Can't isolate pixels from av_frame_copy_to_buffer - ffmpeg

I'm trying to pull the YUV pixel data from an AVFrame, modify the pixels, and put it back into FFmpeg.
I'm currently using this to retrieve the YUV buffer
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(base->format);
int baseSize = av_image_get_buffer_size(base->format, base->width, base->height, 32);
uint8_t *baseBuffer = (uint8_t*)malloc(baseSize);
av_image_copy_to_buffer(baseBuffer, baseSize, base->data, base->linesize, base->format, base->width, base->height, 32);
But I can't seem to correctly target pixels in that buffer. From the source code they seem to be stacking the planes on top of each other, leading me to attempt this
int width = base->width;
int height = base->height;
int chroma2h = desc->log2_chroma_h;
int linesizeY = base->linesize[0];
int linesizeU = base->linesize[1];
int linesizeV = base->linesize[2];
int chromaHeight = (height + (1 << chroma2h) -1) >> chroma2h;
int x = 100;
int y = 100;
uint8_t *vY = base;
uint8_t *vU = base +(linesizeY*height);
uint8_t *vV = base +((linesizeY*height) + (linesizeU*chromaHeight));
vY+= x + (y * linesizeY);
vU+= x + (y * linesizeU);
vV+= x + (y * linesizeV);
Using that, if I try to modify pixels from a range of 300,300-400,400 I get a small box darker than the rest of the video, along with horizontal stripes of darkness along the video. The original color is still there, so I think I'm still touching the Y plane on all 3 pointers.
How can I actually hit the pixels I want to hit?

Related

Direct Access to CreateDIBitmap Bits

[The final fix, which works unconditionally: use SetDIBitsToDevice, not BitBlt, to copy out the post-text-draw image data. With this change, all occurrences of the problem are gone.]
I fixed the problem I'm having, but for the life of me I can't figure out why it occurred.
Create a bitmap with CreateDIBitmap. Get a pointer to the bitmap bits.
Select the bitmap into a memory DC.
Background fill the bitmap by directly writing the bitmap memory.
TextOut.
No text displays.
What fixed the problem: change item 3. from direct fill to a call to FillRect. All is well, it works perfectly.
This is under Windows 10 but from what little I could find on the web, it spans all versions of Windows. NO operations work on the bitmap - even calling FillRect - after the manual write. No savvy, Kimosabe. Elsewhere in the app, I even build gradient fills by directly writing to that bitmap memory and there is no problem. But once TextOut is called after the manual fill, the bitmap is locked (effectively) and no further functions work on it - nor do any return an error.
I'm using a font with a 90 degree escapement. Have not tried it with a "normal" font, 0 degree escapement. DrawTextEx with DT_CALCRECT specifically states it only works on 0 degree escapement fonts so I had to use TextOut for this reason.
Very bizarre.
No, there were no stupid mistakes like using the same text color as the background color. I've spent too long on this for that. One option people have available is that the endless energy that would normally be spent destroying the question and/or the person who asked it could instead be used to write a few lines of code and try it for yourself.
Here's a function to make a bitmap. Don't pass a plain colour, pass a gradient fill, say going from white to pinkish.
Does it display correctly? If so, does the TextOut call on top of that work?
static HBITMAP MakeBitmap(unsigned char *rgba, int width, int height, VOID **buff)
{
VOID *pvBits; // pointer to DIB section
HBITMAP answer;
BITMAPINFO bmi;
HDC hdc;
int x, y;
int red, green, blue, alpha;
// setup bitmap info
bmi.bmiHeader.biSize = sizeof(BITMAPINFOHEADER);
bmi.bmiHeader.biWidth = width;
bmi.bmiHeader.biHeight = height;
bmi.bmiHeader.biPlanes = 1;
bmi.bmiHeader.biBitCount = 32; // four 8-bit components
bmi.bmiHeader.biCompression = BI_RGB;
bmi.bmiHeader.biSizeImage = width * height * 4;
hdc = CreateCompatibleDC(GetDC(0));
answer = CreateDIBSection(hdc, &bmi, DIB_RGB_COLORS, &pvBits, NULL, 0x0);
for (y = 0; y < height; y++)
{
for (x = 0; x < width; x++)
{
red = rgba[(y*width + x) * 4];
green = rgba[(y*width + x) * 4 + 1];
blue = rgba[(y*width + x) * 4 + 2];
alpha = rgba[(y*width + x) * 4 + 3];
red = (red * alpha) >> 8;
green = (green * alpha) >> 8;
blue = (blue * alpha) >> 8;
((UINT32 *)pvBits)[(height - y - 1) * width + x] = (alpha << 24) | (red << 16) | (green << 8) | blue;
}
}
DeleteDC(hdc);
*buff = pvBits;
return answer;
}

Count the number of black pixels using ByteBuffer javacv

I have use this code..I am new to javacv and I need to get the pixels one by one in a region and get the color of that pixel. Can I please know how to do it using the ByteBuffer ,because byte buffer can read pixel by pixel and I need to check whether the pixel is black or white...
Can anyone please consider about this..I am really stuck here...
IplImage img=cvLoadImage("img\\ROI.jpg");
CvScalar Black = cvScalar(0, 0, 0, 0);
CvScalar white = cvScalar(255, 255, 255, 255);
ByteBuffer buffer = img.getByteBuffer();
for(int y = 0; y < img.height(); y++) {
for(int x = 0; x < img.width(); x++) {
int index = y * img.widthStep() + x * img.nChannels();
// Used to read the pixel value - the 0xFF is needed to cast from
// an unsigned byte to an int.
int value = buffer.get(index) & 0xFF;
// Sets the pixel to a value (greyscale).
buffer.put(index, (byte) value);
// Sets the pixel to a value (RGB, stored in BGR order).
//buffer.putInt(index, Black);
// buffer.put(index + 1, white);
}
}

Pixel reordering is wrong when trying to process and display image copy with lower res

I'm currently making an application using processing intended to take an image and apply 8bit style processing to it: that is to make it look pixelated. To do this it has a method that take a style and window size as parameters (style is the shape in which the window is to be displayed - rect, ellipse, cross etc, and window size is a number between 1-10 squared) - to produce results similar to the iphone app pxl ( http://itunes.apple.com/us/app/pxl./id499620829?mt=8 ). This method then counts through the image's pixels, window by window averages the colour of the window and displays a rect(or which every shape/style chosen) at the equivalent space on the other side of the sketch window (the sketch when run is supposed to display the original image on the left mirror it with the processed version on the right).
The problem Im having is when drawing the averaged colour rects, the order in which they display becomes skewed..
Although the results are rather amusing, they are not what I want. Here the code:
//=========================================================
// GLOBAL VARIABLES
//=========================================================
PImage img;
public int avR, avG, avB;
private final int BLOCKS = 0, DOTS = 1, VERTICAL_CROSSES = 2, HORIZONTAL_CROSSES = 3;
public sRGB styleColour;
//=========================================================
// METHODS FOR AVERAGING WINDOW COLOURS, CREATING AN
// 8 BIT REPRESENTATION OF THE IMAGE AND LOADING AN
// IMAGE
//=========================================================
public sRGB averageWindowColour(color [] c){
// RGB Variables
float r = 0;
float g = 0;
float b = 0;
// Iterator
int i = 0;
int sizeOfWindow = c.length;
// Count through the window's pixels, store the
// red, green and blue values in the RGB variables
// and sum them into the average variables
for(i = 0; i < c.length; i++){
r = red (c[i]);
g = green(c[i]);
b = blue (c[i]);
avR += r;
avG += g;
avB += b;
}
// Divide the sum of the red, green and blue
// values by the number of pixels in the window
// to obtain the average
avR = avR / sizeOfWindow;
avG = avG / sizeOfWindow;
avB = avB / sizeOfWindow;
// Return the colour
return new sRGB(avR,avG,avB);
}
public void eightBitIT(int style, int windowSize){
img.loadPixels();
for(int wx = 0; wx < img.width; wx += (sqrt(windowSize))){
for(int wy = 0; wy < img.height; wy += (sqrt(windowSize))){
color [] tempCols = new color[windowSize];
int i = 0;
for(int x = 0; x < (sqrt(windowSize)); x ++){
for(int y = 0; y < (sqrt(windowSize)); y ++){
int loc = (wx+x) + (y+wy)*(img.width-windowSize);
tempCols[i] = img.pixels[loc];
// println("Window loc X: "+(wx+(img.width+5))+" Window loc Y: "+(wy+5)+" Window pix X: "+x+" Window Pix Y: "+y);
i++;
}
}
//this is ment to be in a switch test (0 = rect, 1 ellipse etc)
styleColour = new sRGB(averageWindowColour(tempCols));
//println("R: "+ red(styleColour.returnColourScaled())+" G: "+green(styleColour.returnColourScaled())+" B: "+blue(styleColour.returnColourScaled()));
rectMode(CORNER);
noStroke();
fill(styleColour.returnColourScaled());
//println("Rect Loc X: "+(wx+(img.width+5))+" Y: "+(wy+5));
ellipse(wx+(img.width+5),wy+5,sqrt(windowSize),sqrt(windowSize));
}
}
}
public PImage load(String s){
PImage temp = loadImage(s);
temp.resize(600,470);
return temp;
}
void setup(){
background(0);
// Load the image and set size of screen to its size*2 + the borders
// and display the image.
img = loadImage("oscilloscope.jpg");
size(img.width*2+15,(img.height+10));
frameRate(25);
image(img,5,5);
// Draw the borders
strokeWeight(5);
stroke(255);
rectMode(CORNERS);
noFill();
rect(2.5,2.5,img.width+3,height-3);
rect(img.width+2.5,2.5,width-3,height-3);
stroke(255,0,0);
strokeWeight(1);
rect(5,5,9,9); //window example
// process the image
eightBitIT(BLOCKS, 16);
}
void draw(){
//eightBitIT(BLOCKS, 4);
//println("X: "+mouseX+" Y: "+mouseY);
}
This has been bugging me for a while now as I can't see where in my code im offsetting the coordinates so they display like this. I know its probably something very trivial but I can seem to work it out. If anyone can spot why this skewed reordering is happening i would be much obliged as i have quite a lot of other ideas i want to implement and this is holding me back...
Thanks,

Fast algorithm for image distortion

I am working on a tool which distorts images, the purpose of the distortion is to project images to a sphere screen. The desired output is as the following image.
The code I use is as follow - for every Point(x, y) in the destination area, I calculate the corresponding pixel (sourceX, sourceY) in the original image to retrieve from.
But this approach is awkwardly slow, in my test, processing the sunset.jpg (800*600) requires more than 1500ms, if I remove the Mathematical/Trigonometrical calculations, calling cvGet2D and cvSet2D alone require more than 1200ms.
Is there a better way to do this? I am using Emgu CV (a .NET wrapper library for OpenCV) but examples in other language is also OK.
private static void DistortSingleImage()
{
System.Diagnostics.Stopwatch stopWatch = System.Diagnostics.Stopwatch.StartNew();
using (Image<Bgr, Byte> origImage = new Image<Bgr, Byte>("sunset.jpg"))
{
int frameH = origImage.Height;
using (Image<Bgr, Byte> distortImage = new Image<Bgr, Byte>(2 * frameH, 2 * frameH))
{
MCvScalar pixel;
for (int x = 0; x < 2 * frameH; x++)
{
for (int y = 0; y < 2 * frameH; y++)
{
if (x == frameH && y == frameH) continue;
int x1 = x - frameH;
int y1 = y - frameH;
if (x1 * x1 + y1 * y1 < frameH * frameH)
{
double radius = Math.Sqrt(x1 * x1 + y1 * y1);
double theta = Math.Acos(x1 / radius);
int sourceX = (int)(theta * (origImage.Width - 1) / Math.PI);
int sourceY = (int)radius;
pixel = CvInvoke.cvGet2D(origImage.Ptr, sourceY, sourceX);
CvInvoke.cvSet2D(distortImage, y, x, pixel);
}
}
}
distortImage.Save("Distort.jpg");
}
Console.WriteLine(stopWatch.ElapsedMilliseconds);
}
}
From my personal experience, I was doing some stereoscopic vision stuff, the best way to talk to openCV is through own wrapper, you could put your method in c++ and call it from c#, that would give you 1 call to native, faster code, and because under the hood Emgu's keeping OpenCV data, it's also possible to create an image with emgu, process it natively and enjoy processed image in c# again.
The get/set methods looks like Gdi's GetPixel / SetPixel ones, and, according to documentation they are "slow but safe way".
For staying with Emgu only, documentation tells that if you want to iterate over pixels, you should access .Data property:
The safe (slow) way
Suppose you are working on an Image. You can obtain the pixel on the y-th row and x-th column by calling
Bgr color = img[y, x];
Setting the pixel on the y-th row and x-th column is also simple
img[y,x] = color;
The fast way
The Image pixels values are stored in the Data property, a 3D array. Use this property if you need to iterate through the pixel values of the image.

How to joint some objects in digital image?

I'm looking for some algorithm to joint objects, for example, combine an apple into a tree in digital image and some demo in Matlab. Please show me some materials of that. Thanks for reading and helping me!!!
I not sure if I undertand your question, but if you are looking to do some image overlaping, as does photoshop layers, you can use some image characteristics to, through that characteristc, determine the degree of transparency.
For example, consider using two RGB images. Image A will be overlapped by image B. To do it, we'll use image B brightness to determine transparency degree (255 = 100%).
Intensity = pixel / 255;
NewPixel = (PixelA * (1 - Intensity)) + (PixelB * Intensity);
As intensity is a percentage and each pixel is multiplied by the complement of this percentage, the resulting sum will never overflow over 255 (max graylevel)
int WidthA = imageA.Width * channels;
int WidthB = imageB.Width * channels;
int width = Min(ImageA.Width, ImageB.Width) * channels;
int height = Min(ImageA.Height, ImageB.Height);
byte *ptrA = imageA.Buffer;
byte *ptrB = imageB.Buffer;
for (int y = 0; y < height; y++)
{
for (int x = 0; x < width; x += channels, ptrA += channels, ptrB += channels)
{
//Take the intensity of the pixel. If RGB (channels = 3), intensity = (R+B+G) / 3. If grayscale, the pixel value is intensity itself
int avg = 0;
for (int j = 0; j < channels; ++j)
{
avg += ptrB[j];
}
//Obtain the intensity as a value between 0..100%
double intensity = (double)(avg / channels) / 255;
for (int j = 0; j < channels; ++j)
{
//Write in image A the resulting pixel which is obtained by multiplying Image B pixel
//by 100% - intensity plus Image A pixel multiplied by the intensity
ptrA[j] = (byte) ((ptrB[j] * (1.0 - intensity)) + ((intensity) * ptrA[j]));
}
}
ptrA = imageA.Buffer + (y * WidthA));
ptrB = imageB.Buffer + (y * WidthB));
}
You can also change this algorithm in order to overlap Image A over B, in a different place. I'm assuming here the image B coordinate (0, 0) will overlap image A coordinate (0, 0).
But once again, I'm not sure if this is what you are looking for.

Resources