I am running spark 2, hive, hadoop at local machine, and I want to use spark sql to read data from hive table.
It works all fine when I have hadoop running at default hdfs://localhost:9000, but if I change to a different port in core-site.xml:
<name>fs.defaultFS</name>
<value>hdfs://localhost:9099</value>
Running a simple sql spark.sql("select * from archive.tcsv3 limit 100").show(); in spark-shell will give me the error:
ERROR metastore.RetryingHMSHandler: AlreadyExistsException(message:Database default already exists)
.....
From local/147.214.109.160 to localhost:9000 failed on connection exception: java.net.ConnectException: Connection refused;
.....
I get the AlreadyExistsException before, which doesn't seem to influence the result.
I can make it work by creating a new sparkContext:
import org.apache.spark.SparkContext
import org.apache.spark.sql.SparkSession
sc.stop()
var sc = new SparkContext()
val session = SparkSession.builder().master("local").appName("test").enableHiveSupport().getOrCreate()
session.sql("show tables").show()
My question is, why the initial sparkSession/sparkContext did not get the correct configuration? How can I fix it? Thanks!
If you are using SparkSession and you want to set configuration on the the spark context then use session.sparkContext
val session = SparkSession
.builder()
.appName("test")
.enableHiveSupport()
.getOrCreate()
import session.implicits._
session.sparkContext.hadoopConfiguration.set("fs.s3.impl", "org.apache.hadoop.fs.s3native.NativeS3FileSystem")
You don't need to import SparkContext or created it before the SparkSession
Related
Update the question 6/21
Background about Simba:
The Simba Google BigQuery JDBC Connector is delivered in a ZIP archive named SimbaBigQueryJDBC42-[Version].zip, where [Version] is the version number of the connector.
The archive contains the connector supporting the JDBC API version indicated in the archive name, as well as release notes and third-party license information.
I'm trying to connect to BigQuery from pyspark (docker) using simba jdbc with no success. I had reviewed many posts here but couldn't find clue
my code which I just submit from VC within spark docker image
import pyspark
from pyspark import SparkConf
from pyspark.sql import SQLContext, SparkSession
import os
from glob import glob
my_jar = glob('/root/Downloads/BigQuery/simba_jdbc_1.2.4.1007/*.jar')
my_jar_str = ','.join(my_jar)
print(my_jar_str)
sc_conf = SparkConf()
sc_conf.setAppName("testApp")
sc_conf.setMaster('local[*]')
sc_conf.set("spark.jars", my_jar_str)
sc = pyspark.SparkContext(conf=sc_conf)
spark = SparkSession \
.builder \
.master('local') \
.appName('spark-read-from-bigquery') \
.config("spark.executor.extraClassPath",my_jar_str) \
.config("spark.driver.extraClassPath",my_jar_str) \
.config("spark.jars", my_jar_str)\
.getOrCreate()
myJDBC = '''
jdbc:bigquery://https://www.googleapis.com/bigquery/v2:443;OAuthType={OAuthType};ProjectId={ProjectId};OAuthServiceAcctEmail={OAuthServiceAcctEmail};OAuthPvtKeyPath={OAuthPvtKeyPath};
'''.format(OAuthType=0,
ProjectId='ProjectId',
OAuthServiceAcctEmail="etl#dProjectId.iam.gserviceaccount.com",
OAuthPvtKeyPath="/workspaces/code/secrets/etl.json")
pgDF = spark.read \
.format("jdbc") \
.option("url", myJDBC) \
.option("driver", "com.simba.googlebigquery.jdbc42.Driver") \
.option("dbtable", my_query) \
.load()
I'm getting error:
File "/opt/spark/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py", line 328, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o79.load.
: java.lang.NullPointerException
at org.apache.spark.sql.execution.datasources.jdbc.JDBCRDD$.resolveTable(JDBCRDD.scala:71)
at org.apache.spark.sql.execution.datasources.jdbc.JDBCRelation$.getSchema(JDBCRelation.scala:210)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcRelationProvider.createRelation(JdbcRelationProvider.scala:35)
at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:318)
at org.apache.spark.sql.DataFrameReader.loadV1Source(DataFrameReader.scala:223)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:211)
Is that missing jars or it is wrong logic?
Please any clue is appreciated
To anyone who might have the same thought. I just found that SIMBA is not supporting spark but rather I have to follow the steps in https://github.com/GoogleCloudDataproc/spark-bigquery-connector.
The open issue (as of 6/23) that I don't use Dataproc but rather standalone spark, so I need to figure how to collect consistent support jars
If ODBC also works for you, maybe this can help.
First, download and configure the ODBC driver from here:
Next - use the connection like this (note the IgnoreTransactions parameter):
import pyodbc
import pandas as pd
conn = pyodbc.connect(r'Driver={Simba ODBC Driver for Google BigQuery};OAuthMechanism=0;Catalog=<projectID>;KeyFilePath=<path to json credentials>;Email=<email of service account>;IgnoreTransactions=1')
qry = 'select * from <path to your table>'
data = pd.read_sql(qry,conn)
I had a problem with error: Error converting value to long
And my solution is creating a jar file from java which include jdbc dialect
https://github.com/Fox-sv/spark-bigquery
from pyspark.sql import SparkSession
from py4j.java_gateway import java_import
user_email = "EMAIL"
project_id = "PROJECT_ID"
creds = "PATH_TO_FILE"
jdbc_conn = f"jdbc:bigquery://https://www.googleapis.com/bigquery/v2:443;OAuthServiceAcctEmail={user_email};ProjectId={project_id};OAuthPvtKeyPath={creds};"
spark = SparkSession.builder.getOrCreate()
jvm = spark.sparkContext._gateway.jvm
java_import(jvm, "MyDialect")
jvm.org.apache.spark.sql.jdbc.JdbcDialects.registerDialect(jvm.MyDialect().change_dialect())
df = spark.read.jdbc(url=jdbc_conn,table='(SELECT * FROM babynames.names_2014) AS table')
Am trying to get the fetch the file from hdfs in pyspark using visual studio code...
i have checked through jps all the nodes are in active status only.
my file path in hadoop is
hadoop fs -cat emp/part-m-00000
1,A,ABC
2,B,ABC
3,C,ABC
and core-site.xml is
fs.default.name
hdfs://localhost:9000
am fetching the above mentioned file through visual studio code in pyspark..
but am getting error like
py4j.protocol.Py4JJavaError: An error occurred while calling o31.partitions.
: org.apache.hadoop.mapred.InvalidInputException: Input path does not exist: hdfs://localhost:9000/emp/part-m-00000
please help me
i have tried giving the hadoop path
from pyspark.conf import SparkConf
from pyspark.context import SparkContext
from pyspark.sql import HiveContext
sc= SparkContext('local','example')
hc = HiveContext(sc)
tf1 = sc.textFile("hdfs://localhost:9000/emp/part-m-00000")
print(tf1.first())
i need to get the file from hadoop
When I want to launch a spark job on R I get this error :
Erreur : java.lang.IllegalStateException: Cannot call methods on a stopped SparkContext.
This stopped SparkContext was created at:
org.apache.spark.SparkContext.<init>(SparkContext.scala:82) ....
In spark logs (/opt/mapr/spark/spark-version/logs) I find a lot of theses exceptions :
ERROR FsHistoryProvider: Exception encountered when attempting to load application log maprfs:///apps/spark/.60135a9b-ec7c-4f71-8f92-4d4d2fbb1e2b
java.io.FileNotFoundException: File maprfs:///apps/spark/.60135a9b-ec7c-4f71-8f92-4d4d2fbb1e2b does not exist.
Any idea how could I solve this issue ?
You need to create sparkContext (or get if it exists)
import org.apache.spark.{SparkConf, SparkContext}
// 1. Create Spark configuration
val conf = new SparkConf()
.setAppName("SparkMe Application")
.setMaster("local[*]") // local mode
// 2. Create Spark context
val sc = new SparkContext(conf)
or
SparkContext.getOrCreate()
I have a elasticsearch docker image listening on 127.0.0.1:9200, I tested it using sense and kibana, It works fine, I am able to index and query documents. Now when I try to write to it from a spark App
val sparkConf = new SparkConf().setAppName("ES").setMaster("local")
sparkConf.set("es.index.auto.create", "true")
sparkConf.set("es.nodes", "127.0.0.1")
sparkConf.set("es.port", "9200")
sparkConf.set("es.resource", "spark/docs")
val sc = new SparkContext(sparkConf)
val sqlContext = new SQLContext(sc)
val numbers = Map("one" -> 1, "two" -> 2, "three" -> 3)
val airports = Map("arrival" -> "Otopeni", "SFO" -> "San Fran")
val rdd = sc.parallelize(Seq(numbers, airports))
rdd.saveToEs("spark/docs")
It fails to connect, and keeps on retrying
16/07/11 17:20:07 INFO HttpMethodDirector: I/O exception (java.net.ConnectException) caught when processing request: Operation timed out
16/07/11 17:20:07 INFO HttpMethodDirector: Retrying request
I tried using IPAddress given by docker inspect for the elasticsearch image, that also does not work. However when I use a native installation of elasticsearch, the Spark App runs fine. Any ideas?
Also, set the config
es.nodes.wan.only to true
As mentioned in this answer if you are having issues writing to ES.
Couple things I would check:
The Elasticsearch-Hadoop spark connector version you are working with. Make sure that it is not beta. There was a fixed bug related to the IP resolving.
Since 9200 is the default port, you may remove this line: sparkConf.set("es.port", "9200") and check.
Check that there is no proxy configured in your Spark environment or config files.
I assume that you run Elasticsaerch and Spark on the same machine. Can you try to configure your machine IP address instead of 127.0.0.1
Hope this helps! :)
Had the same problem and a further issue was that the confs set using sparkConf.set() didn't have an effect. But supplying the confs with the saving function worked, like this:
rdd.saveToEs("spark/docs", Map("es.nodes" -> "127.0.0.1", "es.nodes.wan.only" -> "true"))
I'm running hbase in a cluster mode and I'm getting the following error:
DEBUG org.apache.hadoop.hbase.zookeeper.ZKUtil - catalogtracker-on-hconnection-0x6e704bd0x0, quorum=node2:2181, baseZNode=/hbase Set watcher on znode that does not yet exist, /hbase/meta-region-server
I had the similar the error and got it resolved by doing these:
1) Making sure HBase Client Version is compatible with the HBase version on the cluster.
2) Adding hbase-site.xml to your application classpath, so that HBase client determines all the appropriate HBase configurations from it.
val conf = org.apache.hadoop.hbase.HBaseConfiguration.create()
// Instead of the following settings, pass hbase-site.xml in classpath
// conf.set("hbase.zookeeper.quorum", hbaseHost)
// conf.set("hbase.zookeeper.property.clientPort", hbasePort)
HBaseAdmin.checkHBaseAvailable(conf);
log.debug("HBase found! with conf " + conf);