your code. No point in having the printer routines taking up memory if you aren't doing any printing. On the other hand, this means you have to have a copy of the dynamic library installed on every machine your program runs on. This creates its own set of problems.
As an example, almost every program written in 'C' will need functions from a library called the 'C runtime library, though few programs will need all of the functions. The C runtime comes in both static and dynamic versions, so you can determine which version your program uses depending on particular needs.
Another aspect is security (obfuscation). Once a piece of code is extracted from the main application and put in a "separated" Dynamic-Link Library, it is easier to attack, analyse (reverse-engineer) the code, since it has been isolated. When the same piece of code is kept in a LIB Library, it is part of the compiled (linked) target application, and this thus harder to isolate (differentiate) that piece of code from the rest of the target binaries.
One important reason for creating a DLL/LIB rather than just compiling the code into an executable is reuse and relocation. The average Java or .NET application (for example) will most likely use several 3rd party (or framework) libraries. It is much easier and faster to just compile against a pre-built library, rather than having to compile all of the 3rd party code into your application. Compiling your code into libraries also encourages good design practices, e.g. designing your classes to be used in different types of applications.
A DLL is a library of functions that are shared among other executable programs. Just look in your windows/system32 directory and you will find dozens of them. When your program creates a DLL it also normally creates a lib file so that the application *.exe program can resolve symbols that are declared in the DLL.
A .lib is a library of functions that are statically linked to a program -- they are NOT shared by other programs. Each program that links with a *.lib file has all the code in that file. If you have two programs A.exe and B.exe that link with C.lib then each A and B will both contain the code in C.lib.
How you create DLLs and libs depend on the compiler you use. Each compiler does it differently.
One other difference lies in the performance.
As the DLL is loaded at runtime by the .exe(s), the .exe(s) and the DLL work with shared memory concept and hence the performance is low relatively to static linking.
On the other hand, a .lib is code that is linked statically at compile time into every process that requests. Hence the .exe(s) will have single memory, thus increasing the performance of the process.

LoadLibraryExW() fails, last error is ERROR_MOD_NOT_FOUND, but no missing dependencies?

A customer is using our dll which is creating a child process which uses an open source library, which ultimately fails because of a call to LoadLibraryExW(), the last error returned is ERROR_MOD_NOT_FOUND. This occurs on WinXP 32-bit, but not on other machines. But we know the correct set of dependencies is installed and even in the same directory.
So we thought naturally, to use Dependency Walker to look for what dependency is missing on that particular machine. Unfortunately it doesn't show any missing, just some delay-load warnings that aren't direct dependencies of the library. In my experience using depends.exe has always revealed what the missing dependency is.
So at this point I've pulled my hair out trying to understand why I'm getting ERROR_MOD_NOT_FOUND if all of the library's dependencies are there? The only other thing that makes this machine unique is it's very secure because it's used by the government, but if we were having an access/permissions issue I'd expect a different type of error code.
I've built a small Win32 executable that does nothing but call LoadLibraryExW() on the said library, when it's run from the same directory as the library is located, it loads the library without issue, on the customer's problematic machine.
One thing is that our product is an ActiveX plugin which launches a child process, the child process calls into the 3rd party library, the 3rd party library has the problematic LoadLibraryExW() call. So maybe why it's failing is the context it's running (e.g. from the browser)?
Use the Profiling option of the Dependency Walker on your application. Possibly the library is trying to resolve some APIs dynamically (using LoadLibrary/GetProcAddress) and this won't show up in the static dependencies.
The best way is to use loader snaps. Basically you use gflags.exe (which is included with windbg) to enable loader snaps; then, run the process with the debugger attached. Loader snaps will enable the loader to print out dbg messages of the process and it will print the failures.
gflags.exe -i yourcode.exe +sls
windbg yourcode.exe
Your dependencies might be present on the system but they could be in a folder that is not part of the search order during LoadLibraryExW().
A SetDllDirectory() or AddDllDirectory() call would ensure that the folder containing the dependencies is searched during the LoadLibraryExW() call

How to properly build third-party library to be used in Debug and Release configurations in my project?

When I need to build some third party library to be used in several of my projects under different version of MSVC, I usually build it for every MSVC version and for both Debug and Release configurations. That's what boost does, and that's what we have been done for our whole life in my team.
However, I still don't get, why couldn't I just build this library with like... whatever. All I need is function prototype and object code, right? Since I'm linking CRT statically, I have no external dependencies. But when I'm trying to link library built in Release under MSVC8 with my project in Debug under MSVC10 I have this annoying "already defined" linker errors which we all hate so much.
But why? Can I just "encapsulate" all this functions inside lib and do not export them so that my project will take only what it needs from the lib? Why can I have precompiled version of libpng and zlib which I can link in every project? Yes, they are not build using MSVC, I guess, but the still uses the same functions of CRT. So can anyone please explain in depth or share a link to some enlightened explanation of this issue?
Since I'm linking CRT statically, I have no external dependencies
Well, that's not true, you do have a dependency. On the static version of the CRT. Debug or Release, depending on your build settings. And it is an external dependency, the linker glues the CRT later, when the library gets linked. The code that uses the library also has a dependency on the CRT. And if the compile settings don't match then the linker barfs.
You isolate that dependency by building a DLL instead of a static link library. You must further ensure that the exported functions don't cause a CRT dependency. You can't return a C++ object from the standard C++ library and can't return a pointer to an object that needs to be released by the client code. Even passing structures is tricky since their packing is an implementation detail, but you usually get away with it. A good practical example is COM automation, it forces you into using a subset of types that are universal. Windows is rife with them and all these servers work with any version of the compiler or CRT. Even any language. This however comes at a cost, writing such a library isn't as simple or convenient as just throwing a bunch of code in a static lib.

Implicit vs. Explicit linking to a DLL

When one should implicitly or explicitly link to a DLL and what are common practices or pitfalls?
It is fairly rare to explicitly link a DLL. Mostly because it is painful and error prone. You need to write a function pointer declaration for the exported function and get the LoadLibrary + GetProcAddress + FreeLibrary code right. You'd do so only if you need a runtime dependency on a plug-in style DLL or want to select from a set of DLLs based on configuration. Or to deal with versioning, an API function that's only available on later versions of Windows for example. Explicit linking is the default for COM and .NET DLLs.
More background info in this MSDN Library article.
I'm assuming you refer to linking using a .lib vs loading a DLL dynamically using LoadLibrary().
Loading a DLL statically by linking to its .lib is generally safer. The linking stage checks that all the entry points exist in compile time and there is no chance you'll load a DLL that doesn't have the function you're expecting. It is also easier not to have to use GetProcAddress().
So generally you should use dynamic loading only when it is absolutely required.
I agree with other who answered you already (Hans Passant and shoosh). I want add only two things:
1) One common scenario when you have to use LoadLibrary and GetProcAddress is the following: you want use some new API existing in new versions of Windows only, but the API are not critical in your application. So you test with LoadLibrary and GetProcAddress whether the function which you need exist, and use it in the case. What your program do if the functions not exist depend total from your implementation.
2) There are one important options which you not included in your question: delayed loading of DLLs. In this case the operating system will load the DLL when one of its functions is called and not at the application start. It allows to use import libraries (.lib files) in some scenarios where explicitly linking should be used at the first look. Moreover it improve the startup time of the applications and are wide used by Windows itself. So the way is also recommended.

Strange VB6 build problems (related to nlog)

This I think is related to my use of the nlog C++ API (and my question on the nlog forum is here); the purpose of my asking this question here is to get a wider audience to my problem and perhaps to also get some more general ideas behind the VB6 IDE's failure to build in my particular scenario.
Briefly, the problem that I am having is that I am having trouble building VB6 components which reference unmanaged C++ components which have calls to nlog's C\C++ API (which is defined in NLogC.DLL). The build problems are not occurring during compile time, they are occurring when the binary is being built which suggests to me that it's some kind of linker type problem? Don't know enough about how VB6 binaries are produced to tell. The VB6 binary is produced, but it is corrupted and crashes shortly after it is invoked.
Has anyone had any similar experiences with VB6 (doesn't have to be related to nlog or C++)?
edit: Thanks for all the responses to this rather obscure problem. Still no headway unfortunately; my findings since I posted this:
'Tweaking' the compile options doesn't appear to help in this problem.
Adding a reference to the nlog-enabled C++ component from a 'blank' VB6 project doesn't crash it or cause weird build problems. So it isn't a 'native' VB6 issue, possibly an issue with the interaction between nlog and the various components and 3rd party libraries used by other referenced components?
As for C++ calling conventions: the nlog-enabled C++ component is - as far as I can see - compliant to these conventions and indeed works fine when referenced by VB6 as long as it is not making any nlog API calls. Not sure if the nlogc.DLL itself is VB6 compliant but I would have thought that that is immaterial since the API calls are being made from the C++ component; VB6 shouldn't know or care about what the C++ component is referencing (that's as far as my understanding on this goes...)
edit2: I should also note that the error message obtained during build is: "Errors during load. Please refer to "xxx" for details". When I bring up the log file, all that there is in there is: "Cannot load control xxx". Interestingly, all references to that particular control disappears from that particular project resulting in compile errors if I were to try to build again.
Got around the problem by using NLog's COM interface (NLog.ComInterop.DLL) from my unmanaged C++ code. Not as easy to do as the C\C++ API but at least it doesn't crash my VB6 components.
I would try tweaking some of the Compile options found in the Project, Properties menu, Compile panel to see if they yield any additional hints as to what is going wrong.
For example if you compile the executable to p-code rather than native code does it still crash on startup.
What error message do you get when you run your compiled binary?
I doubt the compiler/linker is the problem: project references in a VB6 project are not linked into the final executable. A project reference in VB6 is actually a reference to a COM type library (which may or may not be embedded in a .dll or other binary file type). Project references primarily serve two purposes:
The IDE extracts type information from the referenced type libraries which it then displays in the Object Browser (and in the Intellisense drop-down)
At compile-time, the compiler extracts the type information stored in the referenced libraries, including the CLSID of each class that you instantiate, and embeds this data into the executable. This allows your executable to create instances of classes contained in the libraries that you referenced.
Note that the compiled binary doesn't link to any code in the referenced libraries, and it doesn't even contain the filenames of the referenced libraries. The final executable only contains the CLSID's and other type information that it needs to instantiate COM objects at run-time.
It is much more likely that the issue is with NLog, or with how you are calling it from your code, rather than something gone awry in the VB6 compile process.
If you think it might be a linker problem, this should crash it the same way:
create a new standard project (of any kind)
add a new module and copy the "declare"-statements into it
compile
If it doesn't crash it is something else.
It would help an exact description of the error or a screenshot of what going on.
One thing to check is wherever NLogC.DLL or the C++ DLL you built have the correct calling convention defined. Basically you can't have the DLL function names mangled or use anything but the STDCALL calling convention. If the C++ DLL has not been created with those two things in mind then it will fail to work with VB6.
MSDN Article on Calling convention.
"Cannot load control xxx" errors can be caused by .oca files which were created from a different version of an .ocx than currently used. If that is the case, deleting the .oca files helps.

Resources