I want to check whether exists files with a certain extension in a makefile, however this piece of code does not work:
ejecutar: $(OUTPUT) clean
ifeq (,$(wildcard *.dat))
./$(OUTPUT) < $(OUTPUT).dat >$(OUTPUT).txt
else
./$(OUTPUT) < $(OUTPUT).dat >$(OUTPUT).txt
The error is said to be in the ifeq line.
The stuff in the recipe should be shell script, not Makefile syntax. Anything that Make interprets gets expanded as the Makefile is being read, where you typically want your recipe to examine things as they are when that specific recipe is executed. (This is a common beginner FAQ.)
Checking whether a wildcard matches any files in shell script is surprisingly unobvious, too.
ejecutar: $(OUTPUT) clean
set -- *.dat \
; if [ -e "$$1" ]; then \
./$< < $<.dat >$<.txt; \
else \
./$< < $<.dat >$<.txt; \
fi
It's also weird that your then and else cases are identical, but I'm not judging.
I have my project binary located at my repository's root, along with a Makefile used to build it.
This binary uses many of my self-made libraries, located in my lib/ folder
For the purpose of building (and cleaning) my repository's binary, I want to implement the following execution :
Instead of hardcoding the following lines,
clean_binaries:
make -C clean lib/folder1 -s
make -C clean lib/folder2 -s
make -C clean lib/another_folder -s
I created the BIN_PATH variable, containing the previous paths.
BIN_PATHS = lib/folder1 \
lib/folder2 \
lib/another_folder
And made a simple rule like this one :
clean_binaries: $(BIN_PATHS)
make -C clean $< -s
BUT it only executes the line for the first field of the variable (lib/folder1), which is not what I want to do.
I thought about using implicit rules(?), just like I compile the .c files, but I couldn't get it right.
In the end, I simply wonder how to execute a rule for every field of a given variable, and this inside a Makefile, if there is any way to do so.
Thank you for your answers :]
The way you get GNU make to generate a sequence of commands that vary by the
fields in a variable is to use the foreach function, e.g.
Makefile
BIN_PATHS := lib/folder1 lib/folder2 lib/another_folder
.PHONY: clean_binaries
clean_binaries:
$(foreach path,$(BIN_PATHS),make -C $(path) clean ;)
which runs like:
$ make
make -C lib/folder1 clean -s; make -C lib/folder2 clean -s; make -C lib/another_folder clean -s;
not requiring a shell-loop.
Note also that you need to correct:
make -C clean <directory>
to:
make -C <directory> clean
I have a rule in my makefile:
$(OW_GROUP_ONE_C): $(OW_GROUP_ONE_PNG)
for file in $^; \
do \`enter code here`
grit $$file -ftc -fh\! -fa -gt -gz\! -gB4 -m\! -p -pzl -pu16 -o $#; \
done
It builds a single c file out of different images, those are iterated in a for loop (They are, I checked using an echo)
The rule which depends on that is
$(OW_GROUP_ONE_O): $(OW_GROUP_ONE_C)
$(CC) $(CFLAGS) -c -o $# $<
which is executed via
$(SPRITES_BINARY): $(NORMAL_PAL_OBJ) $(SHINY_PAL_OBJ) $(SPRITE_FRONT_OBJ) $(SPRITE_BACK_OBJ) $(NORMAL_CASTFORM_PAL_OBJ) $(SHINY_CASTFORM_PAL_OBJ) $(CASTFORM_FRONT_OBJ) $(CASTFORM_BACK_OBJ) $(OW_GROUP_ONE_O)
If I execute the rule by calling "make $(OW_GROUP_ONE_C)" everything works fine, but as soon as the rule is executed via dependency from another rule, the loop seems to just read the first file. I again used echo to check, but the loop accumulates all files in the list. I don't know what the deal i, the tool (GRIT - GBA raster image transmogrifier) should be able to handle that, but there must be a difference between calling the rule explicit if it works that way...
Thanks in advance for any hints!
I'm stuck trying to figure out how to run a program, on a set of files, using GNU Make:
I have a variable that loads some filenames alike this:
FILES=$(shell ls *.pdf)
Now I'm wanting to run a program 'p' on each of the files in 'FILES', however I can't seem to figure how to do exactly that.
An example of the 'FILES' variable would be:
"a.pdf k.pdf omg.pdf"
I've tried the $(foreach,,) without any luck, and #!bin/bash like loops seem to fail.
You can do a shell loop within the command:
all:
for x in $(FILES) ; do \
p $$x ; \
done
(Note that only the first line of the command must start with a tab, the others can have any old whitespace.)
Here's a more Make-style approach:
TARGETS = $(FILES:=_target)
all: $(TARGETS)
#echo done
.PHONY: $(TARGETS)
$(TARGETS): %_target : %
p $*
How to get the name of the makefile in the makefile?
Thanks.
Note:
I would need that because I would like my makefile to call itself, but the makefile is not called Makefile, so I'd like to write something like this:
target:
($MAKE) -f ($MAKEFILENAME) other_target
location = $(CURDIR)/$(word $(words $(MAKEFILE_LIST)),$(MAKEFILE_LIST))
WHERE_ART_THOU := $(location)
$(warning $(WHERE_ART_THOU))
I also believe this is GNU make-specific, but I'm not too sure.
(Should you have any questions, refer to amazingly written GNU make manual. But remember, that, just like Makefile, this manual should be read completely before putting the concepts into practice).
I couldn't figure out how it is done easily. As far as I understand, you'll have to do some manual job.
Later I will describe how it could be done and show scripts that introduce current_makefile variable. But I would like to stress an important concept at the first place.
You should understand that if we had some kind of variable current_makefile, that expands to the current makefile name, then it will have to change during the process of reading makefiles. That means that it should be used withinin "immediate" expansion context -- i.e. within commands that are executed during reading the makefile. Most commands, however, are executed after makefiles are read. Therefore, some commands will print the correct value smoothly, while in certain places, where "deferred" expansion is used, it will always expand to the root makefile name.
If you would want to use this variable within rule text, for example, you'll have to do tricks, because rule text always has deferred expansion. So, if your have the rule
rule:
echo In makefile $(current_makefile):
echo Making target $#
it will always print the name of the root makefile. Instead, to force immediate expansion, you will have to create another variable with makefile-specific name (i.e. names of such variables should be different in each makefile):
this_makefile_unique_name := $(current_makefile)
rule:
echo In makefile $(current_makefile):
echo Making target $#
or use eval:.
define make_rule
rule:
echo In makefile $(1):
echo Making target $$#
$(eval $(call make_rule,$(current_makefile)))
If you want to use the name of current makefile for debug purpose only, consider special debugging functions, like warning or info:.
$(warning We're in makefile $(current_makefile))
These functions use "immediate" expansion and will print the correct value.
How to define such a $(current_makefile)?
You have to manually maintain stack of makefile inclusions. When you include a makefile, its name is placed to the top of the stack; when you return from included makefile to the outer one, the topmost name is popped out of stack. This is achieved by inserting special calls to the beginning and the end of makefile:
# Beginning of makefile
$(eval $(makefile_names_push))
#... makefile text
$(warning $(current_makefile))
#...
$(eval $(makefile_names_pop))
#End of file
Now define the functions at the beginning of your root makefile.
lastword=$(word $(words $(1)),$(1))
define makefile_names_push
current_makefile := $$(CURDIR)/$$(call lastword,$$(MAKEFILE_LIST))
makefile_stack :=$$(makefile_stack) $$(current_makefile)
endef
define makefile_names_pop
makefile_stack := $$(filter-out $$(current_makefile),$$(makefile_stack))
current_makefile := $$(call lastword,$$(makefile_stack))
endef
If you're sure your make is new enough (version 3.81+), replace lastword call with builtin function:.
#inctead of $$(call lastword,$$(MAKEFILE_LIST))
$$(lastword $$(MAKEFILE_LIST))
Is it useful?
Totally useless. An only use that might be useful here is to make 100 makefiles that are symlinks to one makefile, the rules in these makefiles depending on their names. But it can be achieved within one makefile and foreach-eval technique described in the manual. So my post was a complete waste of time, though I had some fun :-)
This returns the name of the first Makefile called, i.e. the one at the bottom of the call stack:
MAKEFILE_JUSTNAME := $(firstword $(MAKEFILE_LIST))
MAKEFILE_COMPLETE := $(CURDIR)/$(MAKEFILE_JUSTNAME)
When used in non-cross-recursive situations (e.g. for makedepend), it is just the name of the current makefile.
I wanted to do something similar (for echoing the contents of the Makefile) for when I use Make for managing simple repetitive tasks. I came across this page and found it was exactly what I was after and really useful for my limited understanding of make.
My result after reading this page:
# Makefile - 'make' and 'make help' now echo the makefile.
help:
cat $(lastword $(MAKEFILE_LIST))
start:
sudo -u www /path/to/webapp/myhttpd restart
stop:
sudo kill `cat /path/to/webapp/data/httpd.pid`
A quick excursion to Google suggests this site has the answer.
G'day,
If you make a copy of your original makefile, say makefile_test, and then enter the command:
make -np -f makefile_test 2>&1 | tee output
That will evaluate the makefile and your make environment but not execute any of the commands. Looking through the output file for references to makefile_test will show you what is set in make's environment and where that value is being set.
N.B. This can generate a lot of info! And don't add the -d (debug) switch which will generate tons of additional output about make's decision process but minimal additional info about make's env.
HTH
The solutions here addresses 1) POSIX make with 2) Invoked, non included, makefile in 3) A Unix alike platform.
What the OP asked for:
target:
#pid=$$$$; \
while test `ps -ocomm= $$pid` != make; do \
pid=`ps -oppid= $$pid`; \
done; \
MAKEFILENAME=`ps -oargs= $$pid|sed 's/^.* -f *\([^ ]*\).*$$/\1/'`; \
test -z "$$MAKEFILENAME" -a -f Makefile && MAKEFILENAME=Makefile; \
test -z "$$MAKEFILENAME" -a -f makefile && MAKEFILENAME=makefile; \
export MAKEFILENAME; \
$(MAKE) -e -f $$MAKEFILENAME other_target
The targets depends on the makefile, kind of bloated:
TARGET1_MAKEFILENAME = target1_preamble
all: target1 target2...
target1: $(TARGET1_MAKEFILENAME) other_dependencies...
#test $(TARGET1_MAKEFILENAME) == target1_preamble && exit 0; \
built_instructions_for_target1;
target1_preamble:
#pid=$$$$; \
while test `ps -ocomm= $$pid` != make; do \
pid=`ps -oppid= $$pid`; \
done; \
MAKEFILENAME=`ps -oargs= $$pid|sed 's/^.* -f *\([^ ]*\).*$$/\1/'`; \
test -z "$$MAKEFILENAME" -a -f Makefile && MAKEFILENAME=Makefile; \
test -z "$$MAKEFILENAME" -a -f makefile && MAKEFILENAME=makefile; \
export MAKEFILENAME; \
$(MAKE) -e -f $$MAKEFILENAME target1;
Can be a bit simplified if make is invoked only for all targets.
MAKEFILENAME = invoked_makefile_placeholder
all: target1 target2...
target1: $(MAKEFILENAME) other_dependencies...
#test $(MAKEFILENAME) == invoked_makefile_placeholder && exit 0; \
built_instructions_for_target1;
invoked_makefile_placeholder:
#pid=$$$$; \
while test `ps -ocomm= $$pid` != make; do \
pid=`ps -oppid= $$pid`; \
done; \
MAKEFILENAME=`ps -oargs= $$pid|sed 's/^.* -f *\([^ ]*\).*$$/\1/'`; \
test -z "$$MAKEFILENAME" -a -f Makefile && MAKEFILENAME=Makefile; \
test -z "$$MAKEFILENAME" -a -f makefile && MAKEFILENAME=makefile; \
export MAKEFILENAME; \
$(MAKE) -e -f $$MAKEFILENAME
With the previous approach is trivial to implement a solution for included makefiles based in grep and a unique pattern contained in the makefile.
I never answer when I feel the question got a proper solution.