I've spent some time looking at the questions about this on here and throughout the internet but I can't really find anything that makes sense to me.
Basically I need help on realizing a function in scheme that evaluates Leibniz's formula when you give it a value k. The value you input lets the function know how many values in the series it should compute. This is what I have so far, I'm not sure what way I need to write this program to make it work. Thanks!
(define (fin-alt-series k)
(cond ((= k 1)4)
((> k 1)(+ (/ (expt -1 k) (+(* 2.0 k) 1.0)) (fin-alt-series (- k 1.0))))))
The base case is incorrect. And we can clean-up the code a bit:
(define (fin-alt-series k)
(cond ((= k 0) 1)
(else
(+ (/ (expt -1.0 k)
(+ (* 2 k) 1))
(fin-alt-series (- k 1))))))
Even better, we can rewrite the procedure to use tail recursion, it'll be faster this way:
(define (fin-alt-series k)
(let loop ((k k) (sum 0))
(if (< k 0)
sum
(loop (- k 1)
(+ sum (/ (expt -1.0 k) (+ (* 2 k) 1)))))))
For example:
(fin-alt-series 1000000)
=> 0.7853984133971936
(/ pi 4)
=> 0.7853981633974483
Related
I am trying to calculate and approximation for the Euler number using a do loop in Scheme
Something is not quite right because nothing is displayed. Can someone help me to find the fix for the code below? Thanks.
(define (factorial n)
(cond
((= n 0)1)
((* n(factorial(- n 1))))))
; using a do loop, I want to calculate 1/0! + 1/1! + 2/2! + 3/3!...
(define (ei n)
(define sum 0)
(do ((i 0 (+ 1 i)))
((> i n))
(+ sum (/ 1.(factorial i)))))
(ei 6)
I expect a number close to 2.7
You need to update the sum variable and also return its value:
(define (factorial n)
(cond
((= n 0) 1)
((* n (factorial (- n 1))))))
(define (ei n)
(define sum 0)
(do ((i 0 (+ 1 i)))
((> i n))
(set! sum (+ sum (/ 1. (factorial i)))))
sum)
(ei 6)
This results in 2.7180555555555554.
Use the fact that a do loop can update multiple variables.
(define (factorial n)
(cond
((= n 0) 1)
((* n (factorial (- n 1))))))
(define (ei n)
(do ((i 0 (+ 1 i))
(sum 0.0 (+ sum (/ 1. (factorial i)))))
((> i n) sum)))
The binom procedure is suppose to return a function such that ((binom n) k a b) is the kth term in the binomial expansion of (a + b)^n.
This is my code.
(define (pascal row col)
(cond ((= col 1) 1)
((= row col) 1)
(else (+ (pascal (- row 1) (- col 1)) (pascal (- row 1) col)))))
(define (binom n)
(lambda (k a b)
(cond ((or (= n 0) (= n k)) 1)
(else (binom (pascal k n)))) 1))
I am trying to fix the binom function. I think the formula is (n k) * a^k * b^(n-k). How should I write it in Scheme?
I think you got confused with the formulas, you're mixing up n, k, row and col.
I'd recommend writing down the formulas you want to program, name the variables on paper, then write the procedure using the same variable names.
With binom though, I'm not sure what your intent was.
Binom returns a lambda, that's all well and good.
But then in that lambda you make a recursive call to binom,
again returning a lambda? And then at the very end you basically ignore
the result you get from this and return 1?
In its current form binom will never return anything other than a lambda or 1.
Here's what I think you want:
(define (pascal n k)
(cond ((< n k) (error "not defined: k > n"))
((= k 1) n)
((= k 0) 1)
((= n k) 1)
(else (+ (pascal (- n 1) (- k 1)) (pascal (- n 1) k)))))
(define (binom n i a b)
(* (pascal n i) (expt a (- n i)) (expt b i)))
I am working through SICP. In exercise 1.28 about the Miller-Rabin test. I had this code, that I know is wrong because it does not follow the instrcuccions of the exercise.
(define (fast-prime? n times)
(define (even? x)
(= (remainder x 2) 0))
(define (miller-rabin-test n)
(try-it (+ 1 (random (- n 1)))))
(define (try-it a)
(= (expmod a (- n 1) n) 1))
(define (expmod base exp m)
(cond ((= exp 0) 1)
((even? exp)
(if (and (not (= exp (- m 1))) (= (remainder (square exp) m) 1))
0
(remainder (square (expmod base (/ exp 2) m)) m)))
(else
(remainder (* base (expmod base (- exp 1) m)) m))))
(cond ((= times 0) true)
((miller-rabin-test n) (fast-prime? n (- times 1)))
(else false)))
In it I test if the square of the exponent is congruent to 1 mod n. Which according
to what I have read, and other correct implementations I have seen is wrong. I should test
the entire number as in:
...
(square
(trivial-test (expmod base (/ exp 2) m) m))
...
The thing is that I have tested this, with many prime numbers and large Carmicheal numbers,
and it seems to give the correct answer, though a bit slower. I don't understand why this
seems to work.
Your version of the function "works" only because you are lucky. Try this experiment: evaluate (fast-prime? 561 3) a hundred times. Depending on the random witnesses that your function chooses, sometimes it will return true and sometimes it will return false. When I did that I got 12 true and 88 false, but you may get different results, depending on your random number generator.
> (let loop ((k 0) (t 0) (f 0))
(if (= k 100) (values t f)
(if (fast-prime? 561 3)
(loop (+ k 1) (+ t 1) f)
(loop (+ k 1) t (+ f 1)))))
12
88
I don't have SICP in front of me -- my copy is at home -- but I can tell you the right way to perform a Miller-Rabin primality test.
Your expmod function is incorrect; there is no reason to square the exponent. Here is a proper function to perform modular exponentiation:
(define (expm b e m) ; modular exponentiation
(let loop ((b b) (e e) (x 1))
(if (zero? e) x
(loop (modulo (* b b) m) (quotient e 2)
(if (odd? e) (modulo (* b x) m) x)))))
Then Gary Miller's strong pseudoprime test, which is a strong version of your try-it test for which there is a witness a that proves the compositeness of every composite n, looks like this:
(define (strong-pseudoprime? n a) ; strong pseudoprime base a
(let loop ((r 0) (s (- n 1)))
(if (even? s) (loop (+ r 1) (/ s 2))
(if (= (expm a s n) 1) #t
(let loop ((r r) (s s))
(cond ((zero? r) #f)
((= (expm a s n) (- n 1)) #t)
(else (loop (- r 1) (* s 2)))))))))
Assuming the Extended Riemann Hypothesis, testing every a from 2 to n-1 will prove (an actual, deterministic proof, not just a probabilistic estimate of primality) the primality of a prime n, or identify at least one a that is a witness to the compositeness of a composite n. Michael Rabin proved that if n is composite, at least three-quarters of the a from 2 to n-1 are witnesses to that compositeness, so testing k random bases demonstrates, but does not prove, the primality of a prime n to a probability of 4−k. Thus, this implementation of the Miller-Rabin primality test:
(define (prime? n k)
(let loop ((k k))
(cond ((zero? k) #t)
((not (strong-pseudoprime? n (random (+ 2 (- n 3))))) #f)
(else (loop (- k 1))))))
That always works properly:
> (let loop ((k 0) (t 0) (f 0))
(if (= k 100) (values t f)
(if (prime? 561 3)
(loop (+ k 1) (+ t 1) f)
(loop (+ k 1) t (+ f 1)))))
0
100
I know your purpose is to study SICP rather than to program primality tests, but if you're interested in programming with prime numbers, I modestly recommend this essay at my blog, which discusses the Miller-Rabin test, among other topics. You should also know there are better (faster, less likely to report erroneous result) primality tests available than randomized Miller-Rabin.
It seems to me, you still got correct answer, because in each iteration of expmod you check conditions for previous iteration. You could try to debug exp value using display function inside expmod. Really, your code is not very different from this one.
I am wondering how to write a function calculating the sum of proper divisors of a integer greater than 1.
(define (sum-of-proper-divisors n)
(cond
[(= n 1) 1]
[(= 0 (remainder n (sub1 n)))
(+ (remainder n (sub1 n)) (sum-of-proper-divisors (sub1 (sub1 n))))]
[else (sum-of-proper-divisors (sub1 n))]))
This is the code that I wrote, however, it does not work. It will never stop evaluating because it will always do n-1. And I don't know how to fix this. Also, there might be other problems. How to put the restriction that makes the function stop evaluating when the divisor becomes 1?
You're confusing the number n whose divisors you want to find, with said divisors. Notice that n never changes, what must be modified at each step is the current integer being tested (a possible divisor). For that you'll need to pass around two parameters:
(define (sum-of-proper-divisors n i)
(cond
[(= i 1) 1]
[(= (remainder n i) 0)
(+ i (sum-of-proper-divisors n (sub1 i)))]
[else (sum-of-proper-divisors n (sub1 i))]))
Call it like this, at the beginning i must be one unit less than n:
(sum-of-proper-divisors 10 9)
=> 8
If having two parameters bothers you there are several ways to pass a single parameter, for instance using a named let:
(define (sum-of-proper-divisors n)
(let loop ((i (sub1 n)))
(cond
[(= i 1) 1]
[(= (remainder n i) 0)
(+ i (loop (sub1 i)))]
[else (loop (sub1 i))])))
So i'm trying to solve the collatz function iteratively in scheme but my test cases keep showing up as
(define (collatz n)
(define (collatz-iter n counter)
(if (<= n 1)
1
(if (even? n) (collatz-iter (/ n 2) (+ counter 1))
(collatz-iter (+ (* n 3) 1) (+ counter 1))
)
)
)
)
However, my test cases keep resulting in "#[constant 13 #x2]". What did I write wrong, if anything?
You forgot to call collatz-iter. Also, it's not clear what do you intend to do with counter, you just increment it, but never actually use its value - your procedure will always return 1 (assuming that the Collatz conjecture is true, which seems quite possible).
I'm guessing you intended to return the counter, so here's how to fix your procedure:
(define (collatz n)
(define (collatz-iter n counter)
(if (<= n 1)
counter ; return the counter
(if (even? n)
(collatz-iter (/ n 2) (+ counter 1))
(collatz-iter (+ (* n 3) 1) (+ counter 1)))))
(collatz-iter n 1)) ; call collatz-iter
And this is how it works for the examples in wikipedia:
(collatz 6)
=> 9
(collatz 11)
=> 15
(collatz 27)
=> 112
So basically we're counting the length of the Collatz sequence for a given number.
You should indent your code properly. With proper formatting, it's
(define (collatz n)
(define (collatz-iter n counter)
(if (<= n 1)
1
(if (even? n)
(collatz-iter (/ n 2) (+ counter 1))
(collatz-iter (+ (* n 3) 1) (+ counter 1))))))
which clearly has no body forms to execute, just an internal definition. You need to add a call to collatz-iter, like this:
(define (collatz n)
(define (collatz-iter n counter)
(if (<= n 1)
1
(if (even? n)
(collatz-iter (/ n 2) (+ counter 1))
(collatz-iter (+ (* n 3) 1) (+ counter 1)))))
(collatz-iter n 1))
(I'm not sure what your initial counter value should be. I'm assuming 1 is reasonable, but perhaps it should be zero?) Better yet, since the body it just a call to collatz-iter, you can make this a named let, which is more like your original code:
(define (collatz n)
(let iter ((n n) (counter 1))
(if (<= n 1)
1
(if (even? n)
(iter (/ n 2) (+ counter 1))
(iter (+ (* n 3) 1) (+ counter 1))))))
It's sort of like combining the internal definition with the single call to the local function. Once you've done this, though, you'll see that it always returns 1, when it eventually gets to the base case (assuming the Collatz conjecture is true, of course). Fixing this, you'll end up with:
(define (collatz n)
(let iter ((n n) (counter 1))
(if (<= n 1)
counter
(if (even? n)
(iter (/ n 2) (+ counter 1))
(iter (+ (* n 3) 1) (+ counter 1))))))
When I try to run your code in Racket I get the error:
no expression after a sequence of internal definitions
This is telling us that the collatz function conatains the collatz-iter definition, but no expression to call it (other than the recursive calls in collatz-iter). That can be fixed by adding a call to (collatz-iter n 0) as the last line in collatz.
However, when you run the program it always returns 1. Not very interesting. If instead you change it to return the value of counter you can see how many steps it took for the sequence to reach 1.
(define (collatz n)
(define (collatz-iter n counter)
(if (<= n 1)
counter
(if (even? n) (collatz-iter (/ n 2) (+ counter 1))
(collatz-iter (+ (* n 3) 1) (+ counter 1))
)
)
)
(collatz-iter n 0)
)
We can check it against a few examples given on the Wikipedia Collatz conjecture article.
> (collatz 6)
8
> (collatz 11)
14
> (collatz 27)
111
>