Can Redis lost data? - caching

I haven't strong knowledge in Redis, so I need help!
As I know Redis store data in memory and sometimes does dump to hard drive.
Does it mean if Redis process fall down for some reason, I'll lose all my data?
If it is, what can I do for save data till process will be restored?
Thanks!

http://redis.io/topics/persistence
Redis comes with AOF (append only file) and RDB (snapshotting) persistence options, it also have configurable param to keep the data loss very minimal.
If you configure every 1 sec snapshot or every event one by one write to AOF file then it might affect the performance.

Related

Is this Redis Race Condition Scenario Possible?

I'm debugging an issue in an application and I'm running into a scneario where I'm out of ideas, but I suspect a race condition might be in play.
Essentially, I have two API routes - let's call them A and B. Route A generates some data and Route B is used to poll for that data.
Route A first creates an entry in the redis cache under a given key, then starts a background process to generate some data. The route immediately returns a polling ID to the caller, while the background data thread continues to run. When the background data is fully generated, we write it to the cache using the same cache key. Essentially, an overwrite.
Route B is a polling route. We simply query the cache using that same cache key - we expect one of 3 scenarios in this case:
The object is in the cache but contains no data - this indicates that the data is still being generated by the background thread and isn't ready yet.
The object is in the cache and contains data - this means that the process has finished and we can return the result.
The object is not in the cache - we assume that this means you are trying to poll for an ID that never existed in the first place.
For the most part, this works as intended. However, every now and then we see scenario 3 being hit, where an error is being thrown because the object wasn't in the cache. Because we add the placeholder object to the cache before the creation route ever returns, we should be able to safely assume this scenario is impossible. But that's clearly not the case.
Is it possible that there is some delay between when a Redis write operation returns and when the data is actually available for querying? That is, is it possible that even though the call to add the cache entry has completed but the data would briefly not be returned by queries? It seems the be the only thing that can explain the behavior we are seeing.
If that is a possibility, how can I avoid this scenario? Is there some way to force Redis to wait until the data is available for query before returning?
Is it possible that there is some delay between when a Redis write operation returns and when the data is actually available for querying?
Yes and it may depend on your Redis topology and on your network configuration. Only standalone Redis servers provides strong consistency, albeit with some considerations - see below.
Redis replication
While using replication in Redis, the writes which happen in a master need some time to propagate to its replica(s) and the whole process is asynchronous. Your client may happen to issue read-only commands to replicas, a common approach used to distribute the load among the available nodes of your topology. If that is the case, you may want to lower the chance of an inconsistent read by:
directing your read queries to the master node; and/or,
issuing a WAIT command right after the write operation, and ensure all the replicas acknowledged it: while the replication process would happen to be synchronous from the client standpoint, this option should be used only if absolutely needed because of its bad performance.
There would still be the (tiny) possibility of an inconsistent read if, during a failover, the replication process promotes a replica which did not receive the write operation.
Standalone Redis server
With a standalone Redis server, there is no need to synchronize data with replicas and, on top of that, your read-only commands would be always handled by the same server which processed the write commands. This is the only strongly consistent option, provided you are also persisting your data accordingly: in fact, you may end up having a server restart between your write and read operations.
Persistence
Redis supports several different persistence options; in your scenario, you may want to configure your server so that it
logs to disk every write operation (AOF) and
fsync every query.
Of course, every configuration setting is a trade off between performance and durability.

Eventual consistency - how to avoid phantoms

I am new to the topic. Having read a handful of articles on it, and asked a couple of persons, I still do not understand what you people do in regard to one problem.
There are UI clients making requests to several backend instances (for now it's irrelevant whether sessions are sticky or not), and those instances are connected to some highly available DB cluster (may it be Cassandra or something else of even Elasticsearch). Say the backend instance is not specifically tied to one or cluster's machines, and instead its every request to DB may be served by a different machine.
One client creates some record, it's synchronously of asynchronously stored to one of cluster's machines then eventually gets replicated to the rest of DB machines. Then another client requests the list or records, the request ends up served by a distant machine not yet received the replicated changes, and so the client does not see the record. Well, that's bad but not yet ugly.
Consider however that the second client hits the machine which has the record, displays it in a list, then refreshes the list and this time hits the distant machine and again does not see the record. That's very weird behavior to observe, isn't it? It might even get worse: the client successfully requests the record, starts some editing on it, then tries to store the updates to DB and this time hits the distant machine which says "I know nothing about this record you are trying to update". That's an error which the user will see while doing something completely legitimate.
So what's the common practice to guard against this?
So far, I only see three solutions.
1) Not actually a solution but rather a policy: ignore the problem and instead speed up the cluster hard enough to guarantee that 99.999% of changes will be replicated on the whole cluster in, say, 0.5 secord (it's hard to imagine some user will try to make several consecutive requests to one record in that time; he can of course issue several reading requests, but in that case he'll probably not notice inconsistency between results). And even if sometimes something goes wrong and the user faces the problem, well, we just embrace that. If the loser gets unhappy and writes a complaint to us (which will happen maybe once a week or once an hour), we just apologize and go on.
2) Introduce an affinity between user's session and a specific DB machine. This helps, but needs explicit support from the DB, and also hurts load-balancing, and invites complications when the DB machine goes down and the session needs to be re-bound to another machine (however with proper support from DB I think that's possible; say Elasticsearch can accept routing key, and I believe if the target shard goes down it will just switch the affinity link to another shard - though I am not entirely sure; but even if re-binding happens, the other machine may contain older data :) ).
3) Rely on monotonic consistency, i.e. some method to be sure that the next request from a client will get results no older than the previous one. But, as I understand it, this approach also requires explicit support from DB, like being able so pass some "global version timestamp" to a cluster's balancer, which it will compare with it's latest data on all machines' timestamps to determine which machines can serve the request.
Are there other good options? Or are those three considered good enough to use?
P.S. My specific problem right now is with Elasticsearch; AFAIK there is no support for monotonic reads there, though looks like option #2 may be available.
Apache Ignite has primary partition for a key and backup partitions. Unless you have readFromBackup option set, you will always be reading from primary partition whose contents is expected to be reliable.
If a node goes away, a transaction (or operation) should be either propagated by remaining nodes or rolled back.
Note that Apache Ignite doesn't do Eventual Consistency but instead Strong Consistency. It means that you can observe delays during node loss, but will not observe inconsistent data.
In Cassandra if using at least quorum consistency for both reads and writes you will get monotonic reads. This was not the case pre 1.0 but thats a long time ago. There are some gotchas if using server timestamps but thats not by default so likely wont be an issue if using C* 2.1+.
What can get funny is since C* uses timestamps is things that occur at "same time". Since Cassandra is Last Write Wins the times and clock drift do matter. But concurrent updates to records will always have race conditions so if you require strong read before write guarantees you can use light weight transactions (essentially CAS operations using paxos) to ensure no one else updates between your read to update, these are slow though so I would avoid it unless critical.
In a true distributed system, it does not matter where your record is stored in remote cluster as long as your clients are connected to that remote cluster. In Hazelcast, a record is always stored in a partition and one partition is owned by one of the servers in the cluster. There could be X number of partitions in the cluster (by default 271) and all those partitions are equally distributed across the cluster. So a 3 members cluster will have a partition distribution like 91-90-90.
Now when a client sends a record to store in Hazelcast cluster, it already knows which partition does the record belong to by using consistent hashing algorithm. And with that, it also knows which server is the owner of that partition. Hence, the client sends its operation directly to that server. This approach applies on all client operations - put or get. So in your case, you may have several UI clients connected to the cluster but your record for a particular user is stored on one server in the cluster and all your UI clients will be approaching that server for their operations related to that record.
As for consistency, Hazelcast by default is strongly consistent distributed cache, which implies that all your updates to a particular record happen synchronously, in the same thread and the application waits until it has received acknowledgement from the owner server (and the backup server if backups are enabled) in the cluster.
When you connect a DB layer (this could be one or many different types of DBs running in parallel) to the cluster then Hazelcast cluster returns data even if its not currently present in the cluster by reading it from DB. So you never get a null value. On updating, you configure the cluster to send the updates downstream synchronously or asynchronously.
Ah-ha, after some even more thorough study of ES discussions I found this: https://www.elastic.co/guide/en/elasticsearch/reference/current/search-request-preference.html
Note how they specifically highlight the "custom value" case, recommending to use it exactly to solve my problem.
So, given that's their official recommendation, we can summarise it like this.
To fight volatile reads, we are supposed to use "preference",
with "custom" or some other approach.
To also get "read your
writes" consistency, we can have all clients use
"preference=_primary", because primary shard is first to get all
writes. This however will probably have worse performance than
"custom" mode due to no distribution. And that's quite similar to what other people here said about Ignite and Hazelcast.
Right?
Of course that's a solution specifically for ES. Reverting to my initial question which is a bit more generic, turns out that options #2 and #3 are really considered good enough for many distributed systems, with #3 being possible to achieve with #2 (even without immediate support for #3 by DB).

Need to suspend and flush memcached server (or server pool) to maintain data integrity

I have this problem related to maintaining and I have looked in several places for the answer but I have found no specific answer.
The situation is like this:
We have several mysql queries which generate menus for our web application. About once a day, we need to update the tables and those updates affect the menu generation. Naturally, we enclose those updates within a transaction.
So far so good. But the improve the speed and responsiveness and also reduce database load, we want to use memcached. And in all respects, memcached is perfect for this role because the updates happen only once a day.
But what we would like to do is this:
Our update scripts starts and its first operation is to "suspend" the memcached pool. Once this is done, memcached no longer answers queries and all queries are passed through to mysql. The important thing is that the memcached server still responds with a miss quickly so that mysql comes into action quickly. The other important thing is that during this period, memcached will refuse to set any data.
Flush all data in memcached pool.
Update script runs.
Restore memcached to normal operation.
So, 1. and 4. is where I am stuck.
Our technology is based around mysql and PHP. I am using the nginx memcached module to directly retrieve data from memcached. But the PHP which sets the cache could run in many different places.
Having said that, I am open to using any language or technology. This is a generic enough problem and we could discuss anything that works best.
Thanks in advance for responses.
The usual method of (atomically) swapping over from one set of data in cache is with a Namespace. A prefix that is stored in its own key and is queried first before going on to fetch the main cached data.
It works like this:
You have a 'namespace' under a key - it could be date/time based for example - menuNamespace = 'menu:15050414:' (the 2015-05-04, 2pm menu build).
That key is a prefix for all the actual data for the menus, or other data, eg: menu:15050414:top-menu, menu:15050414:l2-menu, etc, etc
The back end system builds a new set of cached data with new keys: menu:15050510:top-menu, menu:15050510:l2-menu
Only when the data is in place, do you change namespace key cached entry from 'menu:15050414:' to 'menu:15050510:'
The next time the namespace is fetched, it is used as a prefix to then fetch the new data.
There is some more in a MemcacheD FAQ/tricks page on Namespacing.
Based on #alister_b's initial answer, there is a simpler way to solve my initial problem.
The key is to signal to the PHP code to stop setting the cache values. That can be done through memcached entry like setCache:false or through a MySQL column.
Then, a flush command will guarantee nginx cache misses.
Once the tables are updated, setCache is set to true and normal sets by php are resumed.
This will work with my Ajax calls without issues.
It is not mutually exclusive with namespaces.

Dealing with concurrency issues when caching for high-traffic sites

I was asked this question in an interview:
For a high traffic website, there is a method (say getItems()) that gets called frequently. To prevent going to the DB each time, the result is cached. However, thousands of users may be trying to access the cache at the same time, and so locking the resource would not be a good idea, because if the cache has expired, the call is made to the DB, and all the users would have to wait for the DB to respond. What would be a good strategy to deal with this situation so that users don't have to wait?
I figure this is a pretty common scenario for most high-traffic sites these days, but I don't have the experience dealing with these problems--I have experience working with millions of records, but not millions of users.
How can I go about learning the basics used by high-traffic sites so that I can be more confident in future interviews? Normally I would start a side project to learn some new technology, but it's not possible to build out a high-traffic site on the side :)
The problem you were asked on the interview is the so-called Cache miss-storm - a scenario in which a lot of users trigger regeneration of the cache, hitting in this way the DB.
To prevent this, first you have to set soft and hard expiration date. Lets say the hard expiration date is 1 day, and the soft 1 hour. The hard is one actually set in the cache server, the soft is in the cache value itself (or in another key in the cache server). The application reads from cache, sees that the soft time has expired, set the soft time 1 hour ahead and hits the database. In this way the next request will see the already updated time and won't trigger the cache update - it will possibly read stale data, but the data itself will be in the process of regeneration.
Next point is: you should have procedure for cache warm-up, e.g. instead of user triggering cache update, a process in your application to pre-populate the new data.
The worst case scenario is e.g. restarting the cache server, when you don't have any data. In this case you should fill cache as fast as possible and there's where a warm-up procedure may play vital role. Even if you don't have a value in the cache, it would be a good strategy to "lock" the cache (mark it as being updated), allow only one query to the database, and handle in the application by requesting the resource again after a given timeout
You could probably be better of using some distributed cache repository, as memcached, or others depending your access pattern.
You could use the Cache implementation of Google's Guava library if you want to store the values inside the application.
From the coding point of view, you would need something like
public V get(K key){
V value = map.get(key);
if (value == null) {
synchronized(mutex){
value = map.get(key);
if (value == null) {
value = db.fetch(key);
map.put(key, value);
}
}
}
return value;
}
where the map is a ConcurrentMap and the mutex is just
private static Object mutex = new Object();
In this way, you will have just one request to the db per missing key.
Hope it helps! (and don't store null's, you could create a tombstone value instead!)
Cache miss-storm or Cache Stampede Effect, is the burst of requests to the backend when cache invalidates.
All high concurrent websites I've dealt with used some kind of caching front-end. Bein Varnish or Nginx, they all have microcaching and stampede effect suppression.
Just google for Nginx micro-caching, or Varnish stampede effect, you'll find plenty of real world examples and solutions for this sort of problem.
All boils down to whether or not you'll allow requests pass through cache to reach backend when it's in Updating or Expired state.
Usually it's possible to actively refresh cache, holding all requests to the updating entry, and then serve them from cache.
But, there is ALWAYS the question "What kind of data are you supposed to be caching or not", because, you see, if it is just plain text article, which get an edit/update, delaying cache update is not as problematic than if your data should be exactly shown on thousands of displays (real-time gaming, financial services, and so on).
So, the correct answer is, microcache, suppression of stampede effect/cache miss storm, and of course, knowing which data to cache when, how and why.
It is worse to consider particular data type for caching only if data consumers are ready for getting stale date (in reasonable bounds).
In such case you could define invalidation/eviction/update policy to keep you data up-to-date (in business meaning).
On update you just replace data item in cache and all new requests will be responsed with new data
Example: Stocks info system. If you do not need real-time price info it is reasonable to keep in cache stock and update it every X mils/secs with expensive remote call.
Do you really need to expire the cache. Can you have an incremental update mechanism using which you can always increment the data periodically so that you do not have to expire your data but keep on refreshing it periodically.
Secondly, if you want to prevent too many users from hiting the db in one go, you can have a locking mechanism in your stored proc (if your db supports it) that prevents too many people hitting the db at the same time. Also, you can have a caching mechanism in your db so that if someone is asking for the exact same data from the db again, you can always return a cached value
Some applications also use a third service layer between the application and the database to protect the database from this scenario. The service layer ensures that you do not have the cache miss storm in the db
The answer is to never expire the Cache and have a background process update cache periodically. This avoids the wait and the cache-miss storms, but then why use cache in this scenario?
If your app will crash with a "Cache miss" scenario, then you need to rethink your app and what is cache verses needed In-Memory data. For me, I would use an In Memory database that gets updated when data is changed or periodically, not a Cache at all and avoid the aforementioned scenario.

Low loading into cache speed

I'm using Infinispan 6.0.0 in a 3-node setup (distributed caching with 2 replicas for each entry, no writes into persistent store) and I'm just reading the file line-by-line and storing that lines' contents into the cache. The speed seems a bit low to me (I can achieve more writes onto the SSD (persistent storage) than into RAM with Infinispan), but there isn't any obvious bottleneck in the test code (I'm using buffered input streams, and their limits certainly aren't reached. As for now, I'm able to write 100K entries each ~45 seconds and that doesn't satisfy me. Assume simplified code snippet:
while ((s = reader.readLine()) != null) {
cache.put(s.substring(0,2), s.substring(2,5));
}
And CacheManager is created as follows:
return new DefaultCacheManager(
GlobalConfigurationBuilder.defaultClusteredBuilder()
.transport().addProperty("configurationFile", "jgroups.xml").build(),
new ConfigurationBuilder()
.clustering().cacheMode(CacheMode.DIST_ASYNC).hash().numOwners(2)
.transaction().transactionMode(TransactionMode.TRANSACTIONAL).lockingMode(LockingMode.OPTIMISTIC)
.build());
What could I be possibly doing wrong?
I am not fully aware of all the asynchronous mode specialities, but I'd afraid that something in the two-phase commit (Prepare and Commit) might force some blocking RPC => waiting for network latency => slow down.
Do you need transactional behaviour? If not, switch them off. If you really need it, you may disable just the autocommit feature and load the cluster via non-transactional operations. Or, you may try one phase commits.
Another option could be mass loading via putAll (with tens or hundreds of entries, depends on your entry size), but routing of this message is not really smart. In transactional mode it could behave a bit better, I guess.
The last option if you just want to load the cluster fast and then operate on it could be transferring the bulk data to each node without Infinispan (using your own JGroups channel, or just with sockets), and loading all nodes with the CACHE_MODE_LOCAL flag.
By default Infinispan follows the Map.put() contract of returning the previous value, so even though you are using the DIST_ASYNC cache mode you're still implicitly performing a synchronous cache.get() for every put.
You can avoid this in two ways:
configurationBuilder.unsafe().unreliableReturnValues(true) will suppress the remote lookup for all the operations on the cache.
cache.getAdvancedCache().withFlags(Flag.IGNORE_RETURN_VALUES).put(k, v) will suppress the remote lookup for a single operation.

Resources