Running Time of Algorithm - If statements inside While loop - algorithm

I have this example
A = 2,1,8,4,3,6 // c1, n
n = 6 // c2, n
i = 1 // c3, n
H = 2 // c4, n
inv = 0 // c5, n
while H <= n // c6, n(n+1)/2-1
if A[i] > A[H] && !H = n // c7, n(n-1)/2
inv = inv + 1
H = H + 1
else if A[i] > A[H] && H = n // c10, n(n-1)/2
inv = inv + 1
i = i + 1
H = i + 1
else if A[i] < A[H] && !H = n // c14, n(n-1)/2
H = H + 1
else if A[i] < A[H] && H = n // c16, n(n-1)/2
i = i + 1
H = i + 1
print inv // c19, n
My question is how many n times will the code inside the if statements run in this example?

First, to understand this code, some assumptions must be made:
The array A is 1-indexed based, i.e. the first element is accessed as A[1].
The elements in A are unique - duplicate values are not allowed.
The expression !H = n means H is not equal to n
The loop condition is H <= n, so let's see when this could become false.
We can see that as long as H < n, an iteration will increment H with one (either in the first if block, or in the third).
When H reaches n, i is incremented (and only then), and H becomes i+1 (in the second or last if block).
At one point i will become n, and then H will be set to i+1 again, which is the only way H can get a value that is greater than n, at which point the loop stops.
So, in other words, this loop makes i go from 1 to n, and for each of those values of i, H runs from n+1 to n.
This really means the tuple (i,H) takes all possible pairs from the range 1...n where i < H. This number of pairs is thus n(n-1)/2 (also noted C(n,2)).
In the example n = 6, so the number of pairs (iterations) is 6(6-1)/2 = 15.
The following JavaScript implementation demonstrates that a loop counter indeed reaches the count of 15:
// Must add an element at index 0, since the
// original code assumes 1-based indexing
A = [null,2,1,8,4,3,6] // c1, n
n = 6 // c2, n
i = 1 // c3, n
H = 2 // c4, n
inv = 0 // c5, n
loopCounter = 0
while (H <= n) { // c6, n(n+1)/2-1
loopCounter++; // count it!!
if (A[i] > A[H] && H != n) { // c7, n(n-1)/2
inv = inv + 1
H = H + 1
} else if (A[i] > A[H] && H == n) { // c10, n(n-1)/2
inv = inv + 1
i = i + 1
H = i + 1
} else if (A[i] < A[H] && H != n) { // c14, n(n-1)/2
H = H + 1
} else if (A[i] < A[H] && H == n) { // c16, n(n-1)/2
i = i + 1
H = i + 1
}
}
console.log('inv = ', inv) // c19, n
console.log('iterations = ', loopCounter)

Related

Given two sequences, find the maximal overlap between ending of one and beginning of the other

I need to find an efficient (pseudo)code to solve the following problem:
Given two sequences of (not necessarily distinct) integers (a[1], a[2], ..., a[n]) and (b[1], b[2], ..., b[n]), find the maximum d such that a[n-d+1] == b[1], a[n-d+2] == b[2], ..., and a[n] == b[d].
This is not homework, I actually came up with this when trying to contract two tensors along as many dimensions as possible. I suspect an efficient algorithm exists (maybe O(n)?), but I cannot come up with something that is not O(n^2). The O(n^2) approach would be the obvious loop on d and then an inner loop on the items to check the required condition until hitting the maximum d. But I suspect something better than this is possible.
You can utilize the z algorithm, a linear time (O(n)) algorithm that:
Given a string S of length n, the Z Algorithm produces an array Z
where Z[i] is the length of the longest substring starting from S[i]
which is also a prefix of S
You need to concatenate your arrays (b+a) and run the algorithm on the resulting constructed array till the first i such that Z[i]+i == m+n.
For example, for a = [1, 2, 3, 6, 2, 3] & b = [2, 3, 6, 2, 1, 0], the concatenation would be [2, 3, 6, 2, 1, 0, 1, 2, 3, 6, 2, 3] which would yield Z[10] = 2 fulfilling Z[i] + i = 12 = m + n.
For O(n) time/space complexity, the trick is to evaluate hashes for each subsequence. Consider the array b:
[b1 b2 b3 ... bn]
Using Horner's method, you can evaluate all the possible hashes for each subsequence. Pick a base value B (bigger than any value in both of your arrays):
from b1 to b1 = b1 * B^1
from b1 to b2 = b1 * B^1 + b2 * B^2
from b1 to b3 = b1 * B^1 + b2 * B^2 + b3 * B^3
...
from b1 to bn = b1 * B^1 + b2 * B^2 + b3 * B^3 + ... + bn * B^n
Note that you can evaluate each sequence in O(1) time, using the result of the previous sequence, hence all the job costs O(n).
Now you have an array Hb = [h(b1), h(b2), ... , h(bn)], where Hb[i] is the hash from b1 until bi.
Do the same thing for the array a, but with a little trick:
from an to an = (an * B^1)
from an-1 to an = (an-1 * B^1) + (an * B^2)
from an-2 to an = (an-2 * B^1) + (an-1 * B^2) + (an * B^3)
...
from a1 to an = (a1 * B^1) + (a2 * B^2) + (a3 * B^3) + ... + (an * B^n)
You must note that, when you step from one sequence to another, you multiply the whole previous sequence by B and add the new value multiplied by B. For example:
from an to an = (an * B^1)
for the next sequence, multiply the previous by B: (an * B^1) * B = (an * B^2)
now sum with the new value multiplied by B: (an-1 * B^1) + (an * B^2)
hence:
from an-1 to an = (an-1 * B^1) + (an * B^2)
Now you have an array Ha = [h(an), h(an-1), ... , h(a1)], where Ha[i] is the hash from ai until an.
Now, you can compare Ha[d] == Hb[d] for all d values from n to 1, if they match, you have your answer.
ATTENTION: this is a hash method, the values can be large and you may have to use a fast exponentiation method and modular arithmetics, which may (hardly) give you collisions, making this method not totally safe. A good practice is to pick a base B as a really big prime number (at least bigger than the biggest value in your arrays). You should also be careful as the limits of the numbers may overflow at each step, so you'll have to use (modulo K) in each operation (where K can be a prime bigger than B).
This means that two different sequences might have the same hash, but two equal sequences will always have the same hash.
This can indeed be done in linear time, O(n), and O(n) extra space. I will assume the input arrays are character strings, but this is not essential.
A naive method would -- after matching k characters that are equal -- find a character that does not match, and go back k-1 units in a, reset the index in b, and then start the matching process from there. This clearly represents a O(n²) worst case.
To avoid this backtracking process, we can observe that going back is not useful if we have not encountered the b[0] character while scanning the last k-1 characters. If we did find that character, then backtracking to that position would only be useful, if in that k sized substring we had a periodic repetition.
For instance, if we look at substring "abcabc" somewhere in a, and b is "abcabd", and we find that the final character of b does not match, we must consider that a successful match might start at the second "a" in the substring, and we should move our current index in b back accordingly before continuing the comparison.
The idea is then to do some preprocessing based on string b to log back-references in b that are useful to check when there is a mismatch. So for instance, if b is "acaacaacd", we could identify these 0-based backreferences (put below each character):
index: 0 1 2 3 4 5 6 7 8
b: a c a a c a a c d
ref: 0 0 0 1 0 0 1 0 5
For example, if we have a equal to "acaacaaca" the first mismatch happens on the final character. The above information then tells the algorithm to go back in b to index 5, since "acaac" is common. And then with only changing the current index in b we can continue the matching at the current index of a. In this example the match of the final character then succeeds.
With this we can optimise the search and make sure that the index in a can always progress forwards.
Here is an implementation of that idea in JavaScript, using the most basic syntax of that language only:
function overlapCount(a, b) {
// Deal with cases where the strings differ in length
let startA = 0;
if (a.length > b.length) startA = a.length - b.length;
let endB = b.length;
if (a.length < b.length) endB = a.length;
// Create a back-reference for each index
// that should be followed in case of a mismatch.
// We only need B to make these references:
let map = Array(endB);
let k = 0; // Index that lags behind j
map[0] = 0;
for (let j = 1; j < endB; j++) {
if (b[j] == b[k]) {
map[j] = map[k]; // skip over the same character (optional optimisation)
} else {
map[j] = k;
}
while (k > 0 && b[j] != b[k]) k = map[k];
if (b[j] == b[k]) k++;
}
// Phase 2: use these references while iterating over A
k = 0;
for (let i = startA; i < a.length; i++) {
while (k > 0 && a[i] != b[k]) k = map[k];
if (a[i] == b[k]) k++;
}
return k;
}
console.log(overlapCount("ababaaaabaabab", "abaababaaz")); // 7
Although there are nested while loops, these do not have more iterations in total than n. This is because the value of k strictly decreases in the while body, and cannot become negative. This can only happen when k++ was executed that many times to give enough room for such decreases. So all in all, there cannot be more executions of the while body than there are k++ executions, and the latter is clearly O(n).
To complete, here you can find the same code as above, but in an interactive snippet: you can input your own strings and see the result interactively:
function overlapCount(a, b) {
// Deal with cases where the strings differ in length
let startA = 0;
if (a.length > b.length) startA = a.length - b.length;
let endB = b.length;
if (a.length < b.length) endB = a.length;
// Create a back-reference for each index
// that should be followed in case of a mismatch.
// We only need B to make these references:
let map = Array(endB);
let k = 0; // Index that lags behind j
map[0] = 0;
for (let j = 1; j < endB; j++) {
if (b[j] == b[k]) {
map[j] = map[k]; // skip over the same character (optional optimisation)
} else {
map[j] = k;
}
while (k > 0 && b[j] != b[k]) k = map[k];
if (b[j] == b[k]) k++;
}
// Phase 2: use these references while iterating over A
k = 0;
for (let i = startA; i < a.length; i++) {
while (k > 0 && a[i] != b[k]) k = map[k];
if (a[i] == b[k]) k++;
}
return k;
}
// I/O handling
let [inputA, inputB] = document.querySelectorAll("input");
let output = document.querySelector("pre");
function refresh() {
let a = inputA.value;
let b = inputB.value;
let count = overlapCount(a, b);
let padding = a.length - count;
// Apply some HTML formatting to highlight the overlap:
if (count) {
a = a.slice(0, -count) + "<b>" + a.slice(-count) + "</b>";
b = "<b>" + b.slice(0, count) + "</b>" + b.slice(count);
}
output.innerHTML = count + " overlapping characters:\n" +
a + "\n" +
" ".repeat(padding) + b;
}
document.addEventListener("input", refresh);
refresh();
body { font-family: monospace }
b { background:yellow }
input { width: 90% }
a: <input value="acacaacaa"><br>
b: <input value="acaacaacd"><br>
<pre></pre>

Using matrices to find the number of different ways to write n as the sum of 1, 3, and 4?

This is a question given in this presentation. Dynamic Programming
now i have implemented the algorithm using recursion and it works fine for small values. But when n is greater than 30 it becomes really slow.The presentation mentions that for large values of n one should consider something similar to
the matrix form of Fibonacci numbers .I am having trouble undestanding how to use the matrix form of Fibonacci numbers to come up with a solution.Can some one give me some hints or pseudocode
Thanks
Yes, you can use the technique from fast Fibonacci implementations to solve this problem in time O(log n)! Here's how to do it.
Let's go with your definition from the problem statement that 1 + 3 is counted the same as 3 + 1. Then you have the following recurrence relation:
A(0) = 1
A(1) = 1
A(2) = 1
A(3) = 2
A(k+4) = A(k) + A(k+1) + A(k+3)
The matrix trick here is to notice that
| 1 0 1 1 | |A( k )| |A(k) + A(k-2) + A(k-3)| |A(k+1)|
| 1 0 0 0 | |A(k-1)| | A( k ) | |A( k )|
| 0 1 0 0 | |A(k-2)| = | A(k-1) | = |A(k-1)|
| 0 0 1 0 | |A(k-3)| | A(k-2) | = |A(k-2)|
In other words, multiplying a vector of the last four values in the series produces a vector with those values shifted forward by one step.
Let's call that matrix there M. Then notice that
|A( k )| |A(k+2)|
|A(k-1)| |A(k+1)|
M^2 |A(k-2)| = |A( k )|
|A(k-3)| |A(k-1)|
In other words, multiplying by the square of this matrix shifts the series down two steps. More generally:
|A( k )| | A(k+n) |
|A(k-1)| |A(k-1 + n)|
M^n |A(k-2)| = |A(k-2 + n)|
|A(k-3)| |A(k-3 + n)|
So multiplying by Mn shifts the series down n steps. Now, if we want to know the value of A(n+3), we can just compute
|A(3)| |A(n+3)|
|A(2)| |A(n+2)|
M^n |A(1)| = |A(n+1)|
|A(0)| |A(n+2)|
and read off the top entry of the vector! This can be done in time O(log n) by using exponentiation by squaring. Here's some code that does just that. This uses a matrix library I cobbled together a while back:
#include "Matrix.hh"
#include <cstdint>
#include <iomanip>
#include <iostream>
#include <algorithm>
using namespace std;
/* Naive implementations of A. */
uint64_t naiveA(int n) {
if (n == 0) return 1;
if (n == 1) return 1;
if (n == 2) return 1;
if (n == 3) return 2;
return naiveA(n-1) + naiveA(n-3) + naiveA(n-4);
}
/* Constructs and returns the giant matrix. */
Matrix<4, 4, uint64_t> M() {
Matrix<4, 4, uint64_t> result;
fill(result.begin(), result.end(), uint64_t(0));
result[0][0] = 1;
result[0][2] = 1;
result[0][3] = 1;
result[1][0] = 1;
result[2][1] = 1;
result[3][2] = 1;
return result;
}
/* Constructs the initial vector that we multiply the matrix by. */
Vector<4, uint64_t> initVec() {
Vector<4, uint64_t> result;
result[0] = 2;
result[1] = 1;
result[2] = 1;
result[3] = 1;
return result;
}
/* O(log n) time for raising a matrix to a power. */
Matrix<4, 4, uint64_t> fastPower(const Matrix<4, 4, uint64_t>& m, int n) {
if (n == 0) return Identity<4, uint64_t>();
auto half = fastPower(m, n / 2);
if (n % 2 == 0) return half * half;
else return half * half * m;
}
/* Fast implementation of A(n) using matrix exponentiation. */
uint64_t fastA(int n) {
if (n == 0) return 1;
if (n == 1) return 1;
if (n == 2) return 1;
if (n == 3) return 2;
auto result = fastPower(M(), n - 3) * initVec();
return result[0];
}
/* Some simple test code showing this in action! */
int main() {
for (int i = 0; i < 25; i++) {
cout << setw(2) << i << ": " << naiveA(i) << ", " << fastA(i) << endl;
}
}
Now, how would this change if 3 + 1 and 1 + 3 were treated as equivalent? This means that we can think about solving this problem in the following way:
Let A(n) be the number of ways to write n as a sum of 1s, 3s, and 4s.
Let B(n) be the number of ways to write n as a sum of 1s and 3s.
Let C(n) be the number of ways to write n as a sum of 1s.
We then have the following:
A(n) = B(n) for all n ≤ 3, since for numbers in that range the only options are to use 1s and 3s.
A(n + 4) = A(n) + B(n + 4), since your options are either (1) use a 4 or (2) not use a 4, leaving the remaining sum to use 1s and 3s.
B(n) = C(n) for all n ≤ 2, since for numbers in that range the only options are to use 1s.
B(n + 3) = B(n) + C(n + 3), sine your options are either (1) use a 3 or (2) not use a 3, leaving the remaining sum to use only 1s.
C(0) = 1, since there's only one way to write 0 as a sum of no numbers.
C(n+1) = C(n), since the only way to write something with 1s is to pull out a 1 and write the remaining number as a sum of 1s.
That's a lot to take in, but do notice the following: we ultimately care about A(n), and to evaluate it, we only need to know the values of A(n), A(n-1), A(n-2), A(n-3), B(n), B(n-1), B(n-2), B(n-3), C(n), C(n-1), C(n-2), and C(n-3).
Let's imagine, for example, that we know these twelve values for some fixed value of n. We can learn those twelve values for the next value of n as follows:
C(n+1) = C(n)
B(n+1) = B(n-2) + C(n+1) = B(n-2) + C(n)
A(n+1) = A(n-3) + B(n+1) = A(n-3) + B(n-2) + C(n)
And the remaining values then shift down.
We can formulate this as a giant matrix equation:
A( n ) A(n-1) A(n-2) A(n-3) B( n ) B(n-1) B(n-2) C( n )
| 0 0 0 1 0 0 1 1 | |A( n )| = |A(n+1)|
| 1 0 0 0 0 0 0 0 | |A(n-1)| = |A( n )|
| 0 1 0 0 0 0 0 0 | |A(n-2)| = |A(n-1)|
| 0 0 1 0 0 0 0 0 | |A(n-3)| = |A(n-2)|
| 0 0 0 0 0 0 1 1 | |B( n )| = |B(n+1)|
| 0 0 0 0 1 0 0 0 | |B(n-1)| = |B( n )|
| 0 0 0 0 0 1 0 0 | |B(n-2)| = |B(n-1)|
| 0 0 0 0 0 0 0 1 | |C( n )| = |C(n+1)|
Let's call this gigantic matrix here M. Then if we compute
|2| // A(3) = 2, since 3 = 3 or 3 = 1 + 1 + 1
|1| // A(2) = 1, since 2 = 1 + 1
|1| // A(1) = 1, since 1 = 1
M^n |1| // A(0) = 1, since 0 = (empty sum)
|2| // B(3) = 2, since 3 = 3 or 3 = 1 + 1 + 1
|1| // B(2) = 1, since 2 = 1 + 1
|1| // B(1) = 1, since 1 = 1
|1| // C(3) = 1, since 3 = 1 + 1 + 1
We'll get back a vector whose first entry is A(n+3), the number of ways to write n+3 as a sum of 1's, 3's, and 4's. (I've actually coded this up to check it - it works!) You can then use the technique for computing Fibonacci numbers using a matrix to a power efficiently that you saw with Fibonacci numbers to solve this in time O(log n).
Here's some code doing that:
#include "Matrix.hh"
#include <cstdint>
#include <iomanip>
#include <iostream>
#include <algorithm>
using namespace std;
/* Naive implementations of A, B, and C. */
uint64_t naiveC(int n) {
return 1;
}
uint64_t naiveB(int n) {
return (n < 3? 0 : naiveB(n-3)) + naiveC(n);
}
uint64_t naiveA(int n) {
return (n < 4? 0 : naiveA(n-4)) + naiveB(n);
}
/* Constructs and returns the giant matrix. */
Matrix<8, 8, uint64_t> M() {
Matrix<8, 8, uint64_t> result;
fill(result.begin(), result.end(), uint64_t(0));
result[0][3] = 1;
result[0][6] = 1;
result[0][7] = 1;
result[1][0] = 1;
result[2][1] = 1;
result[3][2] = 1;
result[4][6] = 1;
result[4][7] = 1;
result[5][4] = 1;
result[6][5] = 1;
result[7][7] = 1;
return result;
}
/* Constructs the initial vector that we multiply the matrix by. */
Vector<8, uint64_t> initVec() {
Vector<8, uint64_t> result;
result[0] = 2;
result[1] = 1;
result[2] = 1;
result[3] = 1;
result[4] = 2;
result[5] = 1;
result[6] = 1;
result[7] = 1;
return result;
}
/* O(log n) time for raising a matrix to a power. */
Matrix<8, 8, uint64_t> fastPower(const Matrix<8, 8, uint64_t>& m, int n) {
if (n == 0) return Identity<8, uint64_t>();
auto half = fastPower(m, n / 2);
if (n % 2 == 0) return half * half;
else return half * half * m;
}
/* Fast implementation of A(n) using matrix exponentiation. */
uint64_t fastA(int n) {
if (n == 0) return 1;
if (n == 1) return 1;
if (n == 2) return 1;
if (n == 3) return 2;
auto result = fastPower(M(), n - 3) * initVec();
return result[0];
}
/* Some simple test code showing this in action! */
int main() {
for (int i = 0; i < 25; i++) {
cout << setw(2) << i << ": " << naiveA(i) << ", " << fastA(i) << endl;
}
}
This is a very interesting sequence. It is almost but not quite the order-4 Fibonacci (a.k.a. Tetranacci) numbers. Having extracted the doubling formulas for Tetranacci from its companion matrix, I could not resist doing it again for this very similar recurrence relation.
Before we get into the actual code, some definitions and a short derivation of the formulas used are in order. Define an integer sequence A such that:
A(n) := A(n-1) + A(n-3) + A(n-4)
with initial values A(0), A(1), A(2), A(3) := 1, 1, 1, 2.
For n >= 0, this is the number of integer compositions of n into parts from the set {1, 3, 4}. This is the sequence that we ultimately wish to compute.
For convenience, define a sequence T such that:
T(n) := T(n-1) + T(n-3) + T(n-4)
with initial values T(0), T(1), T(2), T(3) := 0, 0, 0, 1.
Note that A(n) and T(n) are simply shifts of each other. More precisely, A(n) = T(n+3) for all integers n. Accordingly, as elaborated by another answer, the companion matrix for both sequences is:
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
[1 1 0 1]
Call this matrix C, and let:
a, b, c, d := T(n), T(n+1), T(n+2), T(n+3)
a', b', c', d' := T(2n), T(2n+1), T(2n+2), T(2n+3)
By induction, it can easily be shown that:
[0 1 0 0]^n = [d-c-a c-b b-a a]
[0 0 1 0] [ a d-c c-b b]
[0 0 0 1] [ b b+a d-c c]
[1 1 0 1] [ c c+b b+a d]
As seen above, for any n, C^n can be fully determined from its rightmost column alone. Furthermore, multiplying C^n with its rightmost column produces the rightmost column of C^(2n):
[d-c-a c-b b-a a][a] = [a'] = [a(2d - 2c - a) + b(2c - b)]
[ a d-c c-b b][b] [b'] [ a^2 + c^2 + 2b(d - c)]
[ b b+a d-c c][c] [c'] [ b(2a + b) + c(2d - c)]
[ c c+b b+a d][d] [d'] [ b^2 + d^2 + 2c(a + b)]
Thus, if we wish to compute C^n for some n by repeated squaring, we need only perform matrix-vector multiplication per step instead of the full matrix-matrix multiplication.
Now, the implementation, in Python:
# O(n) integer additions or subtractions
def A_linearly(n):
a, b, c, d = 0, 0, 0, 1 # T(0), T(1), T(2), T(3)
if n >= 0:
for _ in range(+n):
a, b, c, d = b, c, d, a + b + d
else: # n < 0
for _ in range(-n):
a, b, c, d = d - c - a, a, b, c
return d # because A(n) = T(n+3)
# O(log n) integer multiplications, additions, subtractions.
def A_by_doubling(n):
n += 3 # because A(n) = T(n+3)
if n >= 0:
a, b, c, d = 0, 0, 0, 1 # T(0), T(1), T(2), T(3)
else: # n < 0
a, b, c, d = 1, 0, 0, 0 # T(-1), T(0), T(1), T(2)
# Unroll the final iteration to avoid computing extraneous values
for i in reversed(range(1, abs(n).bit_length())):
w = a*(2*(d - c) - a) + b*(2*c - b)
x = a*a + c*c + 2*b*(d - c)
y = b*(2*a + b) + c*(2*d - c)
z = b*b + d*d + 2*c*(a + b)
if (n >> i) & 1 == 0:
a, b, c, d = w, x, y, z
else: # (n >> i) & 1 == 1
a, b, c, d = x, y, z, w + x + z
if n & 1 == 0:
return a*(2*(d - c) - a) + b*(2*c - b) # w
else: # n & 1 == 1
return a*a + c*c + 2*b*(d - c) # x
print(all(A_linearly(n) == A_by_doubling(n) for n in range(-1000, 1001)))
Because it was rather trivial to code, the sequence is extended to negative n in the usual way. Also provided is a simple linear implementation to serve as a point of reference.
For n large enough, the logarithmic implementation above is 10-20x faster than directly exponentiating the companion matrix with numpy, by a simple (i.e. not rigorous, and likely flawed) timing comparison. And by my estimate, it would still take ~100 years to compute A(10**12)! Even though the algorithm above has room for improvement, that number is simply too large. On the other hand, computing A(10**12) mod M for some M is much more attainable.
A direct relation to Lucas and Fibonacci numbers
It turns out that T(n) is even closer to the Fibonacci and Lucas numbers than it is to Tetranacci. To see this, note that the characteristic polynomial for T(n) is x^4 - x^3 - x - 1 = 0 which factors into (x^2 - x - 1)(x^2 + 1) = 0. The first factor is the characteristic polynomial for Fibonacci & Lucas! The 4 roots of (x^2 - x - 1)(x^2 + 1) = 0 are the two Fibonacci roots, phi and psi = 1 - phi, and i and -i--the two square roots of -1.
The closed-form expression or "Binet" formula for T(n) will have the general form:
T(n) = U(n) + V(n)
U(n) = p*(phi^n) + q*(psi^n)
V(n) = r*(i^n) + s*(-i)^n
for some constant coefficients p, q, r, s.
Using the initial values for T(n), solving for the coefficients, applying some algebra, and noting that the Lucas numbers have the closed-form expression: L(n) = phi^n + psi^n, we can derive the following relations:
L(n+1) - L(n) L(n-1) F(n) + F(n-2)
U(n) = ------------- = -------- = ------------
5 5 5
where L(n) is the n'th Lucas number with L(0), L(1) := 2, 1 and F(n) is the n'th Fibonacci number with F(0), F(1) := 0, 1. And we also have:
V(n) = 1 / 5 if n = 0 (mod 4)
| -2 / 5 if n = 1 (mod 4)
| -1 / 5 if n = 2 (mod 4)
| 2 / 5 if n = 3 (mod 4)
Which is ugly, but trivial to code. Note that the numerator of V(n) can also be succinctly expressed as cos(n*pi/2) - 2sin(n*pi/2) or (3-(-1)^n) / 2 * (-1)^(n(n+1)/2), but we use the piece-wise definition for clarity.
Here's an even nicer, more direct identity:
T(n) + T(n+2) = F(n)
Essentially, we can compute T(n) (and therefore A(n)) by using Fibonacci & Lucas numbers. Theoretically, this should be much more efficient than the Tetranacci-like approach.
It is known that the Lucas numbers can computed more efficiently than Fibonacci, therefore we will compute A(n) from the Lucas numbers. The most efficient, simple Lucas number algorithm I know of is one by L.F. Johnson (see his 2010 paper: Middle and Ripple, fast simple O(lg n) algorithms for Lucas Numbers). Once we have a Lucas algorithm, we use the identity: T(n) = L(n - 1) / 5 + V(n) to compute A(n).
# O(log n) integer multiplications, additions, subtractions
def A_by_lucas(n):
n += 3 # because A(n) = T(n+3)
offset = (+1, -2, -1, +2)[n % 4]
L = lf_johnson_2010_middle(n - 1)
return (L + offset) // 5
def lf_johnson_2010_middle(n):
"-> n'th Lucas number. See [L.F. Johnson 2010a]."
#: The following Lucas identities are used:
#:
#: L(2n) = L(n)^2 - 2*(-1)^n
#: L(2n+1) = L(2n+2) - L(2n)
#: L(2n+2) = L(n+1)^2 - 2*(-1)^(n+1)
#:
#: The first and last identities are equivalent.
#: For the unrolled iteration, the following is also used:
#:
#: L(2n+1) = L(n)*L(n+1) - (-1)^n
#:
#: Since this approach uses only square multiplications per loop,
#: It turns out to be slightly faster than standard Lucas doubling,
#: which uses 1 square and 1 regular multiplication.
if n >= 0:
a, b, sign = 2, 1, +1 # L(0), L(1), (-1)^0
else: # n < 0
a, b, sign = -1, 2, -1 # L(-1), L(0), (-1)^(-1)
# unroll the last iteration to avoid computing unnecessary values
for i in reversed(range(1, abs(n).bit_length())):
a = a*a - 2*sign # L(2k)
c = b*b + 2*sign # L(2k+2)
b = c - a # L(2k+1)
sign = +1
if (n >> i) & 1:
a, b = b, c
sign = -1
if n & 1:
return a*b - sign
else:
return a*a - 2*sign
You may verify that A_by_lucas produces the same results as the previous A_by_doubling function, but is roughly 5x faster. Still not fast enough to compute A(10**12) in any reasonable amount of time!
You can easily improve your current recursion implementation by adding memoization which makes the solution fast again. C# code:
// Dictionary to store computed values
private static Dictionary<int, long> s_Solutions = new Dictionary<int, long>();
private static long Count134(int value) {
if (value == 0)
return 1;
else if (value <= 0)
return 0;
long result;
// Improvement: Do we have the value computed?
if (s_Solutions.TryGetValue(value, out result))
return result;
result = Count134(value - 4) +
Count134(value - 3) +
Count134(value - 1);
// Improvement: Store the value computed for future use
s_Solutions.Add(value, result);
return result;
}
And so you can easily call
Console.Write(Count134(500));
The outcome (which takes about 2 milliseconds) is
3350159379832610737

How to find ith item in zigzag ordering?

A question last week defined the zig zag ordering on an n by m matrix and asked how to list the elements in that order.
My question is how to quickly find the ith item in the zigzag ordering? That is, without traversing the matrix (for large n and m that's much too slow).
For example with n=m=8 as in the picture and (x, y) describing (row, column)
f(0) = (0, 0)
f(1) = (0, 1)
f(2) = (1, 0)
f(3) = (2, 0)
f(4) = (1, 1)
...
f(63) = (7, 7)
Specific question: what is the ten billionth (1e10) item in the zigzag ordering of a million by million matrix?
Let's assume that the desired element is located in the upper half of the matrix. The length of the diagonals are 1, 2, 3 ..., n.
Let's find the desired diagonal. It satisfies the following property:
sum(1, 2 ..., k) >= pos but sum(1, 2, ..., k - 1) < pos. The sum of 1, 2, ..., k is k * (k + 1) / 2. So we just need to find the smallest integer k such that k * (k + 1) / 2 >= pos. We can either use a binary search or solve this quadratic inequality explicitly.
When we know the k, we just need to find the pos - (k - 1) * k / 2 element of this diagonal. We know where it starts and where we should move(up or down, depending on the parity of k), so we can find the desired cell using a simple formula.
This solution has an O(1) or an O(log n) time complexity(it depends on whether we use a binary search or solve the inequation explicitly in step 2).
If the desired element is located in the lower half of the matrix, we can solve this problem for a pos' = n * n - pos + 1 and then use symmetry to get the solution to the original problem.
I used 1-based indexing in this solution, using 0-based indexing might require adding +1 or -1 somewhere, but the idea of the solution is the same.
If the matrix is rectangular, not square, we need to consider the fact the length of diagonals look this way: 1, 2, 3, ..., m, m, m, .., m, m - 1, ..., 1(if m <= n) when we search for the k, so the sum becomes something like k * (k + 1) / 2 if k <= m and k * (k + 1) / 2 + m * (k - m) otherwise.
import math, random
def naive(n, m, ord, swap = False):
dx = 1
dy = -1
if swap:
dx, dy = dy, dx
cur = [0, 0]
for i in range(ord):
cur[0] += dy
cur[1] += dx
if cur[0] < 0 or cur[1] < 0 or cur[0] >= n or cur[1] >= m:
dx, dy = dy, dx
if cur[0] >= n:
cur[0] = n - 1
cur[1] += 2
if cur[1] >= m:
cur[1] = m - 1
cur[0] += 2
if cur[0] < 0: cur[0] = 0
if cur[1] < 0: cur[1] = 0
return cur
def fast(n, m, ord, swap = False):
if n < m:
x, y = fast(m, n, ord, not swap)
return [y, x]
alt = n * m - ord - 1
if alt < ord:
x, y = fast(n, m, alt, swap if (n + m) % 2 == 0 else not swap)
return [n - x - 1, m - y - 1]
if ord < (m * (m + 1) / 2):
diag = int((-1 + math.sqrt(1 + 8 * ord)) / 2)
parity = (diag + (0 if swap else 1)) % 2
within = ord - (diag * (diag + 1) / 2)
if parity: return [diag - within, within]
else: return [within, diag - within]
else:
ord -= (m * (m + 1) / 2)
diag = int(ord / m)
within = ord - diag * m
diag += m
parity = (diag + (0 if swap else 1)) % 2
if not parity:
within = m - within - 1
return [diag - within, within]
if __name__ == "__main__":
for i in range(1000):
n = random.randint(3, 100)
m = random.randint(3, 100)
ord = random.randint(0, n * m - 1)
swap = random.randint(0, 99) < 50
na = naive(n, m, ord, swap)
fa = fast(n, m, ord, swap)
assert na == fa, "(%d, %d, %d, %s) ==> (%s), (%s)" % (n, m, ord, swap, na, fa)
print fast(1000000, 1000000, 9999999999, False)
print fast(1000000, 1000000, 10000000000, False)
So the 10-billionth element (the one with ordinal 9999999999), and the 10-billion-first element (the one with ordinal 10^10) are:
[20331, 121089]
[20330, 121090]
An analytical solution
In the general case, your matrix will be divided in 3 areas:
an initial triangle t1
a skewed part mid where diagonals have a constant length
a final triangle t2
Let's call p the index of your diagonal run.
We want to define two functions x(p) and y(p) that give you the column and row of the pth cell.
Initial triangle
Let's look at the initial triangular part t1, where each new diagonal is one unit longer than the preceding.
Now let's call d the index of the diagonal that holds the cell, and
Sp = sum(di) for i in [0..p-1]
We have p = Sp + k, with 0 <=k <= d and
Sp = d(d+1)/2
if we solve for d, it brings
d²+d-2p = 0, a quadratic equation where we retain only the positive root:
d = (-1+sqrt(1+8*p))/2
Now we want the highest integer value closest to d, which is floor(d).
In the end, we have
p = d + k with d = floor((-1+sqrt(1+8*p))/2) and k = p - d(d+1)/2
Let's call
o(d) the function that equals 1 if d is odd and 0 otherwise, and
e(d) the function that equals 1 if d is even and 0 otherwise.
We can compute x(p) and y(p) like so:
d = floor((-1+sqrt(1+8*p))/2)
k = p - d(d+1)/2
o = d % 2
e = 1 - o
x = e*d + (o-e)*k
y = o*d + (e-o)*k
even and odd functions are used to try to salvage some clarity, but you can replace
e(p) with 1 - o(p) and have slightly more efficient but less symetric formulaes for x and y.
Middle part
let's consider the smallest matrix dimension s, i.e. s = min (m,n).
The previous formulaes hold until x or y (whichever comes first) reaches the value s.
The upper bound of p such as x(i) <= s and y(i) <= s for all i in [0..p]
(i.e. the cell indexed by p is inside the initial triangle t1) is given by
pt1 = s(s+1)/2.
For p >= pt1, diagonal length remains equal to s until we reach the second triangle t2.
when inside mid, we have:
p = s(s+1)/2 + ds + k with k in [0..s[.
which yields:
d = floor ((p - s(s+1)/2)/s)
k = p - ds
We can then use the same even/odd trick to compute x(p) and y(p):
p -= s(s+1)/2
d = floor (p / s)
k = p - d*s
o = (d+s) % 2
e = 1 - o
x = o*s + (e-o)*k
y = e*s + (o-e)*k
if (n > m)
x += d+e
y -= e
else
y += d+o
x -= o
Final triangle
Using symetry, we can calculate pt2 = m*n - s(s+1)/2
We now face nearly the same problem as for t1, except that the diagonal may run in the same direction as for t1 or in the reverse direction (if n+m is odd).
Using symetry tricks, we can compute x(p) and y(p) like so:
p = n*m -1 - p
d = floor((-1+sqrt(1+8*p))/2)
k = p - d*(d+1)/2
o = (d+m+n) % 2
e = 1 - $o;
x = n-1 - (o*d + (e-o)*k)
y = m-1 - (e*d + (o-e)*k)
Putting all together
Here is a sample c++ implementation.
I used 64 bits integers out of sheer lazyness. Most could be replaced by 32 bits values.
The computations could be made more effective by precomputing a few more coefficients.
A good part of the code could be factorized, but I doubt it is worth the effort.
Since this is just a quick and dirty proof of concept, I did not optimize it.
#include <cstdio> // printf
#include <algorithm> // min
using namespace std;
typedef long long tCoord;
void panic(const char * msg)
{
printf("PANIC: %s\n", msg);
exit(-1);
}
struct tPoint {
tCoord x, y;
tPoint(tCoord x = 0, tCoord y = 0) : x(x), y(y) {}
tPoint operator+(const tPoint & p) const { return{ x + p.x, y + p.y }; }
bool operator!=(const tPoint & p) const { return x != p.x || y != p.y; }
};
class tMatrix {
tCoord n, m; // dimensions
tCoord s; // smallest dimension
tCoord pt1, pt2; // t1 / mid / t2 limits for p
public:
tMatrix(tCoord n, tCoord m) : n(n), m(m)
{
s = min(n, m);
pt1 = (s*(s + 1)) / 2;
pt2 = n*m - pt1;
}
tPoint diagonal_cell(tCoord p)
{
tCoord x, y;
if (p < pt1) // inside t1
{
tCoord d = (tCoord)floor((-1 + sqrt(1 + 8 * p)) / 2);
tCoord k = p - (d*(d + 1)) / 2;
tCoord o = d % 2;
tCoord e = 1 - o;
x = o*d + (e - o)*k;
y = e*d + (o - e)*k;
}
else if (p < pt2) // inside mid
{
p -= pt1;
tCoord d = (tCoord)floor(p / s);
tCoord k = p - d*s;
tCoord o = (d + s) % 2;
tCoord e = 1 - o;
x = o*s + (e - o)*k;
y = e*s + (o - e)*k;
if (m > n) // vertical matrix
{
x -= o;
y += d + o;
}
else // horizontal matrix
{
x += d + e;
y -= e;
}
}
else // inside t2
{
p = n * m - 1 - p;
tCoord d = (tCoord)floor((-1 + sqrt(1 + 8 * p)) / 2);
tCoord k = p - (d*(d + 1)) / 2;
tCoord o = (d + m + n) % 2;
tCoord e = 1 - o;
x = n - 1 - (o*d + (e - o)*k);
y = m - 1 - (e*d + (o - e)*k);
}
return{ x, y };
}
void check(void)
{
tPoint move[4] = { { 1, 0 }, { -1, 1 }, { 1, -1 }, { 0, 1 } };
tPoint pos;
tCoord dir = 0;
for (tCoord p = 0; p != n * m ; p++)
{
tPoint dc = diagonal_cell(p);
if (pos != dc) panic("zot!");
pos = pos + move[dir];
if (dir == 0)
{
if (pos.y == m - 1) dir = 2;
else dir = 1;
}
else if (dir == 3)
{
if (pos.x == n - 1) dir = 1;
else dir = 2;
}
else if (dir == 1)
{
if (pos.y == m - 1) dir = 0;
else if (pos.x == 0) dir = 3;
}
else
{
if (pos.x == n - 1) dir = 3;
else if (pos.y == 0) dir = 0;
}
}
}
};
void main(void)
{
const tPoint dim[] = { { 10, 10 }, { 11, 11 }, { 10, 30 }, { 30, 10 }, { 10, 31 }, { 31, 10 }, { 11, 31 }, { 31, 11 } };
for (tPoint d : dim)
{
printf("Checking a %lldx%lld matrix...", d.x, d.y);
tMatrix(d.x, d.y).check();
printf("done\n");
}
tCoord p = 10000000000;
tMatrix matrix(1000000, 1000000);
tPoint cell = matrix.diagonal_cell(p);
printf("Coordinates of %lldth cell: (%lld,%lld)\n", p, cell.x, cell.y);
}
Results are checked against "manual" sweep of the matrix.
This "manual" sweep is a ugly hack that won't work for a one-row or one-column matrix, though diagonal_cell() does work on any matrix (the "diagonal" sweep becomes linear in that case).
The coordinates found for the 10.000.000.000th cell of a 1.000.000x1.000.000 matrix seem consistent, since the diagonal d on which the cell stands is about sqrt(2*1e10), approx. 141421, and the sum of cell coordinates is about equal to d (121090+20330 = 141420). Besides, it is also what the two other posters report.
I would say there is a good chance this lump of obfuscated code actually produces an O(1) solution to your problem.

positional sum of 2 numbers

How to sum 2 numbers digit by digit with pseudo code?
Note: You don't know the length of the numbers - if it has tens, hundreds, thousands...
Units should be add to units, tens to tens, hundreds to hundreds.....
If there is a value >= 10 in adding the units you need to put the value of that ten with "the tens"....
I tried
Start
Do
Add digit(x) in A to Sum(x)
Add digit(x) in B to Sum(x)
If Sum(x) > 9, then (?????)
digit(x) = digit(x+1)
while digit(x) in A and digit(x) in B is > 0
How to show the result?
I am lost with that.....
Please help!
Try this,
n = minDigit(a, b) where a and b are the numbers.
let sum be a number.
m = maxDigit(a,b)
allocate maxDigit(a,b) + 1 memory for sum
carry = 0;
for (i = 1 to n)
temp = a[i] + b[i] + carry
// reset carry
carry = 0
if (temp > 10)
carry = 1
temp = temp - 10;
sum[i] = temp
// one last step to get the leftover carry
if (digits(a) == digits(b)
sum[n + 1] = carry
return
if (digits(a) > digits(b)
toCopy = a
else
toCopy = b
for (i = n to m)
temp = toCopy[i] + carry
// reset carry
carry = 0
if (temp > 10)
carry = 1
temp = temp - 10;
sum[i] = temp
Let me know if it helps
A and B are the integers you want to sum.
Note that the while loop ends when all the three integers are equal to zero.
carry = 0
sum = 0
d = 1
while (A > 0 or B > 0 or carry > 0)
tmp = carry + A mod 10 + B mod 10
sum = sum + (tmp mod 10) * d
carry = tmp / 10
d = d * 10
A = A / 10
B = B / 10

Caculating total combinations

I don't know how to go about this programming problem.
Given two integers n and m, how many numbers exist such that all numbers have all digits from 0 to n-1 and the difference between two adjacent digits is exactly 1 and the number of digits in the number is atmost 'm'.
What is the best way to solve this problem? Is there a direct mathematical formula?
Edit: The number cannot start with 0.
Example:
for n = 3 and m = 6 there are 18 such numbers (210, 2101, 21012, 210121 ... etc)
Update (some people have encountered an ambiguity):
All digits from 0 to n-1 must be present.
This Python code computes the answer in O(nm) by keeping track of the numbers ending with a particular digit.
Different arrays (A,B,C,D) are used to track numbers that have hit the maximum or minimum of the range.
n=3
m=6
A=[1]*n # Number of ways of being at digit i and never being to min or max
B=[0]*n # number of ways with minimum being observed
C=[0]*n # number of ways with maximum being observed
D=[0]*n # number of ways with both being observed
A[0]=0 # Cannot start with 0
A[n-1]=0 # Have seen max so this 1 moves from A to C
C[n-1]=1 # Have seen max if start with highest digit
t=0
for k in range(m-1):
A2=[0]*n
B2=[0]*n
C2=[0]*n
D2=[0]*n
for i in range(1,n-1):
A2[i]=A[i+1]+A[i-1]
B2[i]=B[i+1]+B[i-1]
C2[i]=C[i+1]+C[i-1]
D2[i]=D[i+1]+D[i-1]
B2[0]=A[1]+B[1]
C2[n-1]=A[n-2]+C[n-2]
D2[0]=C[1]+D[1]
D2[n-1]=B[n-2]+D[n-2]
A=A2
B=B2
C=C2
D=D2
x=sum(d for d in D2)
t+=x
print t
After doing some more research, I think there may actually be a mathematical approach after all, although the math is advanced for me. Douglas S. Stones pointed me in the direction of Joseph Myers' (2008) article, BMO 2008–2009 Round 1 Problem 1—Generalisation, which derives formulas for calculating the number of zig-zag paths across a rectangular board.
As I understand it, in Anirudh's example, our board would have 6 rows of length 3 (I believe this would mean n=3 and r=6 in the article's terms). We can visualize our board so:
0 1 2 example zig-zag path: 0
0 1 2 1
0 1 2 0
0 1 2 1
0 1 2 2
0 1 2 1
Since Myers' formula m(n,r) would generate the number for all the zig-zag paths, that is, the number of all 6-digit numbers where all adjacent digits are consecutive and digits are chosen from (0,1,2), we would still need to determine and subtract those that begin with zero and those that do not include all digits.
If I understand correctly, we may do this in the following way for our example, although generalizing the concept to arbitrary m and n may prove more complicated:
Let m(3,6) equal the number of 6-digit numbers where all adjacent digits
are consecutive and digits are chosen from (0,1,2). According to Myers,
m(3,r) is given by formula and also equals OEIS sequence A029744 at
index r+2, so we have
m(3,6) = 16
How many of these numbers start with zero? Myers describes c(n,r) as the
number of zig-zag paths whose colour is that of the square in the top
right corner of the board. In our case, c(3,6) would include the total
for starting-digit 0 as well as starting-digit 2. He gives c(3,2r) as 2^r,
so we have
c(3,6) = 8. For starting-digit 0 only, we divide by two to get 4.
Now we need to obtain only those numbers that include all the digits in
the range, but how? We can do this be subtracting m(n-1,r) from m(n,r).
In our case, we have all the m(2,6) that would include only 0's and 1's,
and all the m(2,6) that would include 1's and 2's. Myers gives
m(2,anything) as 2, so we have
2*m(2,6) = 2*2 = 4
But we must remember that one of the zero-starting numbers is included
in our total for 2*m(2,6), namely 010101. So all together we have
m(3,6) - c(3,6)/2 - 4 + 1
= 16 - 4 - 4 + 1
= 9
To complete our example, we must follow a similar process for m(3,5),
m(3,4) and m(3,3). Since it's late here, I might follow up tomorrow...
One approach could be to program it recursively, calling the function to add as well as subtract from the last digit.
Haskell code:
import Data.List (sort,nub)
f n m = concatMap (combs n) [n..m]
combs n m = concatMap (\x -> combs' 1 [x]) [1..n - 1] where
combs' count result
| count == m = if test then [concatMap show result] else []
| otherwise = combs' (count + 1) (result ++ [r + 1])
++ combs' (count + 1) (result ++ [r - 1])
where r = last result
test = (nub . sort $ result) == [0..n - 1]
Output:
*Main> f 3 6
["210","1210","1012","2101","12101","10121","21210","21012"
,"21010","121210","121012","121010","101212","101210","101012"
,"212101","210121","210101"]
In response to Anirudh Rayabharam's comment, I hope the following code will be more 'pseudocode' like. When the total number of digits reaches m, the function g outputs 1 if the solution has hashed all [0..n-1], and 0 if not. The function f accumulates the results for g for starting digits [1..n-1] and total number of digits [n..m].
Haskell code:
import qualified Data.Set as S
g :: Int -> Int -> Int -> Int -> (S.Set Int, Int) -> Int
g n m digitCount lastDigit (hash,hashCount)
| digitCount == m = if test then 1 else 0
| otherwise =
if lastDigit == 0
then g n m d' (lastDigit + 1) (hash'',hashCount')
else if lastDigit == n - 1
then g n m d' (lastDigit - 1) (hash'',hashCount')
else g n m d' (lastDigit + 1) (hash'',hashCount')
+ g n m d' (lastDigit - 1) (hash'',hashCount')
where test = hashCount' == n
d' = digitCount + 1
hash'' = if test then S.empty else hash'
(hash',hashCount')
| hashCount == n = (S.empty,hashCount)
| S.member lastDigit hash = (hash,hashCount)
| otherwise = (S.insert lastDigit hash,hashCount + 1)
f n m = foldr forEachNumDigits 0 [n..m] where
forEachNumDigits numDigits accumulator =
accumulator + foldr forEachStartingDigit 0 [1..n - 1] where
forEachStartingDigit startingDigit accumulator' =
accumulator' + g n numDigits 1 startingDigit (S.empty,0)
Output:
*Main> f 3 6
18
(0.01 secs, 571980 bytes)
*Main> f 4 20
62784
(1.23 secs, 97795656 bytes)
*Main> f 4 25
762465
(11.73 secs, 1068373268 bytes)
model your problem as 2 superimposed lattices in 2 dimensions, specifically as pairs (i,j) interconnected with oriented edges ((i0,j0),(i1,j1)) where i1 = i0 + 1, |j1 - j0| = 1, modified as follows:
dropping all pairs (i,j) with j > 9 and its incident edges
dropping all pairs (i,j) with i > m-1 and its incident edges
dropping edge ((0,0), (1,1))
this construction results in a structure like in this diagram:
:
the requested numbers map to paths in the lattice starting at one of the green elements ((0,j), j=1..min(n-1,9)) that contain at least one pink and one red element ((i,0), i=1..m-1, (i,n-1), i=0..m-1 ). to see this, identify the i-th digit j of a given number with point (i,j). including pink and red elements ('extremal digits') guarantee that all available diguts are represented in the number.
Analysis
for convenience, let q1, q2 denote the position-1.
let q1 be the position of a number's first digit being either 0 or min(n-1,9).
let q2 be the position of a number's first 0 if the digit at position q1 is min(n-1,9) and vv.
case 1: first extremal digit is 0
the number of valid prefixes containing no 0 can be expressed as sum_{k=1..min(n-1,9)} (paths_to_0(k,1,q1), the function paths_to_0 being recursively defined as
paths_to_0(0,q1-1,q1) = 0;
paths_to_0(1,q1-1,q1) = 1;
paths_to_0(digit,i,q1) = 0; if q1-i < digit;
paths_to_0(x,_,_) = 0; if x >= min(n-1,9)
// x=min(n-1,9) mustn't occur before position q2,
// x > min(n-1,9) not at all
paths_to_0(x,_,_) = 0; if x <= 0;
// x=0 mustn't occur before position q1,
// x < 0 not at all
and else paths_to_0(digit,i,q1) =
paths_to_0(digit+1,i+1,q1) + paths_to_0(digit-1,i+1,q1);
similarly we have
paths_to_max(min(n-1,9),q2-1,q2) = 0;
paths_to_max(min(n-2,8),q2-1,q2) = 1;
paths_to_max(digit,i,q2) = 0 if q2-i < n-1;
paths_to_max(x,_,_) = 0; if x >= min(n-1,9)
// x=min(n-1,9) mustn't occur before
// position q2,
// x > min(n-1,9) not at all
paths_to_max(x,_,_) = 0; if x < 0;
and else paths_to_max(digit,q1,q2) =
paths_max(digit+1,q1+1,q2) + paths_to_max(digit-1,q1+1,q2);
and finally
paths_suffix(digit,length-1,length) = 2; if digit > 0 and digit < min(n-1,9)
paths_suffix(digit,length-1,length) = 1; if digit = 0 or digit = min(n-1,9)
paths_suffix(digit,k,length) = 0; if length > m-1
or length < q2
or k > length
paths_suffix(digit,k,0) = 1; // the empty path
and else paths_suffix(digit,k,length) =
paths_suffix(digit+1,k+1,length) + paths_suffix(digit-1,k+1,length);
... for a grand total of
number_count_case_1(n, m) =
sum_{first=1..min(n-1,9), q1=1..m-1-(n-1), q2=q1..m-1, l_suffix=0..m-1-q2} (
paths_to_0(first,1,q1)
+ paths_to_max(0,q1,q2)
+ paths_suffix(min(n-1,9),q2,l_suffix+q2)
)
case 2: first extremal digit is min(n-1,9)
case 2.1: initial digit is not min(n-1,9)
this is symmetrical to case 1 with all digits d replaced by min(n,10) - d. as the lattice structure is symmetrical, this means number_count_case_2_1 = number_count_case_1.
case 2.2: initial digit is min(n-1,9)
note that q1 is 1 and the second digit must be min(n-2,8).
thus
number_count_case_2_2 (n, m) =
sum_{q2=1..m-2, l_suffix=0..m-2-q2} (
paths_to_max(1,1,q2)
+ paths_suffix(min(n-1,9),q2,l_suffix+q2)
)
so the grand grand total will be
number_count ( n, m ) = 2 * number_count_case_1 (n, m) + number_count_case_2_2 (n, m);
Code
i don't know whether a closed expression for number_count exists, but the following perl code will compute it (the code is but a proof of concept as it does not use memoization techniques to avoid recomputing results already obtained):
use strict;
use warnings;
my ($n, $m) = ( 5, 7 ); # for example
$n = ($n > 10) ? 10 : $n; # cutoff
sub min
sub paths_to_0 ($$$) {
my (
$d
, $at
, $until
) = #_;
#
if (($d == 0) && ($at == $until - 1)) { return 0; }
if (($d == 1) && ($at == $until - 1)) { return 1; }
if ($until - $at < $d) { return 0; }
if (($d <= 0) || ($d >= $n))) { return 0; }
return paths_to_0($d+1, $at+1, $until) + paths_to_0($d-1, $at+1, $until);
} # paths_to_0
sub paths_to_max ($$$) {
my (
$d
, $at
, $until
) = #_;
#
if (($d == $n-1) && ($at == $until - 1)) { return 0; }
if (($d == $n-2) && ($at == $until - 1)) { return 1; }
if ($until - $at < $n-1) { return 0; }
if (($d < 0) || ($d >= $n-1)) { return 0; }
return paths_to_max($d+1, $at+1, $until) + paths_to_max($d-1, $at+1, $until);
} # paths_to_max
sub paths_suffix ($$$) {
my (
$d
, $at
, $until
) = #_;
#
if (($d < $n-1) && ($d > 0) && ($at == $until - 1)) { return 2; }
if ((($d == $n-1) && ($d == 0)) && ($at == $until - 1)) { return 1; }
if (($until > $m-1) || ($at > $until)) { return 0; }
if ($until == 0) { return 1; }
return paths_suffix($d+1, $at+1, $until) + paths_suffix($d-1, $at+1, $until);
} # paths_suffix
#
# main
#
number_count =
sum_{first=1..min(n-1,9), q1=1..m-1-(n-1), q2=q1..m-1, l_suffix=0..m-1-q2} (
paths_to_0(first,1,q1)
+ paths_to_max(0,q1,q2)
+ paths_suffix(min(n-1,9),q2,l_suffix+q2)
)
my ($number_count, $number_count_2_2) = (0, 0);
my ($first, $q1, i, $l_suffix);
for ($first = 1; $first <= $n-1; $first++) {
for ($q1 = 1; $q1 <= $m-1 - ($n-1); $q1++) {
for ($q2 = $q1; $q2 <= $m-1; $q2++) {
for ($l_suffix = 0; $l_suffix <= $m-1 - $q2; $l_suffix++) {
$number_count =
$number_count
+ paths_to_0($first,1,$q1)
+ paths_to_max(0,$q1,$q2)
+ paths_suffix($n-1,$q2,$l_suffix+$q2)
;
}
}
}
}
#
# case 2.2
#
for ($q2 = 1; $q2 <= $m-2; $q2++) {
for ($l_suffix = 0; $l_suffix <= $m-2 - $q2; $l_suffix++) {
$number_count_2_2 =
$number_count_2_2
+ paths_to_max(1,1,$q2)
+ paths_suffix($n-1,$q2,$l_suffix+$q2)
;
}
}
$number_count = 2 * $number_count + number_count_2_2;

Resources