Big-O complexity of algorithms - big-o

I'm trying to figure out the exact big-O value of algorithms. I'll provide an example:
for (int i = 0; i < n; i++) // 2N + 2
{
for (int x = i; x < n; x++) // N * 2N + 2 ?
{
sum += i; // N
}
} // Extra N?
So if I break some of this down, int i = 0 would be O(1), i < n is N+1, i++ is N, multiply the inner loop by N:
2N + 2 + N(1 + N + 1 + N) = 2N^2 + 2N + 2N + 2 = 2N^2 + 4N + 2
Add an N for the loop termination and the sum constant, = 3N^2 + 5N + 2...
Basically, I'm not 100% sure how to calculate the exact O notation for an algorithm, my guess is O(3N^2 + 5N + 2).

What do you mean by exact? Big O is an asymptotic upper bound, so it's by definition not exact.
Thinking about i=0 as O(1) and i<n as O(N+1) is not correct. Instead, think of the outer loop as doing something n times, and for every iteration of the outer loop, the inner loop is executed at most n times. The calculation inside the loop takes constant time (the calculation is not getting more complex as n gets bigger). So you end up with O(n*n*1) = O(n^2), quadratic complexity.
When asking about "exact", you're running the inner loop from 0 to n, then from 1 to n, then from 2 to n, ... , from (n-1) to n, each time doing a constant time operation. So you do n + (n-1) + (n-2) + ... + 1 = n*(n+1)/2 = n^2/2 + n/2 iterations. To get from the exact number of calculations to big O notation, omit constants and lower-order terms, and you'll end up with O(n^2) (the 1/2 and +n/2 are omitted).

Big O means Worst case complexity.
And Here worst case will occur only if both the loops will run for n numbers of time i.e n*n.
So, complexity is O(n2).

Related

How to find the big theta?

Here's some code segment I'm trying to find the big-theta for:
i = 1
while i ≤ n do #loops Θ(n) times
A[i] = i
i = i + 1
for j ← 1 to n do #loops Θ(n) times
i = j
while i ≤ n do #loops n times at worst when j = 1, 1 times at best given j = n.
A[i] = i
i = i + j
So given the inner while loop will be a summation of 1 to n, the big theta is Θ(n2. So does that mean the big theta is Θ(n2) for the entire code?
The first while loop and the inner while loop should be equal to Θ(n) + Θ(n2) which should just equal Θ(n2).
Thanks!
for j = 1 to n step 1
for i = j to n step j
# constant time op
The double loop is O(n⋅log(n)) because the number of iterations in the inner loop falls inversely to j. Counting the total number of iterations gives:
floor(n/1) + floor(n/2) + ... + floor(n/n) <= n⋅(1/1 + 1/2 + ... + 1/n) ∼ n⋅log(n)
The partial sums of the harmonic series have logarithmic behavior asymptotically, so the above shows that the double loop is O(n⋅log(n)). That can be strengthened to Θ(n⋅log(n)) with a math argument involving the Dirichlet Divisor Problem.
[ EDIT ] For an alternative derivation of the lower bound that establishes the Θ(n⋅log(n)) asymptote, it is enough to use the < part of the x - 1 < floor(x) <= x inequality, avoiding the more elaborate math (linked above) that gives the exact expression.
floor(n/1) + floor(n/2) + ... + floor(n/n) > (n/1 - 1) + (n/2 - 1) + ... + (n/n - 1)
= n⋅(1/1 + 1/2 + ... + 1/n) - n
∼ n⋅log(n) - n
∼ n⋅log(n)

confused about a nested loop having linear complexity(Big-Oh = O(n)) but I worked it to be logarithmic

Computing complexity and Big o of an algorithm
T(n) = 5n log n + 3log n + 2 // to the base 2 big o = o(n log n)
for(int x = 0,i = 1;i <= N;i*=2)
{
for(int j = 1 ;j <= i ;j++)
{
x++;
}
}
The Big o expected was linear where as mine is logarithmic
Your Big-Oh analysis is not correct. While it is true that the outer loop is executed log n times, the inner loop is linear in i at each iteration.
If you count the total number of iterations of the inner loop, you will see that the whole thing is linear:
The inner loop will do ‍1 + 2 + 4 + 8 + 16 + ... + (the last power of 2 <= N) iterations. This sum will be between N and 2*N, which makes the whole loop linear.
Let me explain why your analysis is wrong.
It is clear that inner loop will execute 1 + 2 + 4 + ... + 2^k times where k is the biggest integer which satisfies equation . This implies that upper bound for k is
Without loss of generality we can take upper bound for k and assume that k is integer, complexity equals to 1 + 2 + 4 + ... + = which is geometric series so it is equal to
Therefore in O notation it is O(n)
First, you should notice that your analysis is not logarithmic! As N \log N is not logarithmic.
Also, the time complexity is T(n) = sum_{j = 0}^{log(n)} 2^j (as the value of i duplicated each time). Hence, T(n) = 2^(log(N) + 1) - 1 = 2N - 1 = \Theta(N).

What's the complexity of sum i=0 -> n (n_i*i))

This is a test I failed because I thought this complexity would be O(n), but it appears i'm wrong and it's O(n^2). Why not O(n)?
First, notice that the question does not ask what is the time complexity of a function calculating f(n), but rather the complexity of the function f(n) itself. you can think about f(n) as being the time complexity of some other algorithm if you are more comfortable talking about time complexity.
This is indeed O(n^2), when the sequence a_i is bounded by a constant and each a_i is at least 1.
By the assumption, for all i, a_i <= c for some constant c.
Hence, a_1*1+...+a_n*n <= c * (1 + 2 + ... + n). Now we need to show that 1 + 2 +... + n = O(n^2) to complete the proof.
1 + 2 + ... + n <= n + n + ... + n = n * n = n ^ 2
and
1 + 2 + ... + n >= n / 2 + (n / 2 + 1) + ... + n >= (n / 2) * (n / 2) = n^2/4
So the complexity is actually Theta(n^2).
Note that if a_i was not constant, e.g., a_i = i then the result is not correct.
in that case, f(n) = 1^2 + 2^2 + ... + n^2 and you can show easily (using the same method as before) that f(n) = Omega(n^3), which means it's not O(n^2).
Preface, not super great with complexity-theory but I'll take a stab.
I think what is confusing is that its not a time complexity problem, but rather the functions complexity.
So for easy part i just goes up to n ie. 1,2,3 ...n , then for ai all entries must be above 0 meaning that a could be something like this 2,5,1... for n times. If you multiply them together n*n = O(n2).
The best case would be if a is 1,1,1 which drop the complexity down to O(n) but the average case will be n so you get squared.
Unless it's mentioned that a[i] is O(n), it's definitely O(n)
Here an another try to achieve O(n*n) if sum should be returned as result.
int sum = 0;
for(int i = 0; i<=n; i++){
for(int j = 0; j<=n; j++){
if(i == j){
sum += A[i] * j;
}
}
return sum;

Time complexity of following code with explanation?

What is the time complexity of this algorithm, and why?
int count = 0;
for (int i = N; i > 0; i /= 2) {
for (int j = 0; j < i; j++) {
count += 1;
}
}
The correct answer is O(n), but I am getting O(nlogn). Can anyone tell me why it's O(n)?
On the first iteration, the inner loop executes N times, and then N/2 times, and then N/4 times, and so on. This can be expressed as an infinite sum:
N + N/2 + N/4 + N/8 + N/16 + N/32 + ...
If you factor out the N from each term, you get:
N * (1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + ...)
The infinite sequence in parentheses converges on the value 2 (more info on Wikipedia). Therefore, the number of operations can be simplified to:
N * 2
In terms of Big-O, the asymptotic value is within:
O(N)
You can check this by observing that the relationship in the output between N and count is linear: Ideone Demo

What is the time complexity?

What is the time complexity for the following function?
for(int i = 0; i < a.size; i++) {
for(int j = i; j < a.size; i++) {
//
}
}
I think it is less than big O n^2 because we arent iterating over all of the elements in the second for loop. I believe the time complexity comes out to be something like this:
n[ (n) + (n-1) + (n-2) + ... + (n-n) ]
But when I solve this formula it comes out to be
n^2 - n + n^2 - 2n + n^2 - 3n + ... + n^2 - n^2
Which doesn't seem correct at all. Can somebody tell me exactly how to solve this problem, and where I am wrong.
That is O(n^2). If you consider the iteration where i = a.size() - 1, and you work your way backwards (i = a.size() - 2, i = a.size - 3, etc), you are looking at the following sum of number of iterations, where n = a.size.
1 + 2 + 3 + 4 + ... + n
The sum of this series is n(n+1)/2, which is O(n^2). Note that big-O notation ignores constants and takes the highest polynomial power when it is applied to a polynomial function.
It will run for:
1 + 2 + 3 + .. + n
Which is 1/2 n(n+1) which give us O(n^2)
The Big-O notation will only keep the dominant term, neglecting constants too
The Big-O is only used to compare algorithms on the same variation of a problem using the same complexity analysis standard, if and only if the dominant terms are different.
If the dominant terms are the same, you need to compare Big-Theta or Time complexity, which will show minor differences.
Example
A
for i = 1 .. n
for j = i .. n
..
B
for i = 1 .. n
for j = 1 .. n
..
We have
Time(A) = 1/2 n(n+1) ~ O(n^2)
Time(B) = n^2 ~ O(n^2)
O(A) = O(B)
T(A) < T(B)
Analysis
To visualize how we got 1 + 2 + 3 + .. n:
for i = 1 .. n:
print "(1 + "
sum = 0
for j = i .. n:
sum++
print sum") + "
will print the following:
(1+n) + (1+(n-1)) + .. + (1+3) + (1+2) + (1+1) + (1+0)
n+1 + n + n-1 + .. + 3 + 2 + 1
1 + 2 + 3 + .. + n + n+1
1/2 n(n+1) + (n+1)
1/2 n^2 + 1/2 n + n + 1
1/2 n^2 + 3/2 n + 1
Yes, the number of iterations is strictly less than n^2, but it's still Θ(n^2). It will eventually be greater than n^k for any k<2, and it will eventually be less than n^k for any k>2.
(As a side note, computer scientists often say big-O when they really mean big-theta (Θ). It's technically correct to say that almost every algorithm you've seen has O(n!) running time; all reasonably algorithms have running times that grow no more quickly than n!. But it's not really useful to say that the complexity is O(n!) if it's also O(n log n), so by some kind of Gricean maxim we assume that when someone says an algorithm's complexiy is O(f(x)) that f(x) is as small as possible.)

Resources