No member named value in std::is_convertible when using clang - gcc

In a very simple situation with a constrained constructor, testing for convertibility of the argument, an error is produced in clang, but not in g++:
#include <type_traits>
template <class T, class U>
constexpr bool Convertible = std::is_convertible<T,U>::value && std::is_convertible<U,T>::value;
template <class T>
struct A
{
template <class S, class = std::enable_if_t<Convertible<S,T>> >
A(S const&) {}
};
int main()
{
A<double> s = 1.0;
}
Maybe this issue is related to Is clang's c++11 support reliable?
The error clang gives, reads:
error: no member named 'value' in 'std::is_convertible<double, A<double> >'
constexpr bool Convertible = std::is_convertible<T,U>::value && std::is_convertible<U,T>::value;
~~~~~~~~~~~~~~~~~~~~~~~~~~^
I've tried
g++-5.4, g++-6.2 (no error)
clang++-3.5, clang++-3.8, clang++-3.9 (error)
with argument -std=c++1y and for clang either with -stdlib=libstdc++ or -stdlib=libc++.
Which compiler is correct? Is it a bug in clang or gcc? Or is the behavior for some reasons undefined and thus both compilers correct?

First of all, note that it works fine if you use:
A<double> s{1.0};
Instead, the error comes from the fact that you are doing this:
A<double> s = 1.0;
Consider the line below (extracted from the definition of Convertible):
std::is_convertible<U,T>::value
In your case, this is seen as it follows (once substitution has been performed):
std::is_convertible<double, A<double>>::value
The compiler says this clearly in the error message.
This is because a temporary A<double> is constructed from 1.0, then it is assigned to s.
Note that in your class template you have defined a (more or less) catch-all constructor, so a const A<double> & is accepted as well.
Moreover, remember that a temporary binds to a const reference.
That said, the error happens because in the context of the std::enable_if_t we have that A<double> is an incomplete type and from the standard we have this for std::is_convertible:
From and To shall be complete types [...]
See here for the working draft.
Because of that, I would say that it's an undefined behavior.
As a suggestion, you don't need to use std::enable_if_t in this case.
You don't have a set of functions from which to pick the best one up in your example.
A static_assert is just fine and error messages are nicer:
template <class S>
A(S const&) { static_assert(Convertible<S,T>, "!"); }

Related

Can't compile using boost::bimap [duplicate]

With gcc 10.1 and boost 1.73.0, the following code
#include <boost/bimap.hpp>
int main() {
boost::bimap<int, int> lookup;
}
fails to compile with flags -O2 --std=c++20, but will succeed with flags -O2 -std=c++17 (verified with compiler explorer).
This is possibly related to the following issue: https://github.com/boostorg/bimap/pull/15 (deprecated std::allocator<void>)
Is there some workaround I can use for now to get this code to successfully compile with --std=c++20?
The reason behind the error is not that the std::allocator<void> specialization is removed. Actually, it's still valid as the primary template with the void argument. The code fails to compile, because ::rebind is no longer part of std::allocator itself. Instead, an implementation should use std::allocator_traits<Alloc>::rebind_alloc<U>.
Fortunately, most containers usually allow to specify a custom allocator as a template argument. It's also the case for boost::bimap, where an allocator can be the third, fourth or fifth template parameter, according to docs. It defaults to std::allocator, but instead, boost::container::allocator can be used, which does not produce the error:
#include <boost/bimap.hpp>
#include <boost/container/allocator.hpp>
int main() {
boost::bimap<int, int, boost::container::allocator<int>> lookup;
}
This issue has recently been fixed in 6fba6e5. boost::bimap now properly detects if a nested ::rebind is available:
template<class A, class T, class = void>
struct allocator_rebind {
typedef typename detail::alloc_to<A, T>::type type;
};
template<class A, class T>
struct allocator_rebind<A, T,
typename detail::alloc_void<typename A::template rebind<T>::other>::type> {
typedef typename A::template rebind<T>::other type;
};

Remove class member type part from decltype

I ran into I case I had not seen before, while using decltype on a member of a templated class. I wanted to make a nicer make_unique so that changing type on the member does not cause fixing the make_unique calls. I wanted to avoid this using decltype(member)::element_type as the type for make_unique but got an error. Here is a simple snippet that shows the error (and I understand why it is shown):
#include <memory>
template<typename T>
struct foo
{
foo()
{
// g++ gives:
// dependent-name 'decltype (((foo<T>*)this)->foo<T>::p_)::element_type' is parsed as a non-type, but instantiation yields a type
// say 'typename decltype (((foo<T>*)this)->foo<T>::p_)::element_type' if a type is meant
//
// How can I atleast remove the class name from the type?
p_ = std::make_unique<decltype(p_)::element_type>();
// g++ gives:
// dependent-name 'decltype (p)::element_type' is parsed as a non-type, but instantiation yields a type
// say 'typename decltype (p)::element_type' if a type is meant
//
// makes sense since p here is dependent on T
std::unique_ptr<T> p = std::make_unique<decltype(p)::element_type>();
// This one is fine, makes sense, since the type is known
std::unique_ptr<int> p2 = std::make_unique<decltype(p2)::element_type>();
}
std::unique_ptr<T> p_;
};
int main()
{
foo<int> f;
return 0;
}
My question is, is there a nice/pretty way to remove the 'is a member of' ((foo<T>*)this)->foo<T>::p_))part from the decltype value, so that at least I could use the same fix and simply provide typename on the member variable p_ ? The long fix suggested by g++ seems kind of ugly.
5 minutes after posting I had an idea that I could do
p_ = std::make_unique<decltype(std::remove_reference(*p_)::type)>();
but that seems to give a parse error.
You can simply place a typename before decltype().
I mean
p_ = std::make_unique<typename decltype(p_)::element_type>();

C++11, Is it possible to force an instance to be extern but also a constant expression of a non-type template parameter?

Using C++11, g++ (GCC) 4.4.7 20120313 (Red Hat 4.4.7-18).
Lets pretend I have a templated function (pardon my terminology if it isn't quite right).
I want to perform a "general" algorithm based on what was supposed to be compile-time instances of "field". Where the only things that really changed are these constants which I moved into trait classes (only added one here but imagine there are more). Originally I was declaring it as
constexpr field FIELD1{1};
However in C++11, non-type template params need to have external linkage (unlike C++14 which can have internal and external linkage?). So because not's in the same translation unit I needed to use extern in order to give it external linkage (sorry if I butchered that explanation also). But by defining it extern I can't define it using constexpr and it seems that losing that constexpr constructor this field is no longer a valid constant expression to qualify as a non-type template param.
Any suggestions if there is some way I can get around this? Open to a new method of doing things. Below is a simplified (incomplete, and non-compiling version to get the gist of the organization).
So the error I am seeing is along the lines of
error: the value of ‘FIELD1’ is not usable in a constant expression
note: ‘FIELD1’ was not declared ‘constexpr’
extern const field FIELD1;
Not quite sure what could be a best alternative.
I can get rid of the second error by removing the constexpr from the constructor. But then I don't know how to approach the constant expression issue.
field.H
struct field
{
int thingone;
constexpr field(int i):thingone(i){}
};
extern const field FIELD1;
field.C
#include "field.H"
const field FIELD1{0};
field_traits.H
#include "field.H"
template< const field& T >
class fieldTraits;
template< >
class fieldTraits<FIELD1>
{
public:
// Let's say I have common field names
// with different constants that I want to plug
// into the "function_name" algorithm
static constexpr size_t field_val = 1;
};
function.H
#include "field.H"
template< const field& T, typename TT = fieldTraits<T> >
void function_name()
{
// Let's pretend I'm doing something useful with that data
std::cout << T.thingone << std::endl;
std::cout << TT::field_val << std::endl;
}
So because not's in the same translation unit I needed to use extern in order to give it external linkage (sorry if I butchered that explanation also). But by defining it extern I can't define it using constexpr [...]
Per my comment, you can. It wouldn't work for you, but it's a step that helps in coming up with something that would work:
extern constexpr int i = 10;
This is perfectly valid, gives i external linkage, and makes i usable in constant expressions.
But it doesn't allow multiple definitions, so it can't work in a header file which is included in multiple translation units.
Ordinarily, the way around that is with inline:
extern inline constexpr int i = 10;
But variables cannot be declared inline in C++11.
Except... when they don't need to be declared inline because the effect has already been achieved implicitly:
struct S {
static constexpr int i = 10;
};
Now, S::i has external linkage and is usable in constant expressions!
You may not even need to define your own class for this, depending on the constant's type: consider std::integral_constant. You can write
using i = std::integral_constant<int, 10>;
and now i::value will do exactly what you want.

static_assert with partial template specialization

template<typename T, typename U = void>
struct S { /* static_assert(0, "type unsupported"); */ };
template<typename T>
struct S<T, typename std::enable_if<std::is_integral<T>::value, void>::type> {
void foo() {}
};
...
S<int> i;
i.foo();
S<double> d;
// d.foo();
I would be expecting that the "master template" would never be instantiated for the case of int, but if I uncomment the static_assert, the S<int> instantiation will fail. Even a lone typedef S<int> Si; would fail to compile. (GCC 4.9.2 Cygwin)
What I aimed to achieve is not for S<double> to fail at the foo() call, but at the instantiation of the template itself, and that with a meaningful error message. I'm aware I can do something like typename T::nonexistent_type t; in the master template which will prevent the template for compiling, but that'd be inferior to a static_assert message. (Note: putting the static_assert within a function definition in the master template still fails compilation for S<int>)
Why does the static_assert fail even though that template is not instantiated? Is this mandated (or perhaps "unspecified") by the standard? Is there a way to fail with a static_assert the way I wish to?
The expression in the static_assert must be dependent on a template parameter if you wish it to be instantiation-time only. This is guaranteed by Standard- the implementation may (but has no obligation to) check static_assertions in templates that are not dependent on any template parameter.
Your code is a strange roundabout way of doing something like
template<typename T> struct S {
static_assert(std::is_integral<T>::value, "type unsupported");
void foo() {}
};
This clearly communicates to the compiler the dependency between the expression and the template parameter, and is far clearer and easier to read as well. I actually couldn't quite figure out if you wanted compilation to fail for integral types or for non-integral types.

Is this change in overload resolution between Clang 3.5 and 3.6 correct or a bug?

The code below compiles in Visual Studio 2013, gcc 4.8, clang 3.4 and clang 3.5 (Apple LLVM 6.0) but does not compile in clang 3.6 (via Apple LLVM 6.1)
The code is a simplified version of a complicated class in our codebase which is the minimum required to exhibit the issue.
The crux of the problem is that the copy construction of TYPED_VALUE is, in 3.6, evaluating the templated conversion operator for type STRING because of the presence of a constructor that accepts a STRING; this causes std::is_constructible to be evaluated which leads to it needing the definition of STRING (which we cannot provide here - would lead to a circular dependency in the full code).
class STRING;
class TYPED_VALUE
{
public:
TYPED_VALUE( const TYPED_VALUE& ) = default; // explicit or implicit doesn't make a difference
TYPED_VALUE( const STRING & ) {}
template< typename TYPE, typename std::enable_if<!std::is_pointer< TYPE >::value && !std::is_constructible< TYPE, const STRING& >::value && !std::is_constructible< TYPE, bool >::value, int >::type = 0 >
operator TYPE( void ) const = delete;
};
class TYPED_STORAGE
{
public:
TYPED_STORAGE( const TYPED_VALUE &v ) : value( v ) {}
TYPED_VALUE value;
};
The error message is
/type_traits:2329:38: error: incomplete type 'SICORE::STRING' used in type trait expression
: public integral_constant<bool, __is_constructible(_Tp, _Args...)>
^
/main.cpp:348:99: note: in instantiation of template class 'std::__1::is_constructible<SICORE::STRING, const SICORE::STRING &>' requested here
template< typename TYPE, typename std::enable_if<!std::is_pointer< TYPE >::value && !std::is_constructible< TYPE, const STRING& >::value && !std::is_constructible< TYPE, bool >::value, int >::type = 0 >
^
/main.cpp:349:9: note: while substituting prior template arguments into non-type template parameter [with TYPE = SICORE::STRING]
operator TYPE( void ) const = delete;
^~~~~~~~~~~~~~~~~~~~~~~~~~~
/main.cpp:355:56: note: while substituting deduced template arguments into function template 'operator type-parameter-0-0' [with TYPE = SICORE::STRING, $1 = (no value)]
TYPED_STORAGE( const TYPED_VALUE &v ) : value( v ) {}
^
/main.cpp:340:11: note: forward declaration of 'SICORE::STRING'
class STRING;
^
To me this seems like a bug in 3.6, in previous versions the overload resolution determines that the copy constructor is the best fit without having to evaluate the template arguments - I tried to understand the overload resolution notes in the standard but I think that just confused me more ;)
(This can be fixed by making either the constructor or the conversion operator explicit I realise, but that is not the behaviour we want)
Any standard experts out there know the answer?
I believe Clang is correct to produce this error:
The [temp.inst] section of the C++ standard in paragraph 10 says:
If a function template or a member function template specialization is
used in a way that involves overload resolution, a declaration of the
specialization is implicitly instantiated (14.8.3).
Forming the implicit conversion sequence necessary to rank the overload candidates for the call to TYPE_VALUE's constructor requires the instantiation of the conversion operator. And the use of an incomplete type parameter to the trait doesn't form an invalid type, so this isn't a substitution failure, it is a hard error.
The copy constructor of TYPED_VALUE uses a reference to STRING, it should not be evaluated.
I think this is a clang error.
I haven't read the new c++ standard for a long time, however, I couldn't make sure it hadn't changed.
templates are instantiated as-needed, and I think Clang 3.6 implemented a DR where it needed to instantiate a template earlier than 3.5 did.

Resources