Accessing S3 from Spark 2.0 - hadoop

I'm trying to access S3 file from SparkSQL job. I already tried solutions from several posts but nothing seems to work. Maybe because my EC2 cluster runs the new Spark2.0 for Hadoop2.7.
I setup hadoop this way:
sc.hadoopConfiguration.set("fs.s3a.impl","org.apache.hadoop.fs.s3a.S3AFileSystem")
sc.hadoopConfiguration.set("fs.s3a.awsAccessKeyId", accessKey)
sc.hadoopConfiguration.set("fs.s3a.awsSecretAccessKey", secretKey)
I build an uber-jar using sbt assembly using:
name := "test"
version := "0.2.0"
scalaVersion := "2.11.8"
libraryDependencies += "com.amazonaws" % "aws-java-sdk" % "1.7.4"
libraryDependencies += "org.apache.hadoop" % "hadoop-aws" % "2.7.3" excludeAll(
ExclusionRule("com.amazonaws", "aws-java-sdk"),
ExclusionRule("commons-beanutils")
)
libraryDependencies += "org.apache.spark" %% "spark-core" % "2.0.0" % "provided"
libraryDependencies += "org.apache.spark" %% "spark-sql" % "2.0.0" % "provided"
When I submit my job to the cluster, I always got the following errors:
Exception in thread "main" org.apache.spark.SparkException: Job
aborted due to stage failure: Task 0 in stage 0.0 failed 4 times, most
recent failure: Lost task 0.3 in stage 0.0 (TID 6, 172.31.7.246):
java.lang.RuntimeException: java.lang.ClassNotFoundException: Class
org.apache.hadoop.fs.s3a.S3AFileSystem not found at
org.apache.hadoop.conf.Configuration.getClass(Configuration.java:2195)
at
org.apache.hadoop.fs.FileSystem.getFileSystemClass(FileSystem.java:2638)
at
org.apache.hadoop.fs.FileSystem.createFileSystem(FileSystem.java:2651)
at org.apache.hadoop.fs.FileSystem.access$200(FileSystem.java:92) at
org.apache.hadoop.fs.FileSystem$Cache.getInternal(FileSystem.java:2687)
at org.apache.hadoop.fs.FileSystem$Cache.get(FileSystem.java:2669)
at org.apache.hadoop.fs.FileSystem.get(FileSystem.java:371) at
org.apache.spark.util.Utils$.getHadoopFileSystem(Utils.scala:1726) at
org.apache.spark.util.Utils$.doFetchFile(Utils.scala:662) at
org.apache.spark.util.Utils$.fetchFile(Utils.scala:446) at
org.apache.spark.executor.Executor$$anonfun$org$apache$spark$executor$Executor$$updateDependencies$3.apply(Executor.scala:476)
It seems that the driver is able to read from S3 without problem but not the workers/executors... I do not understand why my uberjar is not sufficient.
However, I tried as well without success to configure spark-submit using:
--packages com.amazonaws:aws-java-sdk:1.7.4,org.apache.hadoop:hadoop-aws:2.7.3
PS: If I switch to s3n protocol, I got the following exception:
java.io.IOException: No FileSystem for scheme: s3n

If you want to use s3n:
sc.hadoopConfiguration.set("fs.s3n.impl","org.apache.hadoop.fs.s3native.NativeS3FileSystem")
sc.hadoopConfiguration.set("fs.s3n.awsAccessKeyId", accessKey)
sc.hadoopConfiguration.set("fs.s3n.awsSecretAccessKey", secretKey)
Now, regarding the exception, you need to make sure both JARs are on the driver and worker classpaths, and make sure to distribute them to the worker node if you're using Client Mode via the --jars flag:
spark-submit \
--conf "spark.driver.extraClassPath=/location/to/aws-java-sdk.jar" \
--conf "spark.driver.extraClassPath=/location/to/hadoop-aws.jar" \
--jars /location/to/aws-java-sdk.jar,/location/to/hadoop-aws.jar \
Also, if you're building your uber JAR and including aws-java-sdk and hadoop-aws, no reason to use the --packages flag.

Actually all operations of spark working on workers. and you set these configuration on master so once you can try to app configuration of s3 on mapPartition{
}

Related

UnsatisfiedLinkError while writing to S3 using Staging S3A Committer on Windows

I'm trying to write Parquet data to AWS S3 directory with Apache Spark. I use my local machine on Windows 10 without having Spark and Hadoop installed, but rather added them as SBT dependency (Hadoop 3.2.1, Spark 2.4.5). My SBT is below:
scalaVersion := "2.11.11"
libraryDependencies ++= Seq(
"org.apache.spark" %% "spark-sql" % "2.4.5",
"org.apache.spark" %% "spark-hadoop-cloud" % "2.3.2.3.1.0.6-1",
"org.apache.hadoop" % "hadoop-client" % "3.2.1",
"org.apache.hadoop" % "hadoop-common" % "3.2.1",
"org.apache.hadoop" % "hadoop-aws" % "3.2.1",
"com.amazonaws" % "aws-java-sdk-bundle" % "1.11.704"
)
dependencyOverrides ++= Seq(
"com.fasterxml.jackson.core" % "jackson-core" % "2.11.0",
"com.fasterxml.jackson.core" % "jackson-databind" % "2.11.0",
"com.fasterxml.jackson.module" %% "jackson-module-scala" % "2.11.0"
)
resolvers ++= Seq(
"apache" at "https://repo.maven.apache.org/maven2",
"hortonworks" at "https://repo.hortonworks.com/content/repositories/releases/",
)
I use S3A Staging Directory Committer as described in Hadoop and Cloudera documentation. I'm also aware of these two questions on StackOverflow and used them for proper configuration:
Apache Spark + Parquet not Respecting Configuration to use “Partitioned” Staging S3A Committer
How To Get Local Spark on AWS to Write to S3
I have added all required (as of my understanging) configurations including latest two specific for Parquet:
val spark = SparkSession.builder()
.appName("test-run-s3a-commiters")
.master("local[*]")
.config("spark.hadoop.fs.s3a.impl", "org.apache.hadoop.fs.s3a.S3AFileSystem")
.config("spark.hadoop.fs.s3a.endpoint", "s3.eu-central-1.amazonaws.com")
.config("spark.hadoop.fs.s3a.aws.credentials.provider", "com.amazonaws.auth.profile.ProfileCredentialsProvider")
.config("spark.hadoop.fs.s3a.connection.maximum", "100")
.config("spark.hadoop.fs.s3a.committer.name", "directory")
.config("spark.hadoop.fs.s3a.committer.magic.enabled", "false")
.config("spark.hadoop.fs.s3a.committer.staging.conflict-mode", "append")
.config("spark.hadoop.fs.s3a.committer.staging.unique-filenames", "true")
.config("spark.hadoop.fs.s3a.committer.staging.abort.pending.uploads", "true")
.config("spark.hadoop.fs.s3a.buffer.dir", "tmp/")
.config("spark.hadoop.fs.s3a.committer.staging.tmp.path", "hdfs_tmp/")
.config("spark.hadoop.mapreduce.fileoutputcommitter.algorithm.version", "2")
.config("spark.hadoop.mapreduce.outputcommitter.factory.scheme.s3a", "org.apache.hadoop.fs.s3a.commit.S3ACommitterFactory")
.config("spark.sql.sources.commitProtocolClass", "org.apache.spark.internal.io.cloud.PathOutputCommitProtocol")
.config("spark.sql.parquet.output.committer.class", "org.apache.spark.internal.io.cloud.BindingParquetOutputCommitter")
.getOrCreate()
spark.sparkContext.setLogLevel("info")
From the logs I can see that StagingCommitter is actually applied (also I can see intermediate data in my local filesystem under specified paths and no _temporary directory in S3 during execution like it would be with default FileOutputCommitter).
Then I'm running simple code to write test data to S3 bucket:
import spark.implicits._
val sourceDF = spark
.range(0, 10000)
.map(id => {
Thread.sleep(10)
id
})
sourceDF
.write
.format("parquet")
.save("s3a://my/test/bucket/")
(I use Thread.sleep to simulate some processing and have little time to check the intermediate content of my local temp directory and S3 bucket)
However, I get an java.lang.UnsatisfiedLinkError: org.apache.hadoop.io.nativeio.NativeIO$POSIX.stat error during commit task attempt.
Below is the piece of logs (reduced to 1 executor) and error stack trace.
20/05/09 15:13:18 INFO InternalParquetRecordWriter: Flushing mem columnStore to file. allocated memory: 15000
20/05/09 15:13:18 INFO StagingCommitter: Starting: Task committer attempt_20200509151301_0000_m_000000_0: needsTaskCommit() Task attempt_20200509151301_0000_m_000000_0
20/05/09 15:13:18 INFO StagingCommitter: Task committer attempt_20200509151301_0000_m_000000_0: needsTaskCommit() Task attempt_20200509151301_0000_m_000000_0: duration 0:00.005s
20/05/09 15:13:18 INFO StagingCommitter: Starting: Task committer attempt_20200509151301_0000_m_000000_0: commit task attempt_20200509151301_0000_m_000000_0
20/05/09 15:13:18 INFO StagingCommitter: Task committer attempt_20200509151301_0000_m_000000_0: commit task attempt_20200509151301_0000_m_000000_0: duration 0:00.019s
20/05/09 15:13:18 ERROR Utils: Aborting task
java.lang.UnsatisfiedLinkError: org.apache.hadoop.io.nativeio.NativeIO$POSIX.stat(Ljava/lang/String;)Lorg/apache/hadoop/io/nativeio/NativeIO$POSIX$Stat;
at org.apache.hadoop.io.nativeio.NativeIO$POSIX.stat(Native Method)
at org.apache.hadoop.io.nativeio.NativeIO$POSIX.getStat(NativeIO.java:460)
at org.apache.hadoop.fs.RawLocalFileSystem$DeprecatedRawLocalFileStatus.loadPermissionInfoByNativeIO(RawLocalFileSystem.java:821)
at org.apache.hadoop.fs.RawLocalFileSystem$DeprecatedRawLocalFileStatus.loadPermissionInfo(RawLocalFileSystem.java:735)
at org.apache.hadoop.fs.RawLocalFileSystem$DeprecatedRawLocalFileStatus.getPermission(RawLocalFileSystem.java:703)
at org.apache.hadoop.fs.LocatedFileStatus.<init>(LocatedFileStatus.java:52)
at org.apache.hadoop.fs.FileSystem$4.next(FileSystem.java:2091)
at org.apache.hadoop.fs.FileSystem$4.next(FileSystem.java:2071)
at org.apache.hadoop.fs.FileSystem$5.hasNext(FileSystem.java:2190)
at org.apache.hadoop.fs.s3a.S3AUtils.applyLocatedFiles(S3AUtils.java:1295)
at org.apache.hadoop.fs.s3a.S3AUtils.flatmapLocatedFiles(S3AUtils.java:1333)
at org.apache.hadoop.fs.s3a.S3AUtils.listAndFilter(S3AUtils.java:1350)
at org.apache.hadoop.fs.s3a.commit.staging.StagingCommitter.getTaskOutput(StagingCommitter.java:385)
at org.apache.hadoop.fs.s3a.commit.staging.StagingCommitter.commitTask(StagingCommitter.java:641)
at org.apache.spark.mapred.SparkHadoopMapRedUtil$.performCommit$1(SparkHadoopMapRedUtil.scala:50)
at org.apache.spark.mapred.SparkHadoopMapRedUtil$.commitTask(SparkHadoopMapRedUtil.scala:77)
at org.apache.spark.internal.io.HadoopMapReduceCommitProtocol.commitTask(HadoopMapReduceCommitProtocol.scala:225)
at org.apache.spark.internal.io.cloud.PathOutputCommitProtocol.commitTask(PathOutputCommitProtocol.scala:220)
at org.apache.spark.sql.execution.datasources.FileFormatDataWriter.commit(FileFormatDataWriter.scala:78)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask$3.apply(FileFormatWriter.scala:247)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask$3.apply(FileFormatWriter.scala:242)
at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1394)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:248)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:170)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:169)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:123)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
20/05/09 15:13:18 ERROR Utils: Aborting task
According to my current understanding, the configuration is correct. Probably, the error is caused by some version incompatibilities or my local environment settings.
Provided code works as expected for ORC and CSV without any error, but not for Parquet.
Please, suggest what could cause the error and how to resolve this?
For everyone who comes here, I found the solution. As expected, the problem is not related to S3A output committers or library dependencies.
The UnsatisfiedLinkError exception on Java native method raised because of version incompatibility between Hadoop version in SBT dependencies and winutils.exe (HDFS wrapper) on my Windows machine.
I've downloaded corresponding version from cdarlint/winutils and it all worked. LOL
this is related to the installation not having the native libs to support the file:// URL, and s3a using that for buffering writes.
you can switch to using memory for buffering -just make sure that you are uploading to s3 as fast as you generate data. there are some options covered in the s3a docs to help manage that by limiting the #of active blocks a single output stream can queue for uploading in parallel.
<property>
<name>fs.s3a.fast.upload.buffer</name>
<value>bytebuffer</value>
</property>

Apache beam WordCount running error in windows

Trying to run WordCount example of Apache Beam (version 2.0.0) by first running
$ mvn archetype:generate \
-DarchetypeGroupId=org.apache.beam \
-DarchetypeArtifactId=beam-sdks-java-maven-archetypes-examples \
-DarchetypeVersion=2.0.0 \
-DgroupId=org.example \
-DartifactId=word-count-beam \
-Dversion="0.1" \
-Dpackage=org.apache.beam.examples \
-DinteractiveMode=false
then running
$ mvn compile exec:java -Dexec.mainClass=org.apache.beam.examples.WordCount -Dexec.args="--inputFile=pom.xml --output=counts" -Pdirect-runner
and getting the following error
[ERROR] Failed to execute goal org.codehaus.mojo:exec-maven-plugin:1.4.0:java (default-cli) on project word-count-beam: An exception occured while executing the
Java class. null: InvocationTargetException: java.lang.IllegalStateException: U
nable to find registrar for d -> [Help 1]
However, if I run the same project downloaded and built in Mar 2017 (Beam v0.6.0), everything works fine. I just wonder what update of the Beam release causes this error.
This error happens due to TextIO#from("path_to_file") method doesn't support Windows file system paths.
For example the following code throws IllegalStateException:
TextIO.read().from("d:\\file.txt") // also "file:\\D:\\file.txt" throw exc
Exception in thread "main"
org.apache.beam.sdk.Pipeline$PipelineExecutionException:
java.lang.IllegalStateException: Unable to find registrar for d
I hope that Apache Beam team will fix it in near future...
This error seems to indicate you are trying to access a file with invalid scheme.
It comes from here: FileSystems.java
It may be an issue with your OS.
Can you provide information about your OS and dev environment?
EDIT:
Since you're using Windows as you say and as MeetJoeBlack explains - my first assumption was probably correct.
I suggest you try to run the code via Docker using this Maven Docker Image
You can read the howto in there - If you need more help just ping me.

Running from a local IDE against a remote Spark cluster

We have a kerberized cluster with Spark running on Yarn. At the moment, we write our Spark code in Scala locally, then build a fat JAR which we copy over to the cluster and then run spark-submit. I would instead like to write Spark code on my local PC and have it run against the cluster directly. Is there a straightforward way to do this? The Spark docs don't seem to have any such pattern.
FYI, my local machine is running Windows and the cluster is running CDH.
While cricket007's answer works for spark-submit, here is what I did to run against a remote cluster using IntelliJ:
First, make sure the JARs on the client and server sides are identical. Since we are using CDH 7.1, I made sure all my JARs came from the specific distribution.
Set HADOOP_CONF_DIR and YARN_CONF_DIR as described in cricket007's answer. Set "spark.yarn.principal" and "spark.yarn.keytab" as appropriate in the Spark conf.
If connecting to HDFS, make sure the following exclusion rule is set in build.sbt:
libraryDependencies += "org.apache.hadoop" % "hadoop-client" % "2.6.0-cdh5.7.1" excludeAll ExclusionRule(organization = "javax.servlet")
Make sure the spark-launcher and spark-yarn JARs are listed on build.sbt.
libraryDependencies += "org.apache.spark" %% "spark-launcher" % "1.6.0-cdh5.7.1"
libraryDependencies += "org.apache.spark" %% "spark-yarn" % "1.6.0-cdh5.7.1"
Find the CDH JARs on the server and copy them to a known location on HDFS. Add the following lines to your code:
final val CDH_JAR_PATH = "/opt/cloudera/parcels/CDH/jars"
final val hadoopJars: Seq[String] = Seq[String](
"hadoop-annotations-2.6.0-cdh5.7.1.jar"
, "hadoop-ant-2.6.0-cdh5.7.1.jar"
, "hadoop-ant-2.6.0-mr1-cdh5.7.1.jar"
, "hadoop-archive-logs-2.6.0-cdh5.7.1.jar"
, "hadoop-archives-2.6.0-cdh5.7.1.jar"
, "hadoop-auth-2.6.0-cdh5.7.1.jar"
, "hadoop-aws-2.6.0-cdh5.7.1.jar"
, "hadoop-azure-2.6.0-cdh5.7.1.jar"
, "hadoop-capacity-scheduler-2.6.0-mr1-cdh5.7.1.jar"
, "hadoop-common-2.6.0-cdh5.7.1.jar"
, "hadoop-core-2.6.0-mr1-cdh5.7.1.jar"
, "hadoop-datajoin-2.6.0-cdh5.7.1.jar"
, "hadoop-distcp-2.6.0-cdh5.7.1.jar"
, "hadoop-examples-2.6.0-mr1-cdh5.7.1.jar"
, "hadoop-examples.jar"
, "hadoop-extras-2.6.0-cdh5.7.1.jar"
, "hadoop-fairscheduler-2.6.0-mr1-cdh5.7.1.jar"
, "hadoop-gridmix-2.6.0-cdh5.7.1.jar"
, "hadoop-gridmix-2.6.0-mr1-cdh5.7.1.jar"
, "hadoop-hdfs-2.6.0-cdh5.7.1.jar"
, "hadoop-hdfs-nfs-2.6.0-cdh5.7.1.jar"
, "hadoop-kms-2.6.0-cdh5.7.1.jar"
, "hadoop-mapreduce-client-app-2.6.0-cdh5.7.1.jar"
, "hadoop-mapreduce-client-common-2.6.0-cdh5.7.1.jar"
, "hadoop-mapreduce-client-core-2.6.0-cdh5.7.1.jar"
, "hadoop-mapreduce-client-hs-2.6.0-cdh5.7.1.jar"
, "hadoop-mapreduce-client-hs-plugins-2.6.0-cdh5.7.1.jar"
, "hadoop-mapreduce-client-jobclient-2.6.0-cdh5.7.1.jar"
, "hadoop-mapreduce-client-nativetask-2.6.0-cdh5.7.1.jar"
, "hadoop-mapreduce-client-shuffle-2.6.0-cdh5.7.1.jar"
, "hadoop-nfs-2.6.0-cdh5.7.1.jar"
, "hadoop-openstack-2.6.0-cdh5.7.1.jar"
, "hadoop-rumen-2.6.0-cdh5.7.1.jar"
, "hadoop-sls-2.6.0-cdh5.7.1.jar"
, "hadoop-streaming-2.6.0-cdh5.7.1.jar"
, "hadoop-streaming-2.6.0-mr1-cdh5.7.1.jar"
, "hadoop-tools-2.6.0-mr1-cdh5.7.1.jar"
, "hadoop-yarn-api-2.6.0-cdh5.7.1.jar"
, "hadoop-yarn-applications-distributedshell-2.6.0-cdh5.7.1.jar"
, "hadoop-yarn-applications-unmanaged-am-launcher-2.6.0-cdh5.7.1.jar"
, "hadoop-yarn-client-2.6.0-cdh5.7.1.jar"
, "hadoop-yarn-common-2.6.0-cdh5.7.1.jar"
, "hadoop-yarn-registry-2.6.0-cdh5.7.1.jar"
, "hadoop-yarn-server-applicationhistoryservice-2.6.0-cdh5.7.1.jar"
, "hadoop-yarn-server-common-2.6.0-cdh5.7.1.jar"
, "hadoop-yarn-server-nodemanager-2.6.0-cdh5.7.1.jar"
, "hadoop-yarn-server-resourcemanager-2.6.0-cdh5.7.1.jar"
, "hadoop-yarn-server-web-proxy-2.6.0-cdh5.7.1.jar"
, "hbase-hadoop2-compat-1.2.0-cdh5.7.1.jar"
, "hbase-hadoop-compat-1.2.0-cdh5.7.1.jar")
final val sparkJars: Seq[String] = Seq[String](
"spark-1.6.0-cdh5.7.1-yarn-shuffle.jar",
"spark-assembly-1.6.0-cdh5.7.1-hadoop2.6.0-cdh5.7.1.jar",
"spark-avro_2.10-1.1.0-cdh5.7.1.jar",
"spark-bagel_2.10-1.6.0-cdh5.7.1.jar",
"spark-catalyst_2.10-1.6.0-cdh5.7.1.jar",
"spark-core_2.10-1.6.0-cdh5.7.1.jar",
"spark-examples-1.6.0-cdh5.7.1-hadoop2.6.0-cdh5.7.1.jar",
"spark-graphx_2.10-1.6.0-cdh5.7.1.jar",
"spark-hive_2.10-1.6.0-cdh5.7.1.jar",
"spark-launcher_2.10-1.6.0-cdh5.7.1.jar",
"spark-mllib_2.10-1.6.0-cdh5.7.1.jar",
"spark-network-common_2.10-1.6.0-cdh5.7.1.jar",
"spark-network-shuffle_2.10-1.6.0-cdh5.7.1.jar",
"spark-repl_2.10-1.6.0-cdh5.7.1.jar",
"spark-sql_2.10-1.6.0-cdh5.7.1.jar",
"spark-streaming-flume-sink_2.10-1.6.0-cdh5.7.1.jar",
"spark-streaming-flume_2.10-1.6.0-cdh5.7.1.jar",
"spark-streaming-kafka_2.10-1.6.0-cdh5.7.1.jar",
"spark-streaming_2.10-1.6.0-cdh5.7.1.jar",
"spark-unsafe_2.10-1.6.0-cdh5.7.1.jar",
"spark-yarn_2.10-1.6.0-cdh5.7.1.jar")
def getClassPath(jarNames: Seq[String], pathPrefix: String): String = {
jarNames.foldLeft("")((cp, name) => s"$cp:$pathPrefix/$name").drop(1)
}
Add these lines when creating a SparkConf:
.set("spark.driver.extraClassPath", getClassPath(sparkJars ++ hadoopJars, CDH_JAR_PATH))
.set("spark.executor.extraClassPath", getClassPath(sparkJars ++ hadoopJars, CDH_JAR_PATH))
.set("spark.yarn.jars", "hdfs://$YOUR_MACHINE/PATH_TO_JARS/*")
Your program should work now.
Assuming you have the correct packages on your classpath (easiest setup by SBT, Maven, etc.), you should be able to spark-submit from anywhere. The --master flag is the main piece that really determines how the job is distributed. One thing to take into consideration is if your local machine is not blocked off from the YARN cluster via a firewall or other network prevention, for example. (Because you'd don't want people randomly running applications on your cluster)
From your local machine, you'll need the Hadoop configuration files from your cluster and setup $SPARK_HOME/conf directory to accommodate for some Hadoop related settings.
From Spark on YARN page.
Ensure that HADOOP_CONF_DIR or YARN_CONF_DIR points to the directory which contains the (client side) configuration files for the Hadoop cluster. These configs are used to write to HDFS and connect to the YARN ResourceManager. The configuration contained in this directory will be distributed to the YARN cluster so that all containers used by the application use the same configuration
These values are set from $SPARK_HOME/conf/spark-env.sh
Since you are Kerberized, see Long Running Spark Applciations
For long-running applications, such as Spark Streaming jobs, to write to HDFS, you must configure Kerberos authentication for Spark for Spark, and pass the Spark principal and keytab to the spark-submit script using the --principal and --keytab parameters

Spark 2.0: Relative path in absolute URI (spark-warehouse)

I'm trying to migrate from Spark 1.6.1 to Spark 2.0.0 and I am getting a weird error when trying to read a csv file into SparkSQL. Previously, when I would read a file from local disk in pyspark I would do:
Spark 1.6
df = sqlContext.read \
.format('com.databricks.spark.csv') \
.option('header', 'true') \
.load('file:///C:/path/to/my/file.csv', schema=mySchema)
In the latest release I think it should look like this:
Spark 2.0
spark = SparkSession.builder \
.master('local[*]') \
.appName('My App') \
.getOrCreate()
df = spark.read \
.format('csv') \
.option('header', 'true') \
.load('file:///C:/path/to/my/file.csv', schema=mySchema)
But I am getting this error no matter how many different ways I try to adjust the path:
IllegalArgumentException: 'java.net.URISyntaxException: Relative path in
absolute URI: file:/C:/path//to/my/file/spark-warehouse'
Not sure if this is just an issue with Windows or there is something I am missing. I was excited that the spark-csv package is now a part of Spark right out of the box, but I can't seem to get it to read any of my local files anymore. Any ideas?
I was able to do some digging around in the latest Spark documentation, and I notice they have a new configuration setting that I hadn't noticed before:
spark.sql.warehouse.dir
So I went ahead and added this setting when I set up my SparkSession:
spark = SparkSession.builder \
.master('local[*]') \
.appName('My App') \
.config('spark.sql.warehouse.dir', 'file:///C:/path/to/my/') \
.getOrCreate()
That seems to set the working directory, and then I can just feed my filename directly into the csv reader:
df = spark.read \
.format('csv') \
.option('header', 'true') \
.load('file.csv', schema=mySchema)
Once I set the spark warehouse, Spark was able to locate all of my files and my app finishes successfully now. The amazing thing is that it runs about 20 times faster than it did in Spark 1.6. So they really have done some very impressive work optimizing their SQL engine. Spark it up!

Class org.apache.hadoop.fs.s3native.NativeS3FileSystem not found (Spark 1.6 Windows)

I am trying to access s3 files from local spark context using pySpark.
I keep getting File "C:\Spark\python\lib\py4j-0.9-src.zip\py4j\protocol.py", line 308, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o20.parquet.
: java.lang.RuntimeException: java.lang.ClassNotFoundException: Class org.apache.hadoop.fs.s3native.NativeS3FileSystem not found
I had set os.environ['AWS_ACCESS_KEY_ID'] and
os.environ['AWS_SECRET_ACCESS_KEY'] before I called df = sqc.read.parquet(input_path). I also added these lines:
hadoopConf.set("fs.s3.impl", "org.apache.hadoop.fs.s3native.NativeS3FileSystem")
hadoopConf.set("fs.s3.awsSecretAccessKey", os.environ["AWS_SECRET_ACCESS_KEY"])
hadoopConf.set("fs.s3.awsAccessKeyId", os.environ["AWS_ACCESS_KEY_ID"])
I have also tried changing s3 to s3n, s3a. Neither worked.
Any idea how to make it work?
I am on Windows 10, pySpark, Spark 1.6.1 built for Hadoop 2.6.0
I'm running pyspark appending the libraries from hadoop-aws.
You will need to use s3n in your input path. I'm running that from Mac-OS. so I'm not sure if it will work in Windows.
$SPARK_HOME/bin/pyspark --packages org.apache.hadoop:hadoop-aws:2.7.1
This package declaration works even in spark-shell
spark-shell --packages org.apache.hadoop:hadoop-aws:2.7.1
and specify in the shell
sc.hadoopConfiguration.set("fs.s3n.awsAccessKeyId", "xxxxxxxxxxxxx")
sc.hadoopConfiguration.set("fs.s3n.awsSecretAccessKey", "xxxxxxxxxxxxxxxxx")

Resources