Odd results from shaders used to pre-process spring physics simulation - three.js

I'm doing a spring physics simulation using 2D samplers to house and pre-process some position data in a fragment shader, and getting very odd results. If I start with 16 individually located springs (a point at the end of an invisible spring originating from an invisible anchor), the visualization ends up with eight pairs, each pair hanging from the same spring anchor point. However, if I simply run the visualization to place the points using only the tOffsets values, all the information to calculate each of the anchor points is there and displays correctly (though no physics, of course). It's once I add back in the spring physics that I end up with pairs again. Also, from watching the visualization, I can tell that the pairs' anchor points values are none of the original 16 anchor point values. Any idea what's going on here? (See both the fiddle and the starred inline comments below.)
(three.js v 80)
See the fiddle using v79 here.
uniform sampler2D tPositions;
uniform sampler2D tOffsets;
varying vec2 vUv;
void main() {
float damping = 0.98;
vec4 nowPos = texture2D( tPositions, vUv ).xyzw;
vec4 offsets = texture2D( tOffsets, vUv ).xyzw;
vec2 velocity = vec2(nowPos.z, nowPos.w);
vec2 anchor = vec2( offsets.x, 130.0 );
// Newton's law: F = M * A
float mass = 24.0;
vec2 acceleration = vec2(0.0, 0.0);
// 1. apply gravity's force: **this works fine
vec2 gravity = vec2(0.0, 2.0);
gravity /= mass;
acceleration += gravity;
// 2. apply the spring force ** something goes wrong once I add the spring physics - the springs display in pairs
float restLength = length(yAnchor - offsets.y);
float springConstant = 0.2;
// Vector pointing from anchor to point position
vec2 springForce = vec2(nowPos.x - anchor.x, nowPos.y - anchor.y);
// length of the vector
float distance = length( springForce );
// stretch is the difference between the current distance and restLength
float stretch = distance - restLength;
// Calculate springForce according to Hooke's Law
springForce = normalize( springForce );
springForce *= (1.0 * springConstant * stretch);
springForce /= mass;
acceleration += springForce; // ** If I comment out this line, all points display where expected, and fall according to gravity. If I add it it back in the springs work properly but display in 8 pairs as opposed to 16 independent locations
velocity += acceleration;
velocity *= damping;
vec2 newPosition = vec2(nowPos.x - velocity.x, nowPos.y - velocity.y);
// Write new position out to texture for the next shader
gl_FragColor = vec4(newPosition.x, newPosition.y, velocity.x, velocity.y); // **the pair problem shows up with this line active
// sanity checks with comments:
// gl_FragColor = vec4(newPosition.x, newPosition.y, 0.0, 0.0); // **the pair problem also shows up in this case
// gl_FragColor = vec4( offsets.x, offsets.y, velocity ); // **all points display in the correct position, though no physics
// gl_FragColor = vec4(nowPos.x, nowPos.y, 0.0, 0.0); // **all points display in the correct position, though no physics
UPDATE 1:
Could the problem be with the number of values (rgba, xzyw) agreeing between all of the pieces of my program? I've specified rgba values wherever I can think to, but perhaps I've missed somewhere. Here is a snippet from my javascript:
if ( ! renderer.context.getExtension( 'OES_texture_float' ) ) {
alert( 'OES_texture_float is not :(' );
}
var width = 4, height = 4;
particles = width * height;
// Start creation of DataTexture
var positions = new Float32Array( particles * 4 );
var offsets = new Float32Array( particles * 4 );
// hardcoded dummy values for the sake of debugging:
var somePositions = [10.885510444641113, -6.274578094482422, 0, 0, -10.12020206451416, 0.8196354508399963, 0, 0, 35.518341064453125, -5.810637474060059, 0, 0, 3.7696402072906494, -3.118760347366333, 0, 0, 9.090447425842285, -7.851400375366211, 0, 0, -32.53229522705078, -26.4628849029541, 0, 0, 32.3623046875, 22.746187210083008, 0, 0, 7.844726085662842, -15.305091857910156, 0, 0, -32.65345001220703, 22.251712799072266, 0, 0, -25.811357498168945, 32.4153938293457, 0, 0, -28.263731002807617, -31.015430450439453, 0, 0, 2.0903847217559814, 1.7632032632827759, 0, 0, -4.471604347229004, 8.995194435119629, 0, 0, -12.317420959472656, 12.19576358795166, 0, 0, 36.77312469482422, -14.580523490905762, 0, 0, 36.447078704833984, -16.085195541381836, 0, 0];
for ( var i = 0, i4 = 0; i < particles; i ++, i4 +=4 ) {
positions[ i4 + 0 ] = somePositions[ i4 + 0 ]; // x
positions[ i4 + 1 ] = somePositions[ i4 + 1 ]; // y
positions[ i4 + 2 ] = 0.0; // velocity
positions[ i4 + 3 ] = 0.0; // velocity
offsets[ i4 + 0 ] = positions[ i4 + 0 ];// - gridPositions[ i4 + 0 ]; // width offset
offsets[ i4 + 1 ] = positions[ i4 + 1 ];// - gridPositions[ i4 + 1 ]; // height offset
offsets[ i4 + 2 ] = 0; // not used
offsets[ i4 + 3 ] = 0; // not used
}
positionsTexture = new THREE.DataTexture( positions, width, height, THREE.RGBAFormat, THREE.FloatType );
positionsTexture.minFilter = THREE.NearestFilter;
positionsTexture.magFilter = THREE.NearestFilter;
positionsTexture.needsUpdate = true;
offsetsTexture = new THREE.DataTexture( offsets, width, height, THREE.RGBAFormat, THREE.FloatType );
offsetsTexture.minFilter = THREE.NearestFilter;
offsetsTexture.magFilter = THREE.NearestFilter;
offsetsTexture.needsUpdate = true;
rtTexturePos = new THREE.WebGLRenderTarget(width, height, {
wrapS:THREE.RepeatWrapping,
wrapT:THREE.RepeatWrapping,
minFilter: THREE.NearestFilter,
magFilter: THREE.NearestFilter,
format: THREE.RGBAFormat,
type:THREE.FloatType,
stencilBuffer: false
});
rtTexturePos2 = rtTexturePos.clone();
simulationShader = new THREE.ShaderMaterial({
uniforms: {
tPositions: { type: "t", value: positionsTexture },
tOffsets: { type: "t", value: offsetsTexture },
},
vertexShader: document.getElementById('texture_vertex_simulation_shader').textContent,
fragmentShader: document.getElementById('texture_fragment_simulation_shader').textContent
});
fboParticles = new THREE.FBOUtils( width, renderer, simulationShader );
fboParticles.renderToTexture(rtTexturePos, rtTexturePos2);
fboParticles.in = rtTexturePos;
fboParticles.out = rtTexturePos2;
UPDATE 2:
Perhaps the problem has to do with how the texels are being read from these textures? Somehow it may be reading between two texels, and so coming up with an averaged position shared by two springs? Is this possible? If so, where would I look to fix it?

I never discovered the problem with the fiddle in my question above; however, I did eventually find the newer version of the THREE.FBOUtils script I was using above - it is now called THREE.GPUComputationRenderer. After implementing it, my script finally worked!
For those who find themselves trying trying so solve a similar problem, here is the new and improved fiddle using the GPUComputationRenderer in place of the old FBOUtils.
Here, from the script documentation, is a basic use case of GPUComputationRenderer:
//Initialization...
// Create computation renderer
var gpuCompute = new GPUComputationRenderer( 1024, 1024, renderer );
// Create initial state float textures
var pos0 = gpuCompute.createTexture();
var vel0 = gpuCompute.createTexture();
// and fill in here the texture data...
// Add texture variables
var velVar = gpuCompute.addVariable( "textureVelocity", fragmentShaderVel, pos0 );
var posVar = gpuCompute.addVariable( "texturePosition", fragmentShaderPos, vel0 );
// Add variable dependencies
gpuCompute.setVariableDependencies( velVar, [ velVar, posVar ] );
gpuCompute.setVariableDependencies( posVar, [ velVar, posVar ] );
// Add custom uniforms
velVar.material.uniforms.time = { value: 0.0 };
// Check for completeness
var error = gpuCompute.init();
if ( error !== null ) {
console.error( error );
}
// In each frame...
// Compute!
gpuCompute.compute();
// Update texture uniforms in your visualization materials with the gpu renderer output
myMaterial.uniforms.myTexture.value = gpuCompute.getCurrentRenderTarget( posVar ).texture;
// Do your rendering
renderer.render( myScene, myCamera );

Related

Use 2 meshes + shader materials with each a different fragment shader in 1 scene (three.js)

I have 2 meshes with each a shaderMaterial and each a different fragment shader. When I add both meshes to my scene, only one will show up. Below you can find my 2 fragment shaders (see both images to see what they look like). They're basically the same.
What I want to achieve: Use mesh1 as a mask and put the other one, mesh2 (purple blob) on top of the mask.
Purple blob:
// three.js code
const geometry1 = new THREE.PlaneBufferGeometry(1, 1, 1, 1);
const material1 = new THREE.ShaderMaterial({
uniforms: this.uniforms,
vertexShader,
fragmentShader,
defines: {
PR: window.devicePixelRatio.toFixed(1)
}
});
const mesh1 = new THREE.Mesh(geometry1, material1);
this.scene.add(mesh1);
// fragment shader
void main() {
vec2 res = u_res * PR;
vec2 st = gl_FragCoord.xy / res.xy - 0.5;
st.y *= u_res.y / u_res.x * 0.8;
vec2 circlePos = st;
float c = circle(circlePos, 0.2 + 0. * 0.1, 1.) * 2.5;
float offx = v_uv.x + sin(v_uv.y + u_time * .1);
float offy = v_uv.y * .1 - u_time * 0.005 - cos(u_time * .001) * .01;
float n = snoise3(vec3(offx, offy, .9) * 2.5) - 2.1;
float finalMask = smoothstep(1., 0.99, n + pow(c, 1.5));
vec4 bg = vec4(0.12, 0.07, 0.28, 1.0);
vec4 bg2 = vec4(0., 0., 0., 0.);
gl_FragColor = mix(bg, bg2, finalMask);
}
Blue mask
// three.js code
const geometry2 = new THREE.PlaneBufferGeometry(1, 1, 1, 1);
const material2 = new THREE.ShaderMaterial({
uniforms,
vertexShader,
fragmentShader,
defines: {
PR: window.devicePixelRatio.toFixed(1)
}
});
const mesh2 = new THREE.Mesh(geometry2, material2);
this.scene.add(mesh2);
// fragment shader
void main() {
vec2 res = u_res * PR;
vec2 st = gl_FragCoord.xy / res.xy - 0.5;
st.y *= u_res.y / u_res.x * 0.8;
vec2 circlePos = st;
float c = circle(circlePos, 0.2 + 0. * 0.1, 1.) * 2.5;
float offx = v_uv.x + sin(v_uv.y + u_time * .1);
float offy = v_uv.y * .1 - u_time * 0.005 - cos(u_time * .001) * .01;
float n = snoise3(vec3(offx, offy, .9) * 2.5) - 2.1;
float finalMask = smoothstep(1., 0.99, n + pow(c, 1.5));
vec4 bg = vec4(0.12, 0.07, 0.28, 1.0);
vec4 bg2 = vec4(0., 0., 0., 0.);
gl_FragColor = mix(bg, bg2, finalMask);
}
Render Target code
this.rtWidth = window.innerWidth;
this.rtHeight = window.innerHeight;
this.renderTarget = new THREE.WebGLRenderTarget(this.rtWidth, this.rtHeight);
this.rtCamera = new THREE.PerspectiveCamera(
this.camera.settings.fov,
this.camera.settings.aspect,
this.camera.settings.near,
this.camera.settings.far
);
this.rtCamera.position.set(0, 0, this.camera.settings.perspective);
this.rtScene = new THREE.Scene();
this.rtScene.add(this.purpleBlob);
const geometry = new THREE.PlaneGeometry(window.innerWidth, window.innerHeight, 1);
const material = new THREE.MeshPhongMaterial({
map: this.renderTarget.texture,
});
this.mesh = new THREE.Mesh(geometry, material);
this.scene.add(this.mesh);
I'm still new to shaders so please be patient. :-)
There are probably infinite ways to mask in three.js. Here's a few
Use the stencil buffer
The stencil buffer is similar to the depth buffer in that it for every pixel in the canvas or render target there is a corresponding stencil pixel. You need to tell three.js you want a stencil buffer and then you can tell it when rendering what to do with the stencil buffer when you're drawing things.
You the stencil settings on Material
You tell three.js
what to do if the pixel you're drawing fails the stencil test
what to do if the pixel your drawing fails the depth test
what to do if the pixel you're drawing passes the depth test.
The things you can tell it to do for each of those conditions are keep (do nothing), increment, decrement, increment wraparound, decrement wraparound, set to a specific value.
You can also specify what the stencil test is by setting Material.stencilFunc
So, for example you can clear the stencil buffer to 0 (the default?), set the stencil test so it always passes, and set the conditions so if the depth test passes you set the stencil to 1. You then draw a bunch of things. Everywhere they are drawn there will now be a 1 in then stencil buffer.
Now you change the stencil test so it only passes if it equals 1 (or 0) and then draw more stuff, now things will only be drawn where the stencil equals the value you set
This exmaple uses the stencil
Mask with an alpha mask
In this case you need 2 color textures and an alpha texture. How you get those is up to you. For example you could load all 3 from images. Or you could generate all 3 using 3 render targets. Finally you pass all 3 to a shader that mixes them as in
gl_FragColor = mix(colorFromTexture1, colorFromTexture2, valueFromAlphaTexture);
This example uses this alpha mixing method
Note that if one of your 2 colors textures has an alpha channel you could use just 2 textures. You'd just pass one of the color textures as your mask.
Or of course you could calculate a mask based on the colors in one image or the other or both. For example
// assume you have function that converts from rgb to hue,saturation,value
vec3 hsv = rgb2hsv(colorFromTexture1.rgb);
float hue = hsv.x;
// pick one or the other if color1 is close to green
float mixAmount = step(abs(hue - 0.33), 0.05);
gl_FragColor = mix(colorFromTexture1, colorFromTexture2, mixAmount);
The point here is not that exact code, it's that you can make any formula you want for the mask, based on whatever you want, color, position, random math, sine waves based on time, some formula that generates a blob, whatever. The most common is some code that just looks up a mixAmount from a texture which is what the linked example above does.
ShaderToy style
Your code above appears to be a shadertoy style shader which is drawing a fullscreen quad. Instead of drawing 2 separate things you can just draw them in the same shader
vec4 computeBlueBlob() {
...
return blueBlobColor;
}
vec4 computeWhiteBlob() {
...
return whtieBlobColor;
}
vec4 main() {
vec4 color1 = computeBlueBlob();
vec4 color2 = computeWhiteBlob();
float mixAmount = color.a; // note: color2.a could be any
// formula to decide which colors
// to draw
gl_FragColor = mix(color1, color2, mixAmount);
}
note just like above how you compute mixAmount is up to you. Based it off anything, color1.r, color2.r, some formula, some hue, some other blob generation function, whatever.

Weird behavior if DataTextures are not square (1:1)

I have a pair of shader programs where everything works great if my DataTextures are square (1:1), but if one or both are 2:1 (width:height) ratio the behavior gets messed up. I can extend each of the buffers with unused filler to make sure they are always square, but this seems unnecessarily costly (memory-wise) in the long run, as one of the two buffer sizes is quite large to start. Is there a way to handle a 2:1 buffer in this scenario?
I have a pair of shader programs:
The first is a single frag shader used to calculate the physics for my program (it writes out a texture tPositions to be read by the second set of shaders). It is driven by Three.js's GPUComputeRenderer script (resolution set at the size of my largest buffer.)
The second pair of shaders (vert and frag) use the data texture tPositions produced by the first shader program to then render out the visualization (resolution set at the window size).
The visualization is a grid of variously shaped particle clouds. In the shader programs, there are textures of two different sizes: The smaller sized textures contain information for each of the particle clouds (one texel per cloud), larger sized textures contain information for each particle in all of the clouds (one texel per particle). Both have a certain amount of unused filler tacked on the end to fill them out to a power of 2.
Texel-per-particle sized textures (large): tPositions, tOffsets
Texel-per-cloud sized textures (small): tGridPositionsAndSeeds, tSelectionFactors
As I said before, the problem is that when these two buffer sizes (the large and the small) are at a 1:1 (width: height) ratio, the programs work just fine; however, when one or both are at a 2:1 (width:height) ratio the behavior is a mess. What accounts for this, and how can I address it? Thanks in advance!
UPDATE: Could the problem be related to my housing the texel coords to read the tPosition texture in the shader's position attribute in the second shader program? If so, perhaps this Github issue regarding texel coords in the position attribute may be related, though I can't find a corresponding question/answer here on SO.
UPDATE 2:
I'm also looking into whether this could be an unpack alignment issue. Thoughts?
Here's the set up in Three.js for the first shader program:
function initComputeRenderer() {
textureData = MotifGrid.getBufferData();
gpuCompute = new GPUComputationRenderer( textureData.uPerParticleBufferWidth, textureData.uPerParticleBufferHeight, renderer );
dtPositions = gpuCompute.createTexture();
dtPositions.image.data = textureData.tPositions;
offsetsTexture = new THREE.DataTexture( textureData.tOffsets, textureData.uPerParticleBufferWidth, textureData.uPerParticleBufferHeight, THREE.RGBAFormat, THREE.FloatType );
offsetsTexture.needsUpdate = true;
gridPositionsAndSeedsTexture = new THREE.DataTexture( textureData.tGridPositionsAndSeeds, textureData.uPerMotifBufferWidth, textureData.uPerMotifBufferHeight, THREE.RGBAFormat, THREE.FloatType );
gridPositionsAndSeedsTexture.needsUpdate = true;
selectionFactorsTexture = new THREE.DataTexture( textureData.tSelectionFactors, textureData.uPerMotifBufferWidth, textureData.uPerMotifBufferHeight, THREE.RGBAFormat, THREE.FloatType );
selectionFactorsTexture.needsUpdate = true;
positionVariable = gpuCompute.addVariable( "tPositions", document.getElementById( 'position_fragment_shader' ).textContent, dtPositions );
positionVariable.wrapS = THREE.RepeatWrapping; // repeat wrapping for use only with bit powers: 8x8, 16x16, etc.
positionVariable.wrapT = THREE.RepeatWrapping;
gpuCompute.setVariableDependencies( positionVariable, [ positionVariable ] );
positionUniforms = positionVariable.material.uniforms;
positionUniforms.tOffsets = { type: "t", value: offsetsTexture };
positionUniforms.tGridPositionsAndSeeds = { type: "t", value: gridPositionsAndSeedsTexture };
positionUniforms.tSelectionFactors = { type: "t", value: selectionFactorsTexture };
positionUniforms.uPerMotifBufferWidth = { type : "f", value : textureData.uPerMotifBufferWidth };
positionUniforms.uPerMotifBufferHeight = { type : "f", value : textureData.uPerMotifBufferHeight };
positionUniforms.uTime = { type: "f", value: 0.0 };
positionUniforms.uXOffW = { type: "f", value: 0.5 };
}
Here is the first shader program (only a frag for physics calculations):
// tPositions is handled by the GPUCompute script
uniform sampler2D tOffsets;
uniform sampler2D tGridPositionsAndSeeds;
uniform sampler2D tSelectionFactors;
uniform float uPerMotifBufferWidth;
uniform float uPerMotifBufferHeight;
uniform float uTime;
uniform float uXOffW;
[...skipping a noise function for brevity...]
void main() {
vec2 uv = gl_FragCoord.xy / resolution.xy;
vec4 offsets = texture2D( tOffsets, uv ).xyzw;
float alphaMass = offsets.z;
float cellIndex = offsets.w;
if (cellIndex >= 0.0) {
float damping = 0.98;
float texelSizeX = 1.0 / uPerMotifBufferWidth;
float texelSizeY = 1.0 / uPerMotifBufferHeight;
vec2 perMotifUV = vec2( mod(cellIndex, uPerMotifBufferWidth)*texelSizeX, floor(cellIndex / uPerMotifBufferHeight)*texelSizeY );
perMotifUV += vec2(0.5*texelSizeX, 0.5*texelSizeY);
vec4 selectionFactors = texture2D( tSelectionFactors, perMotifUV ).xyzw;
float swapState = selectionFactors.x;
vec4 gridPosition = texture2D( tGridPositionsAndSeeds, perMotifUV ).xyzw;
vec2 noiseSeed = gridPosition.zw;
vec4 nowPos;
vec2 velocity;
nowPos = texture2D( tPositions, uv ).xyzw;
velocity = vec2(nowPos.z, nowPos.w);
if ( swapState == 0.0 ) {
nowPos = texture2D( tPositions, uv ).xyzw;
velocity = vec2(nowPos.z, nowPos.w);
} else { // if swapState == 1
//nowPos = vec4( -(uTime) + gridPosition.x + offsets.x, gridPosition.y + offsets.y, 0.0, 0.0 );
nowPos = vec4( -(uTime) + offsets.x, offsets.y, 0.0, 0.0 );
velocity = vec2(0.0, 0.0);
}
[...skipping the physics for brevity...]
vec2 newPosition = vec2(nowPos.x - velocity.x, nowPos.y - velocity.y);
// Write new position out
gl_FragColor = vec4(newPosition.x, newPosition.y, velocity.x, velocity.y);
}
Here is the setup for the second shader program:
Note: The renderer for this section is a WebGLRenderer at window size
function makePerParticleReferencePositions() {
var positions = new Float32Array( perParticleBufferSize * 3 );
var texelSizeX = 1 / perParticleBufferDimensions.width;
var texelSizeY = 1 / perParticleBufferDimensions.height;
for ( var j = 0, j3 = 0; j < perParticleBufferSize; j ++, j3 += 3 ) {
positions[ j3 + 0 ] = ( ( j % perParticleBufferDimensions.width ) / perParticleBufferDimensions.width ) + ( 0.5 * texelSizeX );
positions[ j3 + 1 ] = ( Math.floor( j / perParticleBufferDimensions.height ) / perParticleBufferDimensions.height ) + ( 0.5 * texelSizeY );
positions[ j3 + 2 ] = j * 0.0001; // this is the real z value for the particle display
}
return positions;
}
var positions = makePerParticleReferencePositions();
...
// Add attributes to the BufferGeometry:
gridOfMotifs.geometry.addAttribute( 'position', new THREE.BufferAttribute( positions, 3 ) );
gridOfMotifs.geometry.addAttribute( 'aTextureIndex', new THREE.BufferAttribute( motifGridAttributes.aTextureIndex, 1 ) );
gridOfMotifs.geometry.addAttribute( 'aAlpha', new THREE.BufferAttribute( motifGridAttributes.aAlpha, 1 ) );
gridOfMotifs.geometry.addAttribute( 'aCellIndex', new THREE.BufferAttribute(
motifGridAttributes.aCellIndex, 1 ) );
uniformValues = {};
uniformValues.tSelectionFactors = motifGridAttributes.tSelectionFactors;
uniformValues.uPerMotifBufferWidth = motifGridAttributes.uPerMotifBufferWidth;
uniformValues.uPerMotifBufferHeight = motifGridAttributes.uPerMotifBufferHeight;
gridOfMotifs.geometry.computeBoundingSphere();
...
function makeCustomUniforms( uniformValues ) {
selectionFactorsTexture = new THREE.DataTexture( uniformValues.tSelectionFactors, uniformValues.uPerMotifBufferWidth, uniformValues.uPerMotifBufferHeight, THREE.RGBAFormat, THREE.FloatType );
selectionFactorsTexture.needsUpdate = true;
var customUniforms = {
tPositions : { type : "t", value : null },
tSelectionFactors : { type : "t", value : selectionFactorsTexture },
uPerMotifBufferWidth : { type : "f", value : uniformValues.uPerMotifBufferWidth },
uPerMotifBufferHeight : { type : "f", value : uniformValues.uPerMotifBufferHeight },
uTextureSheet : { type : "t", value : texture }, // this is a sprite sheet of all 10 strokes
uPointSize : { type : "f", value : 18.0 }, // the radius of a point in WebGL units, e.g. 30.0
// Coords for the hatch textures:
uTextureCoordSizeX : { type : "f", value : 1.0 / numTexturesInSheet },
uTextureCoordSizeY : { type : "f", value : 1.0 }, // the size of a texture in the texture map ( they're square, thus only one value )
};
return customUniforms;
}
And here is the corresponding shader program (vert & frag):
Vertex shader:
uniform sampler2D tPositions;
uniform sampler2D tSelectionFactors;
uniform float uPerMotifBufferWidth;
uniform float uPerMotifBufferHeight;
uniform sampler2D uTextureSheet;
uniform float uPointSize; // the radius size of the point in WebGL units, e.g. "30.0"
uniform float uTextureCoordSizeX; // vertical dimension of each texture given the full side = 1
uniform float uTextureCoordSizeY; // horizontal dimension of each texture given the full side = 1
attribute float aTextureIndex;
attribute float aAlpha;
attribute float aCellIndex;
varying float vCellIndex;
varying vec2 vTextureCoords;
varying vec2 vTextureSize;
varying float vAlpha;
varying vec3 vColor;
varying float vDensity;
[...skipping noise function for brevity...]
void main() {
vec4 tmpPos = texture2D( tPositions, position.xy );
vec2 pos = tmpPos.xy;
vec2 vel = tmpPos.zw;
vCellIndex = aCellIndex;
if (aCellIndex >= 0.0) { // buffer filler cell indexes are -1
float texelSizeX = 1.0 / uPerMotifBufferWidth;
float texelSizeY = 1.0 / uPerMotifBufferHeight;
vec2 perMotifUV = vec2( mod(aCellIndex, uPerMotifBufferWidth)*texelSizeX, floor(aCellIndex / uPerMotifBufferHeight)*texelSizeY );
perMotifUV += vec2(0.5*texelSizeX, 0.5*texelSizeY);
vec4 selectionFactors = texture2D( tSelectionFactors, perMotifUV ).xyzw;
float aSelectedMotif = selectionFactors.x;
float aColor = selectionFactors.y;
float fadeFactor = selectionFactors.z;
vTextureCoords = vec2( aTextureIndex * uTextureCoordSizeX, 0 );
vTextureSize = vec2( uTextureCoordSizeX, uTextureCoordSizeY );
vAlpha = aAlpha * fadeFactor;
vDensity = vel.x + vel.y;
vAlpha *= abs( vDensity * 3.0 );
vColor = vec3( 1.0, aColor, 1.0 ); // set RGB color associated to vertex; use later in fragment shader.
gl_PointSize = uPointSize;
} else { // if this is a filler cell index (-1)
vAlpha = 0.0;
vDensity = 0.0;
vColor = vec3(0.0, 0.0, 0.0);
gl_PointSize = 0.0;
}
gl_Position = projectionMatrix * modelViewMatrix * vec4( pos.x, pos.y, position.z, 1.0 ); // position holds the real z value. The z value of "color" is a component of velocity
}
Fragment shader:
uniform sampler2D tPositions;
uniform sampler2D uTextureSheet;
varying float vCellIndex;
varying vec2 vTextureCoords;
varying vec2 vTextureSize;
varying float vAlpha;
varying vec3 vColor;
varying float vDensity;
void main() {
gl_FragColor = vec4( vColor, vAlpha );
if (vCellIndex >= 0.0) { // only render out the texture if this point is not a buffer filler
vec2 realTexCoord = vTextureCoords + ( gl_PointCoord * vTextureSize );
gl_FragColor = gl_FragColor * texture2D( uTextureSheet, realTexCoord );
}
}
Expected Behavior: I can achieve this by forcing all the DataTextures to be 1:1
Weird Behavior: When the smaller DataTextures are 2:1 those perfectly horizontal clouds in the top right of the picture below form and have messed up physics. When the larger DataTextures are 2:1, the grid is skewed, and the clouds appear to be missing parts (as seen below). When both the small and large textures are 2:1, both odd behaviors happen (this is the case in the image below).
Thanks to an answer to my related question here, I now know what was going wrong. The problem was in the way I was using the arrays of indexes (1,2,3,4,5...) to access the DataTextures' texels in the shader.
In this function (and the one for the larger DataTextures)...
float texelSizeX = 1.0 / uPerMotifBufferWidth;
float texelSizeY = 1.0 / uPerMotifBufferHeight;
vec2 perMotifUV = vec2(
mod(aCellIndex, uPerMotifBufferWidth)*texelSizeX,
floor(aCellIndex / uPerMotifBufferHeight)*texelSizeY );
perMotifUV += vec2(0.5*texelSizeX, 0.5*texelSizeY);
...I assumed that in order to create the y value for my custom uv, perMotifUV, I would need to divide the aCellIndex by the height of the buffer, uPerMotifBufferHeight (it's "vertical" dimension). However, as explained in the SO Q&A here the indices should, of course, be divided by the buffer's width, which would then tell you how many rows down you are!
Thus, the function should be revised to...
float texelSizeX = 1.0 / uPerMotifBufferWidth;
float texelSizeY = 1.0 / uPerMotifBufferHeight;
vec2 perMotifUV = vec2(
mod(aCellIndex, uPerMotifBufferWidth)*texelSizeX,
floor(aCellIndex / uPerMotifBufferWidth)*texelSizeY ); **Note the change to uPerMotifBufferWidth here
perMotifUV += vec2(0.5*texelSizeX, 0.5*texelSizeY);
The reason my program worked on square DataTextures (1:1) is that in such cases the height and width were equal, so my function was effectively dividing by width in the incorrect line because height=width!

Flickering of THREE.Points based on camera position and texture coordinates, but only on Nvidia cards

I have a problem with flickering of THREE.Points depending on their UV coordinates, as seen in the following codepen: http://codepen.io/anon/pen/qrdQeY?editors=0010
The code in the codepen is condensed down as much as possible (171 lines),
but to summarize what I'm doing:
Rendering sprites using THREE.Points
BufferGeometry contains spritesheet index and position for each sprite
RawShaderMaterial with custom vertex and pixel shader to lookup up the UV coordinates of the sprite for the given index
a 128x128px spritesheet with 4x4 cells contains the sprites
Here's the code:
/// FRAGMENT SHADER ===========================================================
const fragmentShader = `
precision highp float;
uniform sampler2D spritesheet;
// number of spritesheet subdivisions both vertically and horizontally
// e.g. for a 4x4 spritesheet this number is 4
uniform float spritesheetSubdivisions;
// vParams[i].x = sprite index
// vParams[i].z = sprite alpha
varying vec3 vParams;
/**
* Maps regular UV coordinates spanning the entire spritesheet
* to a specific sprite within the spritesheet based on the given index,
* which points into a spritesheel cell (depending on spritesheetSubdivisions
* and assuming that the spritesheet is regular and square).
*/
vec2 spriteIndexToUV(float idx, vec2 uv) {
float cols = spritesheetSubdivisions;
float rows = spritesheetSubdivisions;
float x = mod(idx, cols);
float y = floor(idx / cols);
return vec2(x / cols + uv.x / cols, 1.0 - (y / rows + (uv.y) / rows));
}
void main() {
vec2 uv = spriteIndexToUV(vParams.x, gl_PointCoord);
vec4 diffuse = texture2D(spritesheet, uv);
float alpha = diffuse.a * vParams.z;
if (alpha < 0.5) discard;
gl_FragColor = vec4(diffuse.xyz, alpha);
}
`
// VERTEX SHADER ==============================================================
const vertexShader = `
precision highp float;
uniform mat4 modelViewMatrix;
uniform mat4 projectionMatrix;
uniform float size;
uniform float scale;
attribute vec3 position;
attribute vec3 params; // x = sprite index, y = unused, z = sprite alpha
attribute vec3 color;
varying vec3 vParams;
void main() {
vParams = params;
vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );
gl_Position = projectionMatrix * mvPosition;
gl_PointSize = size * ( scale / - mvPosition.z );
}
`
// THREEJS CODE ===============================================================
const scene = new THREE.Scene();
const camera = new THREE.PerspectiveCamera(75, window.innerWidth / window.innerHeight, 0.1, 1000);
const renderer = new THREE.WebGLRenderer({canvas: document.querySelector("#mycanvas")});
renderer.setSize(window.innerWidth, window.innerHeight);
renderer.setClearColor(0xf0f0f0)
const pointGeometry = new THREE.BufferGeometry()
pointGeometry.addAttribute("position", new THREE.BufferAttribute(new Float32Array([
-1.5, -1.5, 0,
-0.5, -1.5, 0,
0.5, -1.5, 0,
1.5, -1.5, 0,
-1.5, -0.5, 0,
-0.5, -0.5, 0,
0.5, -0.5, 0,
1.5, -0.5, 0,
-1.5, 0.5, 0,
-0.5, 0.5, 0,
0.5, 0.5, 0,
1.5, 0.5, 0,
-1.5, 1.5, 0,
-0.5, 1.5, 0,
0.5, 1.5, 0,
1.5, 1.5, 0,
]), 3))
pointGeometry.addAttribute("params", new THREE.BufferAttribute(new Float32Array([
0, 0, 1, // sprite index 0 (row 0, column 0)
1, 0, 1, // sprite index 1 (row 0, column 1)
2, 0, 1, // sprite index 2 (row 0, column 2)
3, 0, 1, // sprite index 3 (row 0, column 4)
4, 0, 1, // sprite index 4 (row 1, column 0)
5, 0, 1, // sprite index 5 (row 1, column 1)
6, 0, 1, // ...
7, 0, 1,
8, 0, 1,
9, 0, 1,
10, 0, 1,
11, 0, 1,
12, 0, 1,
13, 0, 1,
14, 0, 1,
15, 0, 1
]), 3))
const img = document.querySelector("img")
const texture = new THREE.TextureLoader().load(img.src);
const pointMaterial = new THREE.RawShaderMaterial({
transparent: true,
vertexShader: vertexShader,
fragmentShader: fragmentShader,
uniforms: {
spritesheet: {
type: "t",
value: texture
},
spritesheetSubdivisions: {
type: "f",
value: 4
},
size: {
type: "f",
value: 1
},
scale: {
type: "f",
value: window.innerHeight / 2
}
}
})
const points = new THREE.Points(pointGeometry, pointMaterial)
scene.add(points)
const render = function (timestamp) {
requestAnimationFrame(render);
camera.position.z = 5 + Math.sin(timestamp / 1000.0)
renderer.render(scene, camera);
};
render();
// resize viewport
window.addEventListener( 'resize', onWindowResize, false );
function onWindowResize(){
camera.aspect = window.innerWidth / window.innerHeight;
camera.updateProjectionMatrix();
renderer.setSize( window.innerWidth, window.innerHeight );
}
If you have an Nvidia card you will see three sprites flicker while the camera
is moving back and forth along the Z axis. On integrated Intel graphics chips
the problem does not occur.
I'm not sure how to solve this problem. The affected uv coordinates seem kind of random. I'd be grateful for any pointers.
The mod()/floor() calculations inside your spriteIndexToUV() function are causing problems in certain constellations (when spriteindex is a multiple of spritesheetSubdivisions).
I could fix it by tweaking the cols variable with a small epsilon:
vec2 spriteIndexToUV(float idx, vec2 uv)
{
float cols = spritesheetSubdivisions - 1e-6; // subtract epsilon
float rows = spritesheetSubdivisions;
float x = mod(idx, cols);
float y = floor(idx / cols);
return vec2(x / cols + uv.x / cols, 1.0 - (y / rows + (uv.y) / rows));
}
PS: That codepen stuff is really cool, didn't know that this existed :-)
edit: It might be even better/clearer to write it like this:
float cols = spritesheetSubdivisions;
float rows = spritesheetSubdivisions;
float y = floor ((idx+0.5) / cols);
float x = idx - cols * y;
That way, we keep totally clear of any critical situations in the floor operation -- plus we get rid of the mod() call.
As to why floor (idx/4) is sometimes producing 0 instead of 1 when idx should be exactly 4.0, I can only speculate that the varying vec3 vParams is subjected to some interpolation when it goes from the vertex-shader to the fragment-shader stage, thus leading to the fragment-shader seeing e.g. 3.999999 instead of exactly 4.0.

How to tween 10,000+ particles in Three.js?

I have a THREE.Points object consisting of many (10,000+) vertices (a.k.a. particles).
However, I run into performance problems when I try to tween the location of the individual particles. This is expected given that I am using the following code which loops through all the particles and assigns each a tween.
var duration = 500;
for( var i = 0; i < particles.geometry.vertices.length; i++ ){
// http://threejs.org/examples/css3d_sprites.html
var currentVertex = particles.geometry.vertices[i];
new TWEEN.Tween( currentVertex )
.to(
{
x: newVertices[i].x,
y: newVertices[i].y,
z: newVertices[i].z,
},
duration * ( Math.random() + 1 )
)
.easing( TWEEN.Easing.Exponential.InOut )
.onUpdate( function(){
particles.geometry.verticesNeedUpdate = true;
})
.start();
}
Is there a better way to approach this?
I do not mind if all the particles are updated in one draw call to their new inbetween positions.
Got it running after chewing on it for a while.
Solution was a combination of using Buffer Geometry (as seen here) and using shaders as suggested by #2pha.
The tweening function was moved to the vertex shader where it was possible to fake per pixel tweening. The various data needed by the tween function was stored in the ShaderMaterial uniforms and BufferGeometry attributes.
Some pseudo code,
// Buffer Geometry
var geometry = new THREE.BufferGeometry();
geometry.addAttribute( 'position', new THREE.BufferAttribute( bPositions, 3 ) );
geometry.addAttribute( 'color', new THREE.BufferAttribute( bColors, 3 ) );
geometry.addAttribute( 'targetPosition', new THREE.BufferAttribute( bPositions2, 3 ) );
// Shader Material
var material = new THREE.ShaderMaterial({
uniforms: {
elapsedTime : {
type: "f",
value: 0.0
},
duration : {
type: "f",
value: 0.0
}
},
vertexShader: document.getElementById( 'vertexShader' ).textContent,
fragmentShader: document.getElementById( 'fragmentShader' ).textContent
});
// Vertex Shader
uniform float elapsedTime;
uniform float duration;
attribute vec3 targetPosition;
float exponentialInOut( float k ){
// https://github.com/tweenjs/tween.js/blob/master/src/Tween.js
if( k <= 0.0 ){
return 0.0;
}
else if( k >= 1.0 ){
return 1.0;
}
else if( ( k *= 2.0 ) < 1.0 ){
return 0.5 * pow( 1024.0, k - 1.0 );
}
return 0.5 * ( - pow( 2.0, - 10.0 * ( k - 1.0 ) ) + 2.0 );
}
void main(){
// calculate time value (also vary duration of each particle)
float t = elapsedTime / ( duration * ( 1.0 + randomNum.x ) );
// calculate progress
float progress = exponentialInOut( t );
// calculate new position (simple linear interpolation)
vec3 delta = targetPosition - position;
vec3 newPosition = position + delta * progress;
// something
gl_Position = projectionMatrix * modelViewMatrix * vec4( newPosition, 1.0 );
}
You are probably never going to get the performance you want animating that many particles in javascript alone.
Your best bet is probably moving your animation code to a shader so it is handled by the GPU which should easily be able to give you the performance you want.
There is a blog post of how to do this with code examples at : Animating a Million Letters Using Three.js

Artifacts from linear filtering a floating point texture in the fragment shader

I'm using the following code taken from this tutorial to perform linear filtering on a floating point texture in my fragment shader in WebGL:
float fHeight = 512.0;
float fWidth = 1024.0;
float texelSizeX = 1.0/fWidth;
float texelSizeY = 1.0/fHeight;
float tex2DBiLinear( sampler2D textureSampler_i, vec2 texCoord_i )
{
float p0q0 = texture2D(textureSampler_i, texCoord_i)[0];
float p1q0 = texture2D(textureSampler_i, texCoord_i + vec2(texelSizeX, 0))[0];
float p0q1 = texture2D(textureSampler_i, texCoord_i + vec2(0, texelSizeY))[0];
float p1q1 = texture2D(textureSampler_i, texCoord_i + vec2(texelSizeX , texelSizeY))[0];
float a = fract( texCoord_i.x * fWidth ); // Get Interpolation factor for X direction.
// Fraction near to valid data.
float pInterp_q0 = mix( p0q0, p1q0, a ); // Interpolates top row in X direction.
float pInterp_q1 = mix( p0q1, p1q1, a ); // Interpolates bottom row in X direction.
float b = fract( texCoord_i.y * fHeight );// Get Interpolation factor for Y direction.
return mix( pInterp_q0, pInterp_q1, b ); // Interpolate in Y direction.
}
On an Nvidia GPU this looks fine, but on two other computers with an Intel integrated GPU it looks like this:
There are lighter or darker lines appearing that shouldn't be there. They become visible if you zoom in, and tend to get more frequent the more you zoom. When zooming in very closely, they appear at the edge of every texel of the texture I'm filtering. I tried changing the precision statement in the fragment shader, but this didn't fix it.
The built-in linear filtering works on both GPUs, but I still need the manual filtering as a fallback for GPUs that don't support linear filtering on floating point textures with WebGL.
The Intel GPUs are from a desktop Core i5-4460 and a notebook with an Intel HD 5500 GPU. For all precisions of floating point values I get a rangeMin and rangeMax of 127 and a precision of 23 from getShaderPrecisionFormat.
Any idea on what causes these artifacts and how I can work around it?
Edit:
By experimenting a bit more I found that reducing the texel size variable in the fragment shader removes these artifacts:
float texelSizeX = 1.0/fWidth*0.998;
float texelSizeY = 1.0/fHeight*0.998;
Multiplying by 0.999 isn't enough, but multiplying the texel size by 0.998 removes the artifacts.
This is obviously not a satisfying fix, I still don't know what causes it and I probably caused artifacts on other GPUs or drivers now. So I'm still interested in figuring out what the actual issue is here.
It's not clear to me what the code is trying to do. It's not reproducing the GPU's bilinear because that would be using pixels centered around the texcoord.
In other words, as implemented
vec4 c = tex2DBiLinear(someSampler, someTexcoord);
is NOT equivilent to LINEAR
vec4 c = texture2D(someSampler, someTexcoord);
texture2D looks at pixels someTexcoord +/- texelSize * .5 where as tex2DBiLinear is looking at pixels someTexcoord and someTexcoord + texelSize
You haven't given enough code to repo your issue. I'm guessing the size of the source texture is 512x1024 but since you didn't post that code I have no idea if your source texture matches the defined size. You also didn't post what size your target is. The top image you posted is 471x488. Was that your target size? You also didn't post your code for what texture coordinates you're using and the code that manipulates them.
Guessing that your source is 512x1024, your target is 471x488 I can't repo your issue.
const fs = `
precision highp float;
uniform sampler2D tex;
varying vec2 v_texcoord;
float tex2DBiLinear( sampler2D textureSampler_i, vec2 texCoord_i )
{
float fHeight = 1024.0;
float fWidth = 512.0;
float texelSizeX = 1.0/fWidth;
float texelSizeY = 1.0/fHeight;
float p0q0 = texture2D(textureSampler_i, texCoord_i)[0];
float p1q0 = texture2D(textureSampler_i, texCoord_i + vec2(texelSizeX, 0))[0];
float p0q1 = texture2D(textureSampler_i, texCoord_i + vec2(0, texelSizeY))[0];
float p1q1 = texture2D(textureSampler_i, texCoord_i + vec2(texelSizeX , texelSizeY))[0];
float a = fract( texCoord_i.x * fWidth ); // Get Interpolation factor for X direction.
// Fraction near to valid data.
float pInterp_q0 = mix( p0q0, p1q0, a ); // Interpolates top row in X direction.
float pInterp_q1 = mix( p0q1, p1q1, a ); // Interpolates bottom row in X direction.
float b = fract( texCoord_i.y * fHeight );// Get Interpolation factor for Y direction.
return mix( pInterp_q0, pInterp_q1, b ); // Interpolate in Y direction.
}
void main() {
gl_FragColor = vec4(tex2DBiLinear(tex, v_texcoord), 0, 0, 1);
}
`;
const vs = `
attribute vec4 position;
attribute vec2 texcoord;
varying vec2 v_texcoord;
void main() {
gl_Position = position;
v_texcoord = texcoord;
}
`;
const gl = document.querySelector('canvas').getContext('webgl');
// compile shaders, link programs, look up locations
const programInfo = twgl.createProgramInfo(gl, [vs, fs]);
// calls gl.createBuffer, gl.bindBuffer, gl.bufferData for each array
const bufferInfo = twgl.createBufferInfoFromArrays(gl, {
position: {
numComponents: 2,
data: [
-1, -1,
1, -1,
-1, 1,
1, 1,
],
},
texcoord: [
0, 0,
1, 0,
0, 1,
1, 1,
],
indices: [
0, 1, 2,
2, 1, 3,
],
});
const ctx = document.createElement('canvas').getContext('2d');
ctx.canvas.width = 512;
ctx.canvas.height = 1024;
const gradient = ctx.createRadialGradient(256, 512, 0, 256, 512, 700);
gradient.addColorStop(0, 'red');
gradient.addColorStop(1, 'cyan');
ctx.fillStyle = gradient;
ctx.fillRect(0, 0, 512, 1024);
const tex = twgl.createTexture(gl, {
src: ctx.canvas,
minMag: gl.NEAREST,
wrap: gl.CLAMP_TO_EDGE,
auto: false,
});
gl.useProgram(programInfo.program);
// calls gl.bindBuffer, gl.enableVertexAttribArray, gl.vertexAttribPointer
twgl.setBuffersAndAttributes(gl, programInfo, bufferInfo);
// calls gl.drawArrays or gl.drawElements
twgl.drawBufferInfo(gl, bufferInfo);
<script src="https://twgljs.org/dist/4.x/twgl-full.min.js"></script>
<canvas width="471" height="488"></canvas>
If you think the issue is related to floating point textures I can't repo there either
const fs = `
precision highp float;
uniform sampler2D tex;
varying vec2 v_texcoord;
float tex2DBiLinear( sampler2D textureSampler_i, vec2 texCoord_i )
{
float fHeight = 1024.0;
float fWidth = 512.0;
float texelSizeX = 1.0/fWidth;
float texelSizeY = 1.0/fHeight;
float p0q0 = texture2D(textureSampler_i, texCoord_i)[0];
float p1q0 = texture2D(textureSampler_i, texCoord_i + vec2(texelSizeX, 0))[0];
float p0q1 = texture2D(textureSampler_i, texCoord_i + vec2(0, texelSizeY))[0];
float p1q1 = texture2D(textureSampler_i, texCoord_i + vec2(texelSizeX , texelSizeY))[0];
float a = fract( texCoord_i.x * fWidth ); // Get Interpolation factor for X direction.
// Fraction near to valid data.
float pInterp_q0 = mix( p0q0, p1q0, a ); // Interpolates top row in X direction.
float pInterp_q1 = mix( p0q1, p1q1, a ); // Interpolates bottom row in X direction.
float b = fract( texCoord_i.y * fHeight );// Get Interpolation factor for Y direction.
return mix( pInterp_q0, pInterp_q1, b ); // Interpolate in Y direction.
}
void main() {
gl_FragColor = vec4(tex2DBiLinear(tex, v_texcoord), 0, 0, 1);
}
`;
const vs = `
attribute vec4 position;
attribute vec2 texcoord;
varying vec2 v_texcoord;
void main() {
gl_Position = position;
v_texcoord = texcoord;
}
`;
const gl = document.querySelector('canvas').getContext('webgl');
const ext = gl.getExtension('OES_texture_float');
if (!ext) { alert('need OES_texture_float'); }
// compile shaders, link programs, look up locations
const programInfo = twgl.createProgramInfo(gl, [vs, fs]);
// calls gl.createBuffer, gl.bindBuffer, gl.bufferData for each array
const bufferInfo = twgl.createBufferInfoFromArrays(gl, {
position: {
numComponents: 2,
data: [
-1, -1,
1, -1,
-1, 1,
1, 1,
],
},
texcoord: [
0, 0,
1, 0,
0, 1,
1, 1,
],
indices: [
0, 1, 2,
2, 1, 3,
],
});
const ctx = document.createElement('canvas').getContext('2d');
ctx.canvas.width = 512;
ctx.canvas.height = 1024;
const gradient = ctx.createRadialGradient(256, 512, 0, 256, 512, 700);
gradient.addColorStop(0, 'red');
gradient.addColorStop(1, 'cyan');
ctx.fillStyle = gradient;
ctx.fillRect(0, 0, 512, 1024);
const tex = twgl.createTexture(gl, {
src: ctx.canvas,
type: gl.FLOAT,
minMag: gl.NEAREST,
wrap: gl.CLAMP_TO_EDGE,
auto: false,
});
gl.useProgram(programInfo.program);
// calls gl.bindBuffer, gl.enableVertexAttribArray, gl.vertexAttribPointer
twgl.setBuffersAndAttributes(gl, programInfo, bufferInfo);
// calls gl.drawArrays or gl.drawElements
twgl.drawBufferInfo(gl, bufferInfo);
const e = gl.getExtension('WEBGL_debug_renderer_info');
if (e) {
console.log(gl.getParameter(e.UNMASKED_VENDOR_WEBGL));
console.log(gl.getParameter(e.UNMASKED_RENDERER_WEBGL));
}
<script src="https://twgljs.org/dist/4.x/twgl-full.min.js"></script>
<canvas width="471" height="488"></canvas>
If any of the values are off. If your source texture size doesn't match fWidth and fHeigth or if your texture coordinates are different or adjusted in some way then of course maybe I could repo. If any of those are different then I can imagine issues.
Tested in Intel Iris Pro and Intel HD Graphics 630. Also tested on an iPhone6+. Note that you need to make sure your fragment shader is running in precision highp float but that setting would likely only affect mobile GPUs.
We had almost identical issue that ocurred at specific zoom of texture. We found out that positions where artifacts appers can be detected with this conditions:
vec2 imagePosCenterity = fract(uv * imageSize);
if (abs(imagePosCenterity.x-0.5) < 0.001 || abs(imagePosCenterity.y-0.5) < 0.001) {}
Where imageSize is width and height of the texture.
Our solution looks like this:
vec4 texture2DLinear( sampler2D texSampler, vec2 uv) {
vec2 pixelOff = vec2(0.5,0.5)/imageSize;
vec2 imagePosCenterity = fract(uv * imageSize);
if (abs(imagePosCenterity.x-0.5) < 0.001 || abs(imagePosCenterity.y-0.5) < 0.001) {
pixelOff = pixelOff-vec2(0.00001,0.00001);
}
vec4 tl = texture2D(texSampler, uv + vec2(-pixelOff.x,-pixelOff.y));
vec4 tr = texture2D(texSampler, uv + vec2(pixelOff.x,-pixelOff.y));
vec4 bl = texture2D(texSampler, uv + vec2(-pixelOff.x,pixelOff.y));
vec4 br = texture2D(texSampler, uv + vec2(pixelOff.x,pixelOff.y));
vec2 f = fract( (uv.xy-pixelOff) * imageSize );
vec4 tA = mix( tl, tr, f.x );
vec4 tB = mix( bl, br, f.x );
return mix( tA, tB, f.y );
}
It is really dirty solution but it works. Changing texelSize as suggested above only moves artifacts to another positions. We are changing texelSize a little bit only on problematic positions.
Why we are using linear texture interpolation in GLSL shader? It is because we need to use 1 sample per pixel 16 bit per sample texture with broad set of compatibile devices. It is possible to do it only with OES_texture_half_float_linear extension. By our approach it is possible to solve it without using extension.

Resources