We are catching link errors on Solaris with makefiles generated by CMake 3.6.2. In the testing below, we are using GCC and not SunCC. From the looks of it, CMake is applying our options inconsistently:
Typical compile command
[ 2%] Building CXX object CMakeFiles/cryptopp-object.dir/cpu.cpp.o
/bin/c++ -fPIC -march=native -m64 -Wa,--divide -o CMakeFiles/cryptopp-object.dir/cryptlib.cpp.o
-c /export/home/jwalton/cryptopp/cpu.cpp
Abbreviated link command
/bin/c++ CMakeFiles/cryptest.dir/bench1.cpp.o CMakeFiles/cryptest.dir/bench2.cpp.o
...
CMakeFiles/cryptest.dir/fipstest.cpp.o -o cryptest.exe libcryptopp.a -lnsl -lsocket
Typical link error
ld: fatal: file CMakeFiles/cryptopp-object.dir/cryptlib.cpp.o: wrong ELF class: ELFCLASS64
Notice the file was compiled with -march=native -m64 (its a 64-bit capable machine and kernel), but the link invocation is missing it (the default is 32-bit on Solaris).
Attempting to search for "cmake use CXXFLAGS link" is producing too much irrelevant noise, and I'm not having much luck finding the CMakeList.txt option. I also want to avoid duplicating the work into LDFLAGS, or performing the work of reformatting the options (CXXFLAGS option -Wl,-x becomes LDFLAGS option -x).
How do I instruct CMake to use both CXX and CXXFLAGS when driving link?
I found Running a different program for the linker on the CMake users mailing list, but it does not feel right to me (also, the problem and context are slightly different). It also does not work.
Here is a small example:
PROJECT(foo)
SET(CMAKE_CXX_LINK_EXECUTABLE
"purify <CMAKE_CXX_COMPILER> <CMAKE_CXX_LINK_FLAGS> <LINK_FLAGS> <FLAGS> <OBJECTS> -o <TARGET> <LINK_LIBRARIES>")
ADD_EXECUTABLE(foo foo.cxx)
I also found Setting global link flags on the mailing list. It does not work, either.
SET(CMAKE_EXE_LINKER_FLAGS "${CMAKE_CXX_FLAGS}")
SET(CMAKE_SHARED_LINKER_FLAGS "${CMAKE_CXX_FLAGS}")
SET(CMAKE_MODULE_LINKER_FLAGS "${CMAKE_CXX_FLAGS}")
Related
CMake 3.9, arm-gcc 5.4.1, Linux / OSX:
I'm enabling stack smashing protection by adding -fstack-protector-strong to my compiler flags. This instructs gcc to look for specially-named symbols in the hard-coded libraries libssp.a and libssp_nonshared.a.
These libraries exist in my application as part of the build, but they do not yet exist when CMake is interrogating my compiler during the configuration phase.
This causes CMake to fail, which makes sense:
[2/2] Linking CXX executable cmTC_0f43d
FAILED: cmTC_0f43d
/path/to/arm-none-eabi-g++ -fstack-protector-strong
CMakeFiles/cmTC_0f43d.dir/testCXXCompiler.cxx.obj -o cmTC_0f43d
/path/to/arm-none-eabi/bin/ld: cannot find -lssp_nonshared
/path/to/arm-none-eabi/bin/ld: cannot find -lssp
Is there any way to:
Tell CMake to not use -fstack-protector-strong during compiler interrogation?
Provide an empty "dummy" version of libssp and libssp_nonshared during interrogation?
Skip compiler interrogation entirely? (This is a custom toolchain.)
Or any other way to work around this?
Tell CMake to not use -fstack-protector-strong during compiler interrogation?
Just add this compiler flag after the project() call, when CMake checks a compiler.
project(MyProject)
# ...
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fstack-protector-strong")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fstack-protector-strong")
Instead of appending the flag to CMAKE_*_FLAGS variable, you may also add it via add_compile_options command:
project(MyProject)
# ...
add_compile_options("-fstack-protector-strong")
In my case, option 3 turned out to be easy. In my toolchain CMake file, I simply added:
set(CMAKE_C_COMPILER_WORKS ON)
set(CMAKE_CXX_COMPILER_WORKS ON)
And now CMake doesn't waste any time interrogating the features of my compiler.
This works in my specific case (embedded systems firmware), but it would be nice how to get CMake and -fstack-protector-strong to work on non-embedded programs as well.
I'm having some trouble building shared libraries from Ada packages without using GPR's.
I have a package, Numerics, in files "numerics.ads" and "numerics.adb". They have no dependencies. There is a small build script which does:
gnatmake -Os numerics.ad[bs] -cargs -fPIC
gcc -shared numerics.o -o libnumerics.so -Wl,-soname,libnumerics.so
The .so and .ali files are installed at /usr/lib, and the .ads file is installed at /usr/include.
gnatls -v outputs the following relevant parts:
Source Search Path:
<Current_Directory>
/usr/include
/usr/lib/gcc/x86_64-unknown-linux-gnu/5.1.0/adainclude
Object Search Path:
<Current_Directory>
/usr/lib
/usr/lib/gcc/x86_64-unknown-linux-gnu/5.1.0/adalib
So GNAT should have no problem finding the files.
Then, trying to compile a package that depends on Numerics:
gnatmake -O2 mathematics.ad[bs] -cargs -fPIC
outputs:
gcc -c -fPIC mathematics.adb
gcc -c -I./ -fPIC -I- /usr/include/numerics.ads
cannot generate code for file numerics.ads (package spec)
gnatmake: "/usr/include/numerics.ads" compilation error
This error has me thinking GNAT doesn't recognize the shared library, and is trying to rebuild Numerics.
I'd like to be building shared libraries, and only supply the spec for reference/documentation purposes.
edit:
So, it looks like gprbuild does two things I'm not doing. The first, is also passing -lnumerics to the compiler. The second, which shouldn't matter since libnumerics.so is in a standard directory anyways, is -L«ProjectDirectory». GPRbuild is obviously not doing desired behavior either, even though it's building the dependent project. It should be using the installed library /usr/lib/libnumerics.so, but instead is using «path»/Numerics/build/libnumerics.so. Furthermore, after building Numerics with GPRbuild, and then renaming the body to make it as if the body didn't exist (like with the installed files), when building Mathematics with GPRbuild, it complains about the exact same problem. It's as if the libraries aren't even shared, and GPRBuild is just making them look that way (except readelf reports the correct dependencies inside the libraries).
Adding -lnumerics to the build script accomplishes nothing; the build error is exactly the same. I'm completely lost at this point.
edit:
Following the link from Simon, the buildscript has changed to:
gnatmake -O2 mathematics.ad[bs] \
-aI/usr/include \
-aO/usr/lib \
-cargs -fPIC \
-largs -lnumerics
The error is essentially the same:
gcc -c -O2 -I/usr/include/ -fPIC mathematics.adb
gcc -c -I./ -O2 -I/usr/include/ -fPIC -I- /usr/include/numerics.ads
cannot generate code for file numerics.ads (package spec)
gnatmake: "/usr/include/numerics.ads" compilation error
I thought to check libnumerics.so is actually a correct shared library. ldd reports:
linux-vdso.so.1 (0x00007ffd944c1000)
libc.so.6 => /usr/lib/libc.so.6 (0x00007f50d3927000)
/usr/lib64/ld-linux-x86-64.so.2 (0x00007f50d3ed4000)
So I'm thinking yes, the library is fine, and gnatmake still isn't recognizing it.
In general, you need to install the body of the packages as well (numerics.adb in your case). Also, I suspect you want to set the ALI files
(numerics.ali) as read-only, so that gnatmake does not try to recompile them.
One of my users is getting an error message when trying to compile a C part of our mixed C/C++ codebase on ubuntu 12.04 with gcc 4.8.1
We have a library in C++ with some C-linkage functions in, and want to compile a C program linking to it. The library is compiled with g++ and builds fine. The c program fails like this:
> gcc -O3 -g -fPIC -I/media/Repo/lcdm/code/cosmosis/ -Wall -Wextra -pedantic -Werror -std=c99 -o c_datablock_t c_datablock_test.c -L . -lcosmosis
cc1plus: error: command line option ‘-std=c99’ is valid for C/ObjC but not for C++ [-Werror]
The program has a lower case .c file suffix, so why does gcc try to compile it as c++ ? We have not seen this on other OSes.
(I know we could kick the problem down the road by removing -Werror or handle this particular file with -x c but I'd like to solve the real problem.)
why does gcc try to compile it as c++
I can think of only two plausible explanations, and they both are end-user's fault.
It could be that the user transferred sources via Windows, and the file is really called C_DATABLOCK_TEST.C, and the user is misleading you.
It could also be that the user overwrote his gcc with g++ (surprisingly many people believe that gcc and g++ are the same thing, but they are not).
To disprove the first possibility, ask the user to execute his build commands under script, and send you resulting typescript.
To disprove the second, ask the user to add -v to the compile command.
This look like GCC Bug 54641, which has been fixed in a later release of GCC. It is only a warning, but your compile flags are causing GCC to treat all warnings as errors.
I figured out that CUDA does not work in 64bit mode on my mac (or couldn't get it running so far). Therefore I decided to compile everything for 32bit.
I use cmake 2.8 and added the following options
add_definitions(-Wall -m32)
set(CUDA_64_BIT_DEVICE_CODE OFF)
set(CMAKE_MODULE_LINKER_FLAGS -m32)
However when it tries to link it it does something like this:
/usr/bin/c++ -mmacosx-version-min=10.6 -Wl,-search_paths_first -headerpad_max_install_names CMakeFiles/SimpleTestsCUDA.dir/BlockMatrix.cpp.o CMakeFiles/SimpleTestsCUDA.dir/Matrix.cpp.o ./SimpleTestsCUDA_generated_SimpleTests.cu.o ./SimpleTestsCUDA_generated_BlockMatrix.cu.o -o SimpleTestsCUDA /usr/local/cuda/lib/libcudart.dylib /usr/local/cuda/lib/libcuda.dylib
Which fails with a lot of "file is not of required architecture" warnings from ld. Now if I add manually -m32 to the command above it works. However I have no idea how to teach cmake to add -m32 to every gcc (or ld) invocation. So far it does it for nvcc and gcc, but not for linking..
If you set the env var LDFLAGS before you run cmake on the project it will work as well:
export LDFLAGS=-m32
cmake ../source
see above
set(CMAKE_C_FLAGS -m32)
set(CMAKE_CXX_FLAGS -m32)
Another solution might be to say:
if (Apple)
set (CMAKE_OSX_ARCHITECTURES i386)
set (CUDA_64_BIT_DEVICE_CODE OFF)
endif (Apple)
Hope this helps.
I am trying to write a matlab mex function which uses libhdf5; My Linux install provides libhdf5-1.8 shared libraries and headers. However, my version of Matlab, r2007b, provides a libhdf5.so from the 1.6 release. (Matlab .mat files bootstrap hdf5, evidently). When I compile the mex, it segfaults in Matlab. If I downgrade my version of libhdf5 to 1.6 (not a long-term option), the code compiles and runs fine.
question: how do I solve this problem? how do I tell the mex compilation process to link against /usr/lib64/libhdf5.so.6 instead of /opt/matlab/bin/glnxa64/libhdf5.so.0 ? When I try to do this using -Wl,-rpath-link,/usr/lib64 in my compilation, I get errors like:
/usr/lib/gcc/x86_64-pc-linux-gnu/4.3.4/../../../../x86_64-pc-linux-gnu/bin/ld: warning: libhdf5.so.0, needed by /opt/matlab/matlab75/bin/glnxa64/libmat.so, may conflict with libhdf5.so.6
/usr/lib/gcc/x86_64-pc-linux-gnu/4.3.4/../../../../lib64/crt1.o: In function `_start':
(.text+0x20): undefined reference to `main'
collect2: ld returned 1 exit status
mex: link of 'hdf5_read_strings.mexa64' failed.
make: *** [hdf5_read_strings.mexa64] Error 1
ack. the last resort would be to download a local copy of the hdf5-1.6.5 headers and be done with it, but this is not future proof (a Matlab version upgrade is in my future.). any ideas?
EDIT: per Ramashalanka's excellent suggestions, I
A) called mex -v to get the 3 gcc commands; the last is the linker command;
B) called that linker command with a -v to get the collect command;
C) called that collect2 -v -t and the rest of the flags.
The relevant parts of my output:
/usr/bin/ld: mode elf_x86_64
/usr/lib/gcc/x86_64-pc-linux-gnu/4.3.4/../../../../lib64/crti.o
/usr/lib/gcc/x86_64-pc-linux-gnu/4.3.4/crtbeginS.o
hdf5_read_strings.o
mexversion.o
-lmx (/opt/matlab/matlab75/bin/glnxa64/libmx.so)
-lmex (/opt/matlab/matlab75/bin/glnxa64/libmex.so)
-lhdf5 (/usr/lib/gcc/x86_64-pc-linux-gnu/4.3.4/../../../../lib64/libhdf5.so)
/lib64/libz.so
-lm (/usr/lib/gcc/x86_64-pc-linux-gnu/4.3.4/../../../../lib64/libm.so)
-lstdc++ (/usr/lib/gcc/x86_64-pc-linux-gnu/4.3.4/libstdc++.so)
-lgcc_s (/usr/lib/gcc/x86_64-pc-linux-gnu/4.3.4/libgcc_s.so)
/lib64/libpthread.so.0
/lib64/libc.so.6
/lib64/ld-linux-x86-64.so.2
-lgcc_s (/usr/lib/gcc/x86_64-pc-linux-gnu/4.3.4/libgcc_s.so)
/usr/lib/gcc/x86_64-pc-linux-gnu/4.3.4/crtendS.o
/usr/lib/gcc/x86_64-pc-linux-gnu/4.3.4/../../../../lib64/crtn.o
So, in fact the libhdf5.so from /usr/lib64 is being referenced. However, this is being overriden, I believe, by the environment variable LD_LIBRARY_PATH, which my version of Matlab automagically sets at run-time so it can locate its own versions of e.g. libmex.so, etc.
I am thinking that the crt_file.c example works either b/c it does not use the functions I am using (H5DOpen, which had a signature change in the move from 1.6 to 1.8 (yes, I am using -DH5_USE_16_API)), or, less likely, b/c it does not hit the parts of Matlab internals that need hdf5. ack.
The following worked on my system:
Install hdf5 version 1.8.4 (you've already done this: I installed the source and compiled to ensure it is compatible with my system, that I get gcc versions and that I get the static libraries - e.g. the binaries offered for my system are icc specific).
Make a target file. You already have your own file. I used the simple h5_crtfile.c from here (a good idea to start with this simple file first a look for warnings). I changed main to mexFunction with the usual args and included mex.h.
Specify the static 1.8.4 library you want to load explicitly (the full path with no -L for it necessary) and don't include -lhdf5 in the LDFLAGS. Include a -t option so you can ensure that there is no dynamic hdf5 library being loaded. You also need -lz, with zlib installed. For darwin we also need a -bundle in LDFLAGS:
mex CFLAGS='-I/usr/local/hdf5/include' LDFLAGS='-t /usr/local/hdf5/lib/libhdf5.a -lz -bundle' h5_crtfile.c -v
For linux, you need an equivalent position-independent call, e.g. fPIC and maybe -shared, but I don't have a linux system with a matlab license, so I can't check:
mex CFLAGS='-fPIC -I/usr/local/hdf5/include' LDFLAGS='-t /usr/local/hdf5/lib/libhdf5.a -lz -shared' h5_crtfile.c -v
Run the h5_crtfile mex file. This runs without problems on my machine. It just does a H5Fcreate and H5Fclose to create "file.h5" in the current directory, and when I call file file.h5 I get file.h5: Hierarchical Data Format (version 5) data.
Note that if I include a -lhdf5 above in step 3, then matlab aborts when I try to run the executable (because it then uses matlab's dynamic libraries which for me are version 1.6.5), so this is definitely solving the problem on my system.
Thanks for the question. My solution above is definitely much easier for me than what I was doing before. Hopefully the above works for you.
I am accepting Ramashalanka's answer because it led me to the exact solution which I will post here for completeness only:
download the hdf5-1.6.5 library from the hdf5 website, and install the header files in a local directory;
tell mex to look for "hdf5.h" in this local directory, rather than in the standard location (e.g. /usr/include.)
tell mex to compile my code and the shared object library provided by matlab, and do not use the -ldfh5 flag in LDFLAGS.
the command I used is, essentially:
/opt/matlab/matlab_default/bin/mex -v CC#gcc CXX#g++ CFLAGS#"-Wall -O3 -fPIC -I./hdf5_1.6.5/src -I/usr/include -I/opt/matlab/matlab_default/extern/include" CXXFLAGS#"-Wall -O3 -fPIC -I./hdf5_1.6.5/src -I/usr/include -I/opt/matlab/matlab_default/extern/include " -O -lmwblas -largeArrayDims -L/usr/lib64 hdf5_read_strings.c /opt/matlab/matlab_default/bin/glnxa64/libhdf5.so.0
this gets translated by mex into the commands:
gcc -c -I/opt/matlab/matlab75/extern/include -DMATLAB_MEX_FILE -Wall -O3 -fPIC -I./hdf5_1.6.5/src -I/usr/include -I/opt/matlab/matlab_default/extern/include -O -DNDEBUG hdf5_read_strings.c
gcc -c -I/opt/matlab/matlab75/extern/include -DMATLAB_MEX_FILE -Wall -O3 -fPIC -I./hdf5_1.6.5/src -I/usr/include -I/opt/matlab/matlab_default/extern/include -O -DNDEBUG /opt/matlab/matlab75/extern/src/mexversion.c
gcc -O -pthread -shared -Wl,--version-script,/opt/matlab/matlab75/extern/lib/glnxa64/mexFunction.map -Wl,--no-undefined -o hdf5_read_strings.mexa64 hdf5_read_strings.o mexversion.o -lmwblas -L/usr/lib64 /opt/matlab/matlab_default/bin/glnxa64/libhdf5.so.0 -Wl,-rpath-link,/opt/matlab/matlab_default/bin/glnxa64 -L/opt/matlab/matlab_default/bin/glnxa64 -lmx -lmex -lmat -lm -lstdc++
this solution should work on all my various target machines and at least until I upgrade to matlab r2009a, which I believe uses hdf5-1.8. thanks for all the help, sorry for being so dense with this--I think I was overly-committed to using the packaged version of hdf5, rather than a local set of header files.
Note this would all have been trivial if Mathworks had provided a set of the header files with the Matlab distribution...