First of all I'm sorry to bother you guys with my very noob question, but I can't find any sense to what's happening with my (ModelSim simulated) circuit.
Here's my code, simple as can be :
LIBRARY ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
ENTITY Counter IS
PORT(
enable : in std_logic;
clk : in std_logic;
count : out integer range 0 to 255);
END Counter;
ARCHITECTURE LogicFunction OF Counter IS
signal count_i : integer range 0 to 255;
begin
cnt : process(clk, enable, count_i)
begin
count <= count_i;
if (enable = '0') then
count_i <= 0;
else
count_i <= count_i + 1;
end if;
end process;
end LogicFunction;
My problem is : when I perform a timing simulation with ModelSim, with a clock signal, "enabled" is first '0' and then '1', the output ("count") stays at zero all the time. I tried a lot of different things, like setting the "count" out as a vector, doing all sorts of casts, but it still stays the same.
The increment "count_i <= count_i + 1;" seems to be the problem : I tried to replace it with something like "count_i <= 55", and then the output changes (to "55" in the previous example).
I've seen the exact same increment in the code on that webpage for example :
http://surf-vhdl.com/how-to-connect-serial-adc-fpga/
I've created a project, simulated it and... it works ! I really don't get what the guy did that I didn't, excepted for a bunch of "if" that I don't need in my code.
Any help would be greatly appreciated, I've spent like 3 hours of trial and errors...
Thanx in advance !
In addition to not using a clock edge to increment i_count you're using enable as a clear because it's both in the sensitivity list and encountered first in an if statement condition.
library ieee;
use ieee.std_logic_1164.all;
-- use ieee.numeric_std.all;
entity counter is
port(
enable : in std_logic;
clk : in std_logic;
count : out integer range 0 to 255);
end counter;
architecture logicfunction of counter is
signal count_i : integer range 0 to 255;
begin
cnt : process (clk) -- (clk, enable, count_i)
begin
-- count <= count_i; -- MOVED
-- if (enable = '0') then -- REWRITTEN
-- count_i <= 0;
-- else
-- count_i <= count_i + 1;
-- end if;
if rising_edge(clk) then
if enable = '1' then
count_i <= count_i + 1;
end if;
end if;
end process;
count <= count_i; -- MOVED TO HERE
end architecture logicfunction;
Your code is modified to using the rising edge of clk and require enable = '1' before i_count increment. The superfluous use clause referencing package numeric_std has been commented out. The only numeric operation you're performing is on an integer and those operators are predefined in package standard.
Note the replacement if statement doesn't surround it's condition with parentheses. This isn't a programming language and they aren't needed.
The count assignment is moved to a concurrent signal assignment. This removes the need of having i_count in the sensitivity list just to update count.
Throw in a testbench to complete a Miminal Complete and Verifiable Example:
library ieee;
use ieee.std_logic_1164.all;
entity counter_tb is
end entity;
architecture foo of counter_tb is
signal enable: std_logic := '0';
signal clk: std_logic := '0';
signal count: integer range 0 to 255;
begin
DUT:
entity work.counter
port map (
enable => enable,
clk => clk,
count => count
);
CLOCK:
process
begin
wait for 5 ns; -- 1/2 clock period
clk <= not clk;
if now > 540 ns then
wait;
end if;
end process;
STIMULUS:
process
begin
wait for 30 ns;
enable <= '1';
wait for 60 ns;
enable <= '0';
wait for 30 ns;
enable <= '1';
wait;
end process;
end architecture;
And that gives:
Which shows that the counter doesn't counter when enable is '0' nor does enable = '0' reset the value of i_count.
The Quartus II Handbook Volume 1 Design and Synthesis doesn't give an example using a clock edge and an enable without an asynchronous clear or load signal.
The secret here is anything inside the if statement condition specified using a clock edge will be synchronous to the clock. Any condition outside will be asynchronous.
The form of synthesis eligible sequential logic is derived from the now withdrawn IEEE Std 1076.6-2004 IEEE Standard for VHDL Register
Transfer Level (RTL) Synthesis. Using those behavioral descriptions guarantees you can produce hardware through synthesis that matches simulation.
Related
I am a novice coder and don't know if what I did was correct so I would appreciate if someone could double check it for me.
So im trying to make an 8-bit up counter with an active-low count enable control signal. The counter should advance to the next count if cten = 0 and stops at the current count if cten = 1. The counter resets into a state that outputs binary 0 and progresses upward on each clock edge when counting is enabled until it reaches 255. It locks in the state producing output 255. I also tried to change the clock to 1Hz clock from a 50MHz clock the is on a FPGA board that will be used to run some instructions (with there being no more than 255 instructions, hence wanting to lock at that number) based off the count value of int_q.
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.numeric_std.all;
entity counter is
port(
clk, rst, cten: in std_logic;
q: out std_logic_vector(7 downto 0)
);
end entity counter;
architecture moore of counter is
signal d,int_q: std_logic_vector(7 downto 0);
signal cnt: integer range 0 to 25000;
signal clk1Hz: std_logic;
begin
-- drive internal Q signal to output signal
q <= int_q;
-- next-state logic: add 1 unless 255, lock at 255
d <= int_q+1 when int_q < 255;
d <= int_q when int_q = 255;
process(clk)
begin
if rising_edge(clk) then
cnt <= cnt+1;
if cnt = 25000 then
clk1Hz <= not clk1Hz;
cnt <= 0;
end if;
end if;
end process;
-- register process
process(all)
begin
if rising_edge(clk1Hz) then
if rst ='1' then int_q <= "00000000";
elsif cten = '0' then int_q <= int_q+1;
else int_q <= int_q;
end if;
end if;
end process;
end architecture moore;
Several issues:
If rst is unasserted on the rising edge of clk1Hz, then int_q will remain in an unknown state.
clk1Hz is never initialized, so the not operation does nothing.
cnt is never initialized, so incrementing it does nothing.
int_q is being driven in 2 places: both inside and outside a process.
signal d is unused, did you want to connect it to q?
You're only counting to 25_000, but if your source clock is 50 MHz, you need to count to 25_000_000.
If you want a synchronous reset, (which given the name "Moore", I bet this is homework), it's good practice to create a new process specifically to internally synchronize that async reset signal to the system clock, maybe through a 2FF synchronizer for one idea.
If I understood the question correctly, this should get you in the ballpark:
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.numeric_std.all;
entity counter is
port(
clk, rst, cten: in std_logic;
q: out std_logic_vector(7 downto 0)
);
end entity counter;
architecture moore of counter is
signal int_q: std_logic_vector(7 downto 0);
signal cnt: integer range 0 to 25_000_000;
signal clk1Hz: std_logic;
begin
-- indicate when at 255
q <= '1' when int_q = 255 else '0';
process(rst, clk)
begin
if rst = '1' then
-- need to assign initial values
clk1Hz <= '0';
cnt <= 0;
elsif rising_edge(clk) then
if cnt = 25_000_000 then
clk1Hz <= not clk1Hz;
cnt <= 0;
else
cnt <= cnt+1;
end if;
end if;
end process;
-- register process
process(rst, clk1Hz)
begin
if rst = '1' then
int_q <= (others => '0');
elsif rising_edge(clk1Hz) then
if cten = '0' then
int_q <= int_q+1; -- rolls over
end if;
end if;
end process;
end architecture moore;
If you want to map this in an FPGA you cannot generate a clock like you do. Clocks are very special signals with strict electrical requirements. If you need a 1Hz frequency clock and the frequency of your master clock is 50MHz there are basically two options:
Use a clock manager/generator hard macro of your FPGA if it has some, and configure it to generate a 1Hz clock from your master clock. Explicitly pass the output through a clock buffer if your tools don't do it automatically.
Do not generate a 1Hz clock, use an enable signal that you assert high once every 50M clock periods. Or use a rescaler and increment your counter only when the rescaler reaches a predefined value.
As the first option depends on your FPGA, your tools, etc. let's investigate the second:
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity counter is
generic(freqHz: positive := 50000000);
port(clk, rst, cten: in std_ulogic;
q: out std_ulogic_vector(7 downto 0));
end entity counter;
architecture moore of counter is
signal rescaler: integer range 0 to freqHz - 1;
signal cnt: integer range 0 to 255;
begin
q <= std_ulogic_vector(to_unsigned(cnt, 8));
process(clk)
begin
if rising_edge(clk) then
if rst = '1' then
rescaler <= freqHz - 1;
cnt <= 0;
elsif cnt /= 255 then
if rescaler /= 0 then
rescaler <= rescaler - 1;
else
rescaler <= freqHz - 1;
cnt <= cnt + 1;
end if;
end if;
end if;
end process;
end architecture moore;
Remarks:
Use ieee.std_logic_unsigned or ieee.numeric_std but not both. And as noted by #JHBonarius, do not use ieee.std_logic_unsigned at all. It is not standard and deprecated. Use ieee.numeric_std_unsigned, instead.
I added a generic parameter (freqHz) with a default value such that you can easily adapt to different clock frequencies.
The 50Mhz to 1Hz rescaler is decremented instead of incremented because a hardware zero detector is frequently slightly smaller and faster than an arbitrary value detector.
If you do not know the difference between std_logic and std_ulogic, always use std_ulogic, never std_logic (and use std_ulogic_vector instead of std_logic_vector, u_unsigned instead of unsigned...) One day or another you will really need std_logic and this day you will understand the difference, and why you should (almost) never use it. And do not listen to people who tell you that std_logic is more standard or better supported by the tools or whatever. They are wrong. The only exception is your teacher or your boss: even if they are wrong, it might be better to obey.
I have the VHDL implementation that works on board, it detects the sequence 01110 and will raise a flag for 2 clock counts. It detects overlapping sequences as well where 011101110 would raise the flag twice.
I've checked my implementation with a logic analyzer on the board and am fairly confident that it works. I am feeding in a repetition sequence of 0111 at 10 kHz, on the board, it has a clock at 100 MHz where I scale it to 10 kHz with a prescaler.
My problem is, when trying to recreate a similar scenario using a simulation, I do not get any outputs as expected
Image from logic analyzer from board
Image from Test Bench
Test Bench Code
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity test_FSM_prac4 is
-- Port ( );
end test_FSM_prac4;
architecture Behavioral of test_FSM_prac4 is
component FSM_prac4 is
port (
inputSignal : in STD_LOGIC;
pushButton : in STD_LOGIC;
clk100mhz : in STD_LOGIC;
logic_analyzer : out STD_LOGIC_VECTOR (7 downto 0);
LEDs: out STD_LOGIC
); end component;
signal inputSignal : std_logic := '0';
signal pushButton: std_logic := '0';
signal clk100mhz: std_logic := '0';
signal logic_analyzer: std_logic_vector(7 downto 0);
signal LEDs : std_logic;
begin
uut : FSM_prac4 port map(
inputSignal => inputSignal,
pushButton => pushButton,
clk100mhz => clk100mhz,
logic_analyzer => logic_analyzer,
LEDs => LEDs
);
--generate clock 100mhz
clock_tic: process begin
loop
clk100mhz <= '0';
wait for 5ns;
clk100mhz <= '1';
wait for 5ns;
end loop;
end process;
input_changes: process begin
loop
inputSignal <= '0';
wait for 100us;
inputSignal <= '1';
wait for 100us;
inputSignal <= '1';
wait for 100us;
inputSignal <= '1';
wait for 100us;
end loop;
end process;
end Behavioral;
To show the mapping for logic Analyzer
logic_analyzer(0) <= masterReset;
logic_analyzer(1) <= newClock -- 10Khz Clock;
logic_analyzer(2) <= outputZ;
--FSM States
logic_analyzer(3) <= '1' when y = A ELSE '0';
logic_analyzer(4) <= '1' when y = B ELSE '0';
logic_analyzer(5) <= '1' when y = C ELSE '0';
logic_analyzer(6) <= '1' when y = D ELSE '0';
logic_analyzer(7) <= '1' when y = E ELSE '0';
If anyone could direct to what I am doing wrong on the test bench and how to replicate to get similar results as the first image as it shows that in simulation, it always stays at state A and the new clock is not toggling meaning that clk100mhz is somehow not connected but I can't figure out why.
Any help is greatly appreciated, thanks guys
edit:
I wrote a simple program to test my scalar clock
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity scaler_clk is
Port (
pushButton : in std_logic;
indicator : out std_logic;
clk100mhz : in STD_LOGIC;
clk10khz: out STD_LOGIC
);
end scaler_clk;
architecture Behavioral of scaler_clk is
signal clockScalers : std_logic_vector (12 downto 0):= (others => '0') ;
signal prescaler: std_logic_vector(12 downto 0) := "1001110001000";
signal newClock: std_logic := '0';
signal masterReset : std_logic;
begin
clk10khz <= newClock;
masterReset <= pushButton;
process (clk100mhz,masterReset) begin
if(masterReset <= '1') then <--- error occurs here
clockScalers <= "0000000000000";
newClock <= '0';
indicator <= '1';
elsif (clk100mhz'event and clk100mhz = '1')then
indicator <= '0';
clockScalers <= clockScalers + 1;
if(clockScalers > prescaler) then
newClock <= not newClock;
clockScalers <= (others => '0');
end if;
end if;
end process;
end Behavioral;
test bench code
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity test_scaler_clk is
-- Port ( );
end test_scaler_clk;
architecture Behavioral of test_scaler_clk is
component scaler_clk Port (
pushButton : in std_logic;
indicator : out std_logic;
--input clock
clk100mhz : in STD_LOGIC;
clk10khz: out STD_LOGIC
);end component;
signal clk100mhz: std_logic := '0';
signal clk10khz : std_logic;
signal pushButton: std_logic;
signal indicator : std_logic;
begin
uut: scaler_clk port map(
pushButton => pushButton,
indicator => indicator,
clk100mhz => clk100mhz,
clk10khz => clk10khz
);
pushButton <= '0';
clock_tic: process begin
loop
clk100mhz <= '0';
wait for 5ns;
clk100mhz <= '1';
wait for 5ns;
end loop;
end process;
end Behavioral;
Even though I set pushButton to '0', it is still triggering masterReset, anyone knows why, that's why the 10 kHz clock isn't working
There are several things that you could (should) improve in your code. As Brian already explained, in your Behavioral architecture of scaler_clk, you should have:
if(masterReset = '1') then
instead of:
if(masterReset <= '1') then
Now, let's start with the most likely cause of your initial problem: unbound components. Your test benches instantiate the design to validate as components. VHDL components are kind of prototypes of actual entities. Prototypes are enough to compile because the compiler can perform all necessary syntax and type checking. But they are not enough to simulate because the simulator also needs the implementation behind the prototype. Some tools have a default binding strategy for unbound components: if they find an entity with the same name and if it has only one architecture, they use that. Your simulator apparently does not use such strategy (at least not by default, there is maybe an option for that but it is disabled). Note that most simulators I know issue warnings when they find unbound components. You probably missed these warnings.
Anyway, your component instances are unbound (they have no associated entity/architecture) and the simulator considers them as black boxes. Their outputs are not driven, except by the initial values you declared (1).
How to fix this? Two options:
Use a configuration to specify which entity/architecture pair shall be used for each component instance:
for all: scaler_clk use entity work.scaler_clk(Behavioral);
Use entity instantiations instead of components:
uut: entity work.scaler_clk(Behavioral) port map...
Now, let's go through some other aspects of your code that could be improved:
You are using non-standard packages, that are frequently not even compatible: IEEE.STD_LOGIC_ARITH and IEEE.STD_LOGIC_UNSIGNED. As they are not standard they should not even be in the standard IEEE library. You should use IEEE.NUMERIC_STD instead, and only that one. It declares the SIGNED and UNSIGNED types (with the same declaration as STD_LOGIC_VECTOR) and overloads the arithmetic operators on them.
Your test benches generate the 100MHz clock with:
clock_tic: process begin
loop
clk100mhz <= '0';
wait for 5ns;
clk100mhz <= '1';
wait for 5ns;
end loop;
end process;
The infinite loop is useless: a process is already an infinite loop:
clock_tic: process
begin
clk100mhz <= '0';
wait for 5ns;
clk100mhz <= '1';
wait for 5ns;
end process clock_tic;
would do the same. Same remark for your input_changes process.
Your input_changes process uses wait for <duration> statements. This is not a good idea because you do not know when the inputSignal signal toggles, compared to the clock. Is it just before, just after or exactly at the same time as the rising edge of clk100mhz? And if it is exactly at the same time, what will happen? Of course, you can carefully chose the <durations> to avoid such ambiguities but it is error prone. You should use the wait for <duration> only in the clock generating process. Everywhere else, it is better to synchronize with the clock:
input_changes: process
begin
inputSignal <= '0';
for i in 1 to 10000 loop
wait until rising_edge(clk100mhz);
end loop;
inputSignal <= '1';
for i in 1 to 10000 loop
wait until rising_edge(clk100mhz);
end loop;
inputSignal <= '1';
for i in 1 to 10000 loop
wait until rising_edge(clk100mhz);
end loop;
inputSignal <= '1';
for i in 1 to 10000 loop
wait until rising_edge(clk100mhz);
end loop;
end process input_changes;
This guarantees that inputSignal changes just after the rising edge of the clock. And you could rewrite it in a bit more elegant way (and probably a bit easier to maintain):
input_changes: process
constant values: std_logic_vector(0 to 3) := "0111";
begin
for i in values'range loop
inputSignal <= values(i);
for i in 1 to 10000 loop
wait until rising_edge(clk100mhz);
end loop;
end loop;
end process input_changes;
You are using resolved types (STD_LOGIC and STD_LOGIC_VECTOR). These types allow multiple drive, that is, having a hardware wire (VHDL signal) that is driven by several devices (VHDL processes). Usually you do not want this. Usually you even want to avoid this like the plague because it can cause short-circuits. In most cases it is wiser to use non-resolved types (STD_ULOGIC and STD_ULOGIC_VECTOR) because the compiler and/or the simulator will raise errors if you accidentally create a short circuit in your design.
One last thing: if, as its name suggests, you intend to use the clk10khz signal as a real clock, you should reconsider this decision. It is a signal that you generate with your custom logic. Clocks have very specific electrical and timing constraints that cannot really be fulfilled by regular signals. Before using clk10khz as a clock you must deal with clock skew, clock buffering... Not impossible but tricky. If you did use it as a clock your synthesizer probably issued critical warnings that you also missed (have a look maybe at the timing report). Moreover, this is probably useless in your case: an enable signal generated from clk100mhz could probably be used instead, avoiding all these problems. Instead of:
process (clk100mhz,masterReset) begin
if(masterReset = '1') then
clockScalers <= "0000000000000";
newClock <= '0';
indicator <= '1';
elsif (clk100mhz'event and clk100mhz = '1')then
indicator <= '0';
clockScalers <= clockScalers + 1;
if(clockScalers > prescaler) then
newClock <= not newClock;
clockScalers <= (others => '0');
end if;
end if;
end process;
use:
signal tick10khz: std_ulogic;
...
process(clk100mhz, masterReset) begin
if masterReset = '1') then
clockScalers <= "0000000000000";
tick10khz <= '0';
elsif rising_edge(clk100mhz) then
clockScalers <= clockScalers + 1;
tick10khz <= '0'
if(clockScalers > prescaler) then
tick10khz <= '1';
clockScalers <= (others => '0');
end if;
end if;
end process;
And then, instead of:
process(clk10khz)
begin
if rising_edge(clk10khz) then
register <= register_input;
end if;
end process;
use:
process(clk100mhz)
begin
if rising_edge(clk100mhz) then
if tick10khz = '1' then
register <= register_input;
end if;
end if;
end process;
The result will be the same but with only one single 100MHz clock, which avoids clock skew, clock buffering and clock domain crossing problems.
(1) This illustrates why declaring variables and signals with initial values is usually not a good idea: it hides potential problems. Without this your signals would have been stuck at 'U' (uninitialized) and it would maybe have helped understanding where the problem comes from.
Have JUST started learning how to use this tool so if my question seems silly i apologize in advance. I have searched the error in numerous forums (already answered posts , not mine) and couldn't understand what i was doing wrong so here is my question:
My Behavioral Code:
----------------------------------------------------------------------------- -----
-- Company:
-- Engineer:
--
-- Create Date: 01:47:22 07/07/2015
-- Design Name:
-- Module Name: Module_1 - Behavioral
-- Project Name:
-- Target Devices:
-- Tool versions:
-- Description:
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
----------------------------------------------------------------------------- -----
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned valuessss
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity Module_1 is
port (A,B,WE,reset : in std_logic;
clk : in std_logic;
DIN : in signed(3 downto 0);
FULL,EMPTY,ERROR : out std_logic:= '0';
PARKFREE : out signed(3 downto 0)
);
end Module_1;
architecture Behavioral of Module_1 is
signal current_state,next_state:std_ulogic_vector(1 downto 0);
signal empty_bf, full_bf :std_ulogic;
signal enter, reset_b : std_ulogic := '0' ;
constant s0: std_ulogic_vector (1 downto 0):="00";
constant s1: std_ulogic_vector (1 downto 0):="10";
constant s2: std_ulogic_vector (1 downto 0):="11";
constant s3: std_ulogic_vector (1 downto 0):="01";
signal park_counter,buffr: signed(3 downto 0):="0000";
signal PARKTOTAL,free_park_counter: signed(3 downto 0):= "1111";
begin
p1: process (clk,reset,reset_b)
begin
if (reset = '1') then
current_state <= s0;
elsif clk'event and clk = '1' then
current_state <= next_state;
end if;
end process p1;
p2: process (current_state,A,B)
begin
next_state <= current_state;
case current_state is
when s0 =>
if A = '1' then
enter <= '1';
next_state <= s1;
elsif B = '1' then
next_state <= s3;
end if;
when s1 =>
if A = '0' then
enter <= '0';
next_state <= s0;
elsif B = '1' then
next_state <= s2;
end if;
when s2 =>
if A = '0' then
next_state <= s3;
elsif B = '0' then
next_state <= s1;
end if;
when s3 =>
if B = '0' then
enter <= '0';
next_state <= s0;
elsif A = '1' then
next_state <= s2;
end if;
when others =>
end case;
end process p2;
p3: process(current_state,A,B)
begin
case current_state is
when s1 =>
if enter = '0' and A = '0' and empty_bf = '0' then
park_counter <= park_counter - 1;
free_park_counter <= free_park_counter + 1;
ERROR <= '0';
end if;
when s3 =>
if enter = '1' and B = '0' and full_bf = '0' then
park_counter <= park_counter + 1;
free_park_counter <= free_park_counter - 1;
ERROR <= '0';
end if;
when others =>
end case;
end process p3;
max: process(WE)
begin
if clk'event and clk = '1' and WE = '1' then
PARKTOTAL <= DIN ;
buffr <= DIN ;
if (free_park_counter < buffr - park_counter) then
ERROR <= '1';
reset_b <= '1';
else free_park_counter <= buffr - park_counter;
end if;
end if;
end process max;
incr: process(free_park_counter,DIN)
begin
PARKFREE <= free_park_counter;
if (free_park_counter = 15) then
EMPTY <= '1';
empty_bf <= '1';
else EMPTY <= '0';
empty_bf <= '0';
end if;
if (free_park_counter = 0) then
FULL <= '1';
full_bf <= '1';
else FULL <= '0';
full_bf <= '0';
end if;
end process incr;
end Behavioral;
My Testbench
----------------------------------------------------------------------------- ---
-- Company:
-- Engineer:
--
-- Create Date: 02:17:07 07/11/2015
-- Design Name:
-- Module Name: D:/Users/ErgasiaFPGA/Testbench.vhd
-- Project Name: ErgasiaFPGA
-- Target Device:
-- Tool versions:
-- Description:
--
-- VHDL Test Bench Created by ISE for module: Module_1
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
-- Notes:
-- This testbench has been automatically generated using types std_logic and
-- std_logic_vector for the ports of the unit under test. Xilinx recommends
-- that these types always be used for the top-level I/O of a design in order
-- to guarantee that the testbench will bind correctly to the post-implementation
-- simulation model.
--------------------------------------------------------------------------------
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--USE ieee.numeric_std.ALL;
ENTITY Testbench IS
END Testbench;
ARCHITECTURE behavior OF Testbench IS
-- Component Declaration for the Unit Under Test (UUT)
COMPONENT Module_1
PORT(
A : IN std_logic;
B : IN std_logic;
WE : IN std_logic;
reset : IN std_logic;
clk : IN std_logic;
DIN : IN signed(3 downto 0);
FULL : OUT std_logic;
EMPTY : OUT std_logic;
ERROR : OUT std_logic;
PARKFREE : OUT signed(3 downto 0)
);
END COMPONENT;
--Inputs
signal A : std_logic := '0';
signal B : std_logic := '0';
signal WE : std_logic := '0';
signal reset : std_logic := '0';
signal clk : std_logic := '0';
signal DIN : signed(3 downto 0) := (others => '0');
--Outputs
signal FULL : std_logic;
signal EMPTY : std_logic;
signal ERROR : std_logic;
signal PARKFREE : signed(3 downto 0);
-- Clock period definitions
constant clk_period : time := 10 ns;
BEGIN
-- Instantiate the Unit Under Test (UUT)
uut: Module_1 PORT MAP (
A => A,
B => B,
WE => WE,
reset => reset,
clk => clk,
DIN => DIN,
FULL => FULL,
EMPTY => EMPTY,
ERROR => ERROR,
PARKFREE => PARKFREE
);
-- Clock process definitions
clk_process :process
begin
clk <= '0';
wait for clk_period/2;
clk <= '1';
wait for clk_period/2;
end process;
-- Stimulus process
stim_proc: process
begin
-- hold reset state for 100 ns.
reset <= '1' ;
wait for 100 ns;
reset <= '0' ;
wait for clk_period*10;
-- insert stimulus here
A <= '1' ;
wait for clk_period*5;
B <= '1' ;
wait for clk_period*5;
A <= '0' ;
wait for clk_period*5;
B <= '0' ;
wait for clk_period*5;
B <= '1' ;
wait for clk_period*5;
A <= '1' ;
wait for clk_period*5;
B <= '0' ;
wait for clk_period*5;
A <= '0' ;
wait;
end process;
END;
I posted the whole code just in case i'm missing something in some part of it that i wouldn't think about. So , when i ISim it , with any "succesful" trigger of p3...
Referencing it again here:
p3: process(current_state,A,B)
begin
case current_state is
when s1 =>
if enter = '0' and A = '0' and empty_bf = '0' then
park_counter <= park_counter - 1;
free_park_counter <= free_park_counter + 1;
ERROR <= '0';
end if;
when s3 =>
if enter = '1' and B = '0' and full_bf = '0' then
park_counter <= park_counter + 1;
free_park_counter <= free_park_counter - 1;
ERROR <= '0';
end if;
when others =>
end case;
end process p3;
...the ISim says that in this part
"There is an 'U'|'X'|'W'|'Z'|'-' in an arithmetic operand, the result will be 'X'(es)."
and proceeds to make Xs of some of the values after that part , although all of the signals have been initialized (at least the ones in this part)
The "park_counter <= park_counter + 1;" part works correctly in the simulation but the "free_park_counter <= free_park_counter -1;" doesn't. This completely baffles me as they are declared as the same type and are both initialized the same way , even with different values.
So what am i missing or even doing blatantly wrong? Any help will be incredibly appreciated. Only looking for the error , if you could please contain optimizations since i'm looking to learn through trial and error and thought and would like to struggle to make it better myself
In addition , please be patient with my responses since i log on 2 to 3 times per day. Thanks in advance
Your design is non-workable per Brian's answer. Your testbench causes the messages when going from s3 or s1 to s0 before the clock edge. free_park_counter goes to 'U's. (Once it gets U's it won't loop further, no events occur without a signal value change).
Your counters should be clocked to prevent combinatorial looping, plus they likely won't synthesize a clock usefully due to uneven combinatorial delays. Sensitivity lists should likewise be complete, if for no other reason than the intent is to make simulation match the synthesized result.
Looking at the result of your testbench:
(clickable)
We can compare that with the messages from the arithmetic operators found in the Synopsys package std_logic_arith:
../../../src/synopsys/std_logic_arith.vhdl:315:20:#350ns:(assertion warning): There is an 'U'|'X'|'W'|'Z'|'-' in an arithmetic operand, the result will be 'X'(es).
../../../src/synopsys/std_logic_arith.vhdl:315:20:#350ns:(assertion warning): There is an 'U'|'X'|'W'|'Z'|'-' in an arithmetic operand, the result will be 'X'(es).
../../../src/synopsys/std_logic_arith.vhdl:315:20:#550ns:(assertion warning): There is an 'U'|'X'|'W'|'Z'|'-' in an arithmetic operand, the result will be 'X'(es).
The signals displayed in the waveform are selected in order of importance and appearance a first pass selection and we immediately see we also get 'U's on free_park_counter as well as ERROR.
ERROR catches attention because you hadn't mentioned it previously. When asking 'where to the 'U' come from ?' it becomes apparent the issue is there are drivers on ERROR and free_park_counter in both processes p3 and max. The messages are a side effect.
Each process assigning a signal provides a driver. Signals with multiple drivers are either resolved or result in an error for non-resolved types.
The resolved value of free_park_counter with one or more elements having a metavalue will cause the diagnostic messages produced by package std_logic_arith. The 'U's in the waveform are caused by the resolution of the two drivers.
The difficulty your audience had in noticing the two drivers may be in part due to your strong insistence on focusing on process p3, which is not well specified. The title and focus of your question also seems a bit unclear. Without a Minimal Complete and Verifiable example there was also bound to be less scrutiny.
You might expect as a minimum to consolidate all the assignments to ERROR and free_park_counter into a single process. ERROR should likely be registered, and I'd expect something named park_counter would likely want to be registered, too.
There is some confusion in the question title : declaring a signal and setting its value are entirely separate.
Initialising a signal (in the declaration) will influence its value, but not fully determine it. If the initialisation and another driving value are different, the result probably will be 'X'. Likewise if the signal is driven from different processes which disagree on its value.
Now, you are using a multiple-process form of state machine, where the operations are split between clocked and combinational processes. These are recommended by more than one textbook. This is unfortunate because they are notoriously difficult to get right, and for example, a moment's inspection will show that the sensitivity list on process P3 is wrong.
Fixing P3's sensitivity list may not affect the problem, because P3 also drives its own inputs in what is known as a combinational loop. Consider that, if the process wakes up several times because of glitches on the combinational inputs in its sensitivity list, the additions will take place several times...
Rewriting these three processes in the form of a single clocked process P1, (which is, unfortunately, not well taught in several textbooks) will avoid all of these difficulties.
In ISim, if you browse the tree menu on the left you are able to add to then signals window any internal signal you want. Add all of them, rerun the simulation and look for the signals that have 'U'|'X'|'W'|'Z'|'-' values. This should give us a lead to track down the problem.
If you are really new to VHDL, this answer of mine should help you undersand some of the basic concepts of this description language :)
VHDL - iSIM output uninitialised, doesn't change states
Another advice that I learned the hard way, but you can think about it after we solved this problem: textbooks and even Xilinx describe how to implement finite state machines with two or even three distinct processes. This comes from an educational approach where FSM are splitted in synchronous logic and asynchronous logic. In practice, this is doing more harm than good: most of the FSM can be described with a single synchronous process. Google it (or if you are interested we can talk about it) and try it, you will get the hang of it really quickly and it will really simplify the code (you won't even need two separate signals for the states anymore!).
I am trying to have a delay of 20 seconds on power-up of the FPGA.
There is a clock input of 100Hz, so if a counter gets to 20,000, that should be 20 seconds worth of delay. After the delay, it should set an output pin high. However, for some reason, this out pin is going high immediately and never goes low at all on powerup. It's almost as if it is skipping the s_count <= 20000 completely.
Here is the code I have:
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity delay is
port
(
pi_Clock : in std_logic;
po_Delay_Done : out std_logic
);
end entity;
architecture behavioral of delay is
begin
process(pi_Clock)
variable s_count : integer := 0;
begin
if rising_edge(pi_Clock) then
if s_count <= 20000 then
s_count := s_count + 1;
po_Delay_Done <= '0';
else
po_Delay_Done <= '1';
end if;
end if;
end process;
end architecture;
I have increased the 20000 to the max integer value, just to see if my clock was incorrect but the same result.
There is no other driver of this signal on the top level file.
Anyone see what I'm doing wrong?
For some reason, setting the initial values by the declarations seems to be the problem with this FPGA/toolset (synopsis Synplify and the FPGA is Actel A3PN250) even if it works in modelsim simulation.
The following code does what I want -- Set an output high after the FPGA is turned on for 20 seconds:
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity delay is
port
(
pi_Clock : in std_logic;
pi_Reset : in std_logic;
po_Delay_Done : out std_logic
);
end entity;
architecture behavioral of delay is
begin
process(pi_Clock)
variable s_count: integer;
begin
if rising_edge(pi_Clock) then
if pi_Reset = '1' then
s_count := 0;
po_Delay_Done <= '0';
else
if s_count < 2000 then
s_count := s_count + 1;
else
po_Delay_Done <= '1';
end if;
end if;
end if;
end process;
end architecture;
The catch is that the microcontroller is now sending a reset signal (pi_Reset = '1') to the FPGA after it has been started.
Hope this helps anyone in the future, thanks to Quantum Ripple and Brian especially for suggesting the hard reset. If you had an answer I would accept it.
The code you typed has no simulation or synthesis errors and has a correct result in modelsim simulation software. (according to the above first comment "fru1tbat")
With respect to the above comments, I think if you synthesized the FPGA board correctly and the design doesn't worked (with applying a reset port to reset the output and variable parameters), the problem is related to the clock generator. Be sure about the clock generator and find the correct frequency.
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;
entity counter is
port(CLK, CLR : in std_logic;
output : inout std_logic_vector(3 downto 0));
end counter;
architecture archi of counter is
signal tmp: std_logic_vector(3 downto 0);
begin
process (CLK, CLR)
variable i: integer:=0;
begin
if (CLR='1') then
tmp <= "0000";
elsif (clk = '1') then
for i in 0 to 6 loop
tmp <= tmp + 1;
end loop;
end if;
to count upto 7 i have done for i in 0 to 10. it is not showing any error but it counts from 0000 to 1111
end process;
output <= tmp;
end architecture;
could you please suggest how to do it....sorry for wrong grammar in english
Needs to operate off one clock edge
Because your counter port has clk in it, we can assume you want the counter to count synchronous to the clock.
You're operating off of both clock edges
elsif (clk = '1') then
should be something like
elsif clk'event and clk = '1' then
or
elsif rising_edge(clk) then
These examples use the rising edge of clk. You can't synthesize something that uses both clock edges under the IEEE-1076.6 IEEE Standard for VHDL Register
Transfer Level (RTL) Synthesis. It's not a recognized clocking method.
Making a modulo 10 counter
Under the assumption you want the counter to go from 0 to 9 and rollover this
for i in 0 to 6 loop
tmp <= tmp + 1;
end loop;
Should be something like
if tmp = "1001" then # binary 9
tmp <= (others => '0'); # equivalent to "0000"
else
tmp <= tmp + 1;
end if;
And this emulates a synchronous load that takes priority over increment driven by an external 'state' recognizer. With an asynchronous clear it would emulate an 74163 4 bit counter with an external 4 input gate recognizing "1001" and producing a synchronous parallel load signal loading "0000".
What's wrong with the loop statement
The loop process as shown would result in a single increment and resulting counter rollover at "1111" like you describe. You could remove the for ... loop and end loop; statements and it would behave identically. There's only one schedule future update for a signal for each driver, and a process only has one driver for each signal it assigns. All the loop iterations occur at the same clk event. tmp won't get updated until the next simulation cycle (after the loop is completed) and it's assignment is identical in all loop iterations, the expression tmp + 1. The last loop iterated assignment would be the one that actually occurs and the value it assigns would be identical.
Using a loop statement isn't necessary when counter is state driven (state ≃ tmp). The additional state represented by i isn't needed.
entity mod10 is
Port ( d : out std_logic_vector(3 downto 0);
clr: in std_logic;
clk : in std_logic);
end mod10;
architecture Behavioral of mod10 is
begin
process(clk)
variable temp:std_logic_vector(3 downto 0);
begin
if(clr='1') then temp:="0000";
elsif(rising_edge(clk)) then
temp:=temp+1;
if(temp="1010") then temp:="0000";
end if;
end if;
d<=temp;
end process;
end Behavioral;