How do I change the code in a FAT boot sector? - windows

I am creating an operating system, and am able to create a simple multitasking kernel (though the code has been lost) and an IDE/ATA PIO driver without BIOS interrupts. I wish to create a boot loader that puts the system into Protected Mode, disables paging, creates a flat memory model, and then does a long jump to the 0x0 offset of a file named OS.SYS in the root directory of a FAT32 formatted hard drive. I know how do do everything except for one thing: change the boot sector of the disk. I know how to format a hard drive as FAT32 to get the correct BPB and such at the beginning of the file, but I do not know how to copy over the code so that the BPB is not corrupted. Even in Linux when DD was available, I was unable to overcome this hurdle - I always used a custom file system. I am now seeing the disadvantages to this, though, such as not being able to use simple tools like file managers to move files around for testing.
Basically, to sum it up, I'm asking how to change the boot sector code on an already working FAT32 file system without messing up the BPB.
Note: I am using Windows 10 and NASM, and intend to use virtual hard disks with QEMU or Virtualbox.

Related

Is it posible to load a system driver from memory without it touching the filesystem directly?

Is it possible to load a signed windows driver from memory without the file ever touching the disk? If it is possible, is it trivial to achieve or are there any obstacles to overcome. To clarify, the driver may exist on the disk at some point but in an encoded state.
For example, I know that it's possible to decode a payload from memory and inject it into another running process, but since that's technically a Windows "Feature" I'm not sure whether things are as easy when you're loading things into the kernel.
If it is possible, bonus points for sources. All my search has turned up is people calling each other idiots and malware authors without actually getting into whether it's technically possible/feasable.
My use case is md5sum detection since to load drivers onto a 64 bit windows system they must be signed, and so the hash would be immutable. If you can load drivers from memory then monitoring the file system wouldn't be sufficient for my needs.
No, Drivers have to have an entry in the service manager to point to some bin file.
this is part of the Service registry
I know that windbg is able to replace the image of a driver, but it is from a kernel debugger using a map files

Is there a way to keep internal drive segments unmounted while booting from external device

For forensic imaging of drives and/or segments with a native Mac application, I'm booting from external device (usb, hdd, etc.) into BaseSystem. I want to keep the internal drives and/or segments unmounted during the boot process (there is no way of knowing drive/segment volume names and/or UUID before booting). Later will disable disk arbitration, mount these drives/segments and image them.
I've created a deamon (System/Library/LaunchDeamons) for mount blocking (on external boot device), but it only blocks newly attached devices, not internal ones.
Note 1: I've created boot image from BaseSystem.dmg of Sierra (10.12.1), and modified the contents.
Note 2: Since there is no way of knowing drive/segment volume names and/or UUID before booting, it is not possible to use fstab.
I need a direction to follow, any comment may help. Thanks.
Nobody, even commented. I found the solution from a clue keyword from a friend: autodiskmount

'Debug' unformats floppy disk when writing bootloader to first sector

I am trying to write a very basic operating system in Assembly by following this video:
http://www.youtube.com/watch?v=6MJUGVFAXKg
My code is fine and has all been compiled to .bin files via NASM and, using a virtual machine running Windows XP, I have written the bootloder file to the (virtual) floppy using the 'debug' command, as per the video. This is all successful, and when I boot into the OS, it displays a 'kernel.bin file not found' error, which is expected becasue the kernel file wasn't on the floppy disk.
So I boot back into XP and try to copy the kernel.bin file to the floppy, but Windows tells me that the floppy is not formatted and asks me if I would like to format it. Obviously, once the disk is formatted, it is wiped, so it seems that I cannot have both the bootloader.bin and kernel.bin on the floppy at the same time.
How do I write other files to the disk as well as the bootloader?
You'll have to explain this in very simple terms; I'm an absolute beginner.
Thanks.
I fixed it. I downloaded someone else's bootloader which had a correctly functioning Boot Parameter Block. I must have made a mistake on the code on my own file which was preventing XP from recognising the disk as formatted. So it boots correctly now. Thanks so much for your input, Frank Kotler, I have definitely learnt something today and have a basic OS to call my own!

Where is data on a non-persistant Live CD stored?

When I boot up Linux Mint from a Live CD, I am able to save files to the "File System". But where are these files being saved to? Can't be the disc, since it's a CDR. I don't think it's stored in the RAM, because it can only hold so much data and isn't really intended to be used as a "hard drive". The only other option is the hard drive... but it's certainly not saving to any partition on the hard drive I know about, since none of them are mounted. Then where are my files being saved to??
Believe it or not, it's a ramdisk :)
All live distros mount a temporary hard disk in RAM memory. The process is completely user-transparent and is all because of the magic of Linux kernel.
The OS, in fact, first allocates an area of your RAM memory into a virtual device, then mounts it as a regular hard drive in your file system.
Once you reboot, you lose all your data from that ramdrive.
Ramdrive is needed by almost all software running on Live CDs. In fact, almost all programs, in particular desktop managers, are designed in order to write files, even temporary, during their execution.
As an example, there are two ways to run KDE on a Live CD: either modify its code deeply in order to disallow you to change wallpaper etc. (the desktop settings are stored inside ~/.kde) or redeploy it onto a writable file system such as a ramdrive in order to avoid write fails on read-only file systems.
Obviously, you can mount your real HDD or any USB drive into your virtual file system and make all writes to them permanent, but by default no live distro mounts your drives into the root file system, instead they usually mount into specific subdirectories like /mnt, /media, /windows
Hope to have been of help.
It does indeed emulate a disk using RAM; from Wikipedia:
It is able to run without permanent
installation by placing the files that
typically would be stored on a hard
drive into RAM, typically in a RAM
disk, though this does cut down on the
RAM available to applications.
RAM. In Linux, and indeed most unix systems, any kind of device is seen as a file system.
For example, to get memory info on linux you use cat /proc/meminfo, where cat is used to read files. Then, there's all sorts of strange stuff like /dev/random (to read random crap) and /dev/null (to throw away crap). ;-)
To make it persistent - use a USB device - properly formatted and with a special name. See here:
https://help.ubuntu.com/community/LiveCD/Persistence

Modifying the MBR of Windows

I need to modify the MBR of Windows, and I would really like to do this from Windows.
Here are my questions. I know that I can get a handle on a physical device with a call to CreateFile. Will the MBR always be on \\.\PHYSICALDRIVE0? Also, I'm still learning the Windows API to read directly from the disk. Is readabsolutesectors and writeabsolutesectdors the two functions I'm going to need to use to read/write to the disk sectors which contain the MBR?
Edit from from what I've learned on my own.
The MBR will not always be on \\.\PHYSICALDRIVE0. Also, you can write to the bootsector (at least as Administrator on XP) by call CreateFile with the device name of the drive that contains the MBR. Also, you can write to this drive by simply calling WriteFile and passing the handle of the device created by calling CreateFile.
Edit to address Joel Coehoorn.
I need to edit the MBR because I'm working on a project that needs to modify hardware registers after POST in BIOS, but before Windows will be allowed to boot. Our plan is to make these changes by modifying the bootloader to execute our code before Windows boots up.
Edit for Cd-MaN.
Thanks for the info. There isn't anything in your answer, though, that I didn't know and your answer doesn't address my question. The registry in particular absolutely will not do what we need for multiple reasons. The big reason being that Windows is the highest layer among multiple software layers that will be running with our product. These changes need to occur even before the lower levels run, and so the registry won't work.
P.S. for Cd-MaN.
As I understand it, the information you give isn't quite correct. For Vista, I think you can write to a volume if the sectors being written to are boot sectors. See http://support.microsoft.com/kb/942448
Once the OS is started the MBR is typically protected for virus reasons - this is one of the oldest virus tricks in the books - goes back to passing viruses from floppy to floppy.
Even if it wasn't restricted, you have to write low level code - it isn't part of the file system, but exists on a specific location on the hard drive.
Due to that, you pretty much are restricted to writing low level (most programs implement this in assembly) or C code targeting 16 bit DOS.
Most of these programs use the BIOS interface (13h, I believe) to access the sectors of the disk directly. You can access these in C using some inline assembly, or compiler provided interfaces. You will generally not get access to BIOS without the cooperation of the OS, though, so your program, again, will be restricted to DOS. If you can access these you're almost home free - the nice thing about BIOS is you don't have to worry about what type of HD is in the system - even RAID cards often insert themselves into the BIOS routines so they can be accessed without knowing where in memory the ATA or SATA controller is, and executing commands on that low level.
If you absolutely must access it within an OS, though, you pretty much have to write a device driver to access the BIOS or the memory space where the HD controllers exist. I wouldn't recommend it, though, as this is very tricky to deal with - modern computers put the HD controllers in different spots in memory, with different IRQs, and each chipset has become a little more esoteric because they can provide a minimum interface to bios for bootup, and then a specific driver for Windows. They skip all the other interface niceties that would be considered compatible with other controllers because it's more expensive to be compatible.
You may find that at the driver level inside windows you'll have methods for accessing the drive sectors directly (or pseudo directly), but again, they are likely very well protected due to the aforementioned virus issues.
Good luck!
Modifying the bootloader is bad, bad idea. Here are just a few of the possible gotcha's:
it will potentially kill full disk encryption products (Truecrypt, PGP, Vista's BitLocker, etc)
it will potentially trip up AV products (scaring users)
it will potentially kill complicated booting scenarios (chained boot loaders, etc)
it will kill off the chain of trust when using the TPM module (because it checks the MBR for change before executing it)
direct disk access is not allowed starting from Vista (only using drivers)
Alternatives (like modifying the hardware register during the Windows bootup via a driver which is set to load at boot time or after Windows has booted) should really be considered. If the modification is as simple as writing to a port, ie:
OUT AX, BL
then drivers exists for all versions of Window which can do this (reading/writing a value from/to a certain port) which can be called from user mode.
Maybe a PXE boot scenario could help you? Simply boot on your crafted PXE image which modify the hardware registers you need to modify, and then return the control to the Master Boot Record or to the active partition's boot record.
This way you don't have to modify the boot records.

Resources